| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * VMware vSockets Driver | 
 |  * | 
 |  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved. | 
 |  */ | 
 |  | 
 | /* Implementation notes: | 
 |  * | 
 |  * - There are two kinds of sockets: those created by user action (such as | 
 |  * calling socket(2)) and those created by incoming connection request packets. | 
 |  * | 
 |  * - There are two "global" tables, one for bound sockets (sockets that have | 
 |  * specified an address that they are responsible for) and one for connected | 
 |  * sockets (sockets that have established a connection with another socket). | 
 |  * These tables are "global" in that all sockets on the system are placed | 
 |  * within them. - Note, though, that the bound table contains an extra entry | 
 |  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in | 
 |  * that list. The bound table is used solely for lookup of sockets when packets | 
 |  * are received and that's not necessary for SOCK_DGRAM sockets since we create | 
 |  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM | 
 |  * sockets out of the bound hash buckets will reduce the chance of collisions | 
 |  * when looking for SOCK_STREAM sockets and prevents us from having to check the | 
 |  * socket type in the hash table lookups. | 
 |  * | 
 |  * - Sockets created by user action will either be "client" sockets that | 
 |  * initiate a connection or "server" sockets that listen for connections; we do | 
 |  * not support simultaneous connects (two "client" sockets connecting). | 
 |  * | 
 |  * - "Server" sockets are referred to as listener sockets throughout this | 
 |  * implementation because they are in the TCP_LISTEN state.  When a | 
 |  * connection request is received (the second kind of socket mentioned above), | 
 |  * we create a new socket and refer to it as a pending socket.  These pending | 
 |  * sockets are placed on the pending connection list of the listener socket. | 
 |  * When future packets are received for the address the listener socket is | 
 |  * bound to, we check if the source of the packet is from one that has an | 
 |  * existing pending connection.  If it does, we process the packet for the | 
 |  * pending socket.  When that socket reaches the connected state, it is removed | 
 |  * from the listener socket's pending list and enqueued in the listener | 
 |  * socket's accept queue.  Callers of accept(2) will accept connected sockets | 
 |  * from the listener socket's accept queue.  If the socket cannot be accepted | 
 |  * for some reason then it is marked rejected.  Once the connection is | 
 |  * accepted, it is owned by the user process and the responsibility for cleanup | 
 |  * falls with that user process. | 
 |  * | 
 |  * - It is possible that these pending sockets will never reach the connected | 
 |  * state; in fact, we may never receive another packet after the connection | 
 |  * request.  Because of this, we must schedule a cleanup function to run in the | 
 |  * future, after some amount of time passes where a connection should have been | 
 |  * established.  This function ensures that the socket is off all lists so it | 
 |  * cannot be retrieved, then drops all references to the socket so it is cleaned | 
 |  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this | 
 |  * function will also cleanup rejected sockets, those that reach the connected | 
 |  * state but leave it before they have been accepted. | 
 |  * | 
 |  * - Lock ordering for pending or accept queue sockets is: | 
 |  * | 
 |  *     lock_sock(listener); | 
 |  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING); | 
 |  * | 
 |  * Using explicit nested locking keeps lockdep happy since normally only one | 
 |  * lock of a given class may be taken at a time. | 
 |  * | 
 |  * - Sockets created by user action will be cleaned up when the user process | 
 |  * calls close(2), causing our release implementation to be called. Our release | 
 |  * implementation will perform some cleanup then drop the last reference so our | 
 |  * sk_destruct implementation is invoked.  Our sk_destruct implementation will | 
 |  * perform additional cleanup that's common for both types of sockets. | 
 |  * | 
 |  * - A socket's reference count is what ensures that the structure won't be | 
 |  * freed.  Each entry in a list (such as the "global" bound and connected tables | 
 |  * and the listener socket's pending list and connected queue) ensures a | 
 |  * reference.  When we defer work until process context and pass a socket as our | 
 |  * argument, we must ensure the reference count is increased to ensure the | 
 |  * socket isn't freed before the function is run; the deferred function will | 
 |  * then drop the reference. | 
 |  * | 
 |  * - sk->sk_state uses the TCP state constants because they are widely used by | 
 |  * other address families and exposed to userspace tools like ss(8): | 
 |  * | 
 |  *   TCP_CLOSE - unconnected | 
 |  *   TCP_SYN_SENT - connecting | 
 |  *   TCP_ESTABLISHED - connected | 
 |  *   TCP_CLOSING - disconnecting | 
 |  *   TCP_LISTEN - listening | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/cred.h> | 
 | #include <linux/init.h> | 
 | #include <linux/io.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/list.h> | 
 | #include <linux/miscdevice.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/net.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/random.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/socket.h> | 
 | #include <linux/stddef.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/workqueue.h> | 
 | #include <net/sock.h> | 
 | #include <net/af_vsock.h> | 
 |  | 
 | static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr); | 
 | static void vsock_sk_destruct(struct sock *sk); | 
 | static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); | 
 |  | 
 | /* Protocol family. */ | 
 | static struct proto vsock_proto = { | 
 | 	.name = "AF_VSOCK", | 
 | 	.owner = THIS_MODULE, | 
 | 	.obj_size = sizeof(struct vsock_sock), | 
 | }; | 
 |  | 
 | /* The default peer timeout indicates how long we will wait for a peer response | 
 |  * to a control message. | 
 |  */ | 
 | #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ) | 
 |  | 
 | static const struct vsock_transport *transport; | 
 | static DEFINE_MUTEX(vsock_register_mutex); | 
 |  | 
 | /**** EXPORTS ****/ | 
 |  | 
 | /* Get the ID of the local context.  This is transport dependent. */ | 
 |  | 
 | int vm_sockets_get_local_cid(void) | 
 | { | 
 | 	return transport->get_local_cid(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid); | 
 |  | 
 | /**** UTILS ****/ | 
 |  | 
 | /* Each bound VSocket is stored in the bind hash table and each connected | 
 |  * VSocket is stored in the connected hash table. | 
 |  * | 
 |  * Unbound sockets are all put on the same list attached to the end of the hash | 
 |  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in | 
 |  * the bucket that their local address hashes to (vsock_bound_sockets(addr) | 
 |  * represents the list that addr hashes to). | 
 |  * | 
 |  * Specifically, we initialize the vsock_bind_table array to a size of | 
 |  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through | 
 |  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and | 
 |  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function | 
 |  * mods with VSOCK_HASH_SIZE to ensure this. | 
 |  */ | 
 | #define MAX_PORT_RETRIES        24 | 
 |  | 
 | #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE) | 
 | #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)]) | 
 | #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE]) | 
 |  | 
 | /* XXX This can probably be implemented in a better way. */ | 
 | #define VSOCK_CONN_HASH(src, dst)				\ | 
 | 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE) | 
 | #define vsock_connected_sockets(src, dst)		\ | 
 | 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)]) | 
 | #define vsock_connected_sockets_vsk(vsk)				\ | 
 | 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr) | 
 |  | 
 | struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1]; | 
 | EXPORT_SYMBOL_GPL(vsock_bind_table); | 
 | struct list_head vsock_connected_table[VSOCK_HASH_SIZE]; | 
 | EXPORT_SYMBOL_GPL(vsock_connected_table); | 
 | DEFINE_SPINLOCK(vsock_table_lock); | 
 | EXPORT_SYMBOL_GPL(vsock_table_lock); | 
 |  | 
 | /* Autobind this socket to the local address if necessary. */ | 
 | static int vsock_auto_bind(struct vsock_sock *vsk) | 
 | { | 
 | 	struct sock *sk = sk_vsock(vsk); | 
 | 	struct sockaddr_vm local_addr; | 
 |  | 
 | 	if (vsock_addr_bound(&vsk->local_addr)) | 
 | 		return 0; | 
 | 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); | 
 | 	return __vsock_bind(sk, &local_addr); | 
 | } | 
 |  | 
 | static int __init vsock_init_tables(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++) | 
 | 		INIT_LIST_HEAD(&vsock_bind_table[i]); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) | 
 | 		INIT_LIST_HEAD(&vsock_connected_table[i]); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __vsock_insert_bound(struct list_head *list, | 
 | 				 struct vsock_sock *vsk) | 
 | { | 
 | 	sock_hold(&vsk->sk); | 
 | 	list_add(&vsk->bound_table, list); | 
 | } | 
 |  | 
 | static void __vsock_insert_connected(struct list_head *list, | 
 | 				     struct vsock_sock *vsk) | 
 | { | 
 | 	sock_hold(&vsk->sk); | 
 | 	list_add(&vsk->connected_table, list); | 
 | } | 
 |  | 
 | static void __vsock_remove_bound(struct vsock_sock *vsk) | 
 | { | 
 | 	list_del_init(&vsk->bound_table); | 
 | 	sock_put(&vsk->sk); | 
 | } | 
 |  | 
 | static void __vsock_remove_connected(struct vsock_sock *vsk) | 
 | { | 
 | 	list_del_init(&vsk->connected_table); | 
 | 	sock_put(&vsk->sk); | 
 | } | 
 |  | 
 | static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr) | 
 | { | 
 | 	struct vsock_sock *vsk; | 
 |  | 
 | 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) | 
 | 		if (addr->svm_port == vsk->local_addr.svm_port) | 
 | 			return sk_vsock(vsk); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src, | 
 | 						  struct sockaddr_vm *dst) | 
 | { | 
 | 	struct vsock_sock *vsk; | 
 |  | 
 | 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst), | 
 | 			    connected_table) { | 
 | 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) && | 
 | 		    dst->svm_port == vsk->local_addr.svm_port) { | 
 | 			return sk_vsock(vsk); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void vsock_insert_unbound(struct vsock_sock *vsk) | 
 | { | 
 | 	spin_lock_bh(&vsock_table_lock); | 
 | 	__vsock_insert_bound(vsock_unbound_sockets, vsk); | 
 | 	spin_unlock_bh(&vsock_table_lock); | 
 | } | 
 |  | 
 | void vsock_insert_connected(struct vsock_sock *vsk) | 
 | { | 
 | 	struct list_head *list = vsock_connected_sockets( | 
 | 		&vsk->remote_addr, &vsk->local_addr); | 
 |  | 
 | 	spin_lock_bh(&vsock_table_lock); | 
 | 	__vsock_insert_connected(list, vsk); | 
 | 	spin_unlock_bh(&vsock_table_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_insert_connected); | 
 |  | 
 | void vsock_remove_bound(struct vsock_sock *vsk) | 
 | { | 
 | 	spin_lock_bh(&vsock_table_lock); | 
 | 	if (__vsock_in_bound_table(vsk)) | 
 | 		__vsock_remove_bound(vsk); | 
 | 	spin_unlock_bh(&vsock_table_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_remove_bound); | 
 |  | 
 | void vsock_remove_connected(struct vsock_sock *vsk) | 
 | { | 
 | 	spin_lock_bh(&vsock_table_lock); | 
 | 	if (__vsock_in_connected_table(vsk)) | 
 | 		__vsock_remove_connected(vsk); | 
 | 	spin_unlock_bh(&vsock_table_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_remove_connected); | 
 |  | 
 | struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr) | 
 | { | 
 | 	struct sock *sk; | 
 |  | 
 | 	spin_lock_bh(&vsock_table_lock); | 
 | 	sk = __vsock_find_bound_socket(addr); | 
 | 	if (sk) | 
 | 		sock_hold(sk); | 
 |  | 
 | 	spin_unlock_bh(&vsock_table_lock); | 
 |  | 
 | 	return sk; | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_find_bound_socket); | 
 |  | 
 | struct sock *vsock_find_connected_socket(struct sockaddr_vm *src, | 
 | 					 struct sockaddr_vm *dst) | 
 | { | 
 | 	struct sock *sk; | 
 |  | 
 | 	spin_lock_bh(&vsock_table_lock); | 
 | 	sk = __vsock_find_connected_socket(src, dst); | 
 | 	if (sk) | 
 | 		sock_hold(sk); | 
 |  | 
 | 	spin_unlock_bh(&vsock_table_lock); | 
 |  | 
 | 	return sk; | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_find_connected_socket); | 
 |  | 
 | void vsock_remove_sock(struct vsock_sock *vsk) | 
 | { | 
 | 	vsock_remove_bound(vsk); | 
 | 	vsock_remove_connected(vsk); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_remove_sock); | 
 |  | 
 | void vsock_for_each_connected_socket(void (*fn)(struct sock *sk)) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	spin_lock_bh(&vsock_table_lock); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) { | 
 | 		struct vsock_sock *vsk; | 
 | 		list_for_each_entry(vsk, &vsock_connected_table[i], | 
 | 				    connected_table) | 
 | 			fn(sk_vsock(vsk)); | 
 | 	} | 
 |  | 
 | 	spin_unlock_bh(&vsock_table_lock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket); | 
 |  | 
 | void vsock_add_pending(struct sock *listener, struct sock *pending) | 
 | { | 
 | 	struct vsock_sock *vlistener; | 
 | 	struct vsock_sock *vpending; | 
 |  | 
 | 	vlistener = vsock_sk(listener); | 
 | 	vpending = vsock_sk(pending); | 
 |  | 
 | 	sock_hold(pending); | 
 | 	sock_hold(listener); | 
 | 	list_add_tail(&vpending->pending_links, &vlistener->pending_links); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_add_pending); | 
 |  | 
 | void vsock_remove_pending(struct sock *listener, struct sock *pending) | 
 | { | 
 | 	struct vsock_sock *vpending = vsock_sk(pending); | 
 |  | 
 | 	list_del_init(&vpending->pending_links); | 
 | 	sock_put(listener); | 
 | 	sock_put(pending); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_remove_pending); | 
 |  | 
 | void vsock_enqueue_accept(struct sock *listener, struct sock *connected) | 
 | { | 
 | 	struct vsock_sock *vlistener; | 
 | 	struct vsock_sock *vconnected; | 
 |  | 
 | 	vlistener = vsock_sk(listener); | 
 | 	vconnected = vsock_sk(connected); | 
 |  | 
 | 	sock_hold(connected); | 
 | 	sock_hold(listener); | 
 | 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_enqueue_accept); | 
 |  | 
 | static struct sock *vsock_dequeue_accept(struct sock *listener) | 
 | { | 
 | 	struct vsock_sock *vlistener; | 
 | 	struct vsock_sock *vconnected; | 
 |  | 
 | 	vlistener = vsock_sk(listener); | 
 |  | 
 | 	if (list_empty(&vlistener->accept_queue)) | 
 | 		return NULL; | 
 |  | 
 | 	vconnected = list_entry(vlistener->accept_queue.next, | 
 | 				struct vsock_sock, accept_queue); | 
 |  | 
 | 	list_del_init(&vconnected->accept_queue); | 
 | 	sock_put(listener); | 
 | 	/* The caller will need a reference on the connected socket so we let | 
 | 	 * it call sock_put(). | 
 | 	 */ | 
 |  | 
 | 	return sk_vsock(vconnected); | 
 | } | 
 |  | 
 | static bool vsock_is_accept_queue_empty(struct sock *sk) | 
 | { | 
 | 	struct vsock_sock *vsk = vsock_sk(sk); | 
 | 	return list_empty(&vsk->accept_queue); | 
 | } | 
 |  | 
 | static bool vsock_is_pending(struct sock *sk) | 
 | { | 
 | 	struct vsock_sock *vsk = vsock_sk(sk); | 
 | 	return !list_empty(&vsk->pending_links); | 
 | } | 
 |  | 
 | static int vsock_send_shutdown(struct sock *sk, int mode) | 
 | { | 
 | 	return transport->shutdown(vsock_sk(sk), mode); | 
 | } | 
 |  | 
 | static void vsock_pending_work(struct work_struct *work) | 
 | { | 
 | 	struct sock *sk; | 
 | 	struct sock *listener; | 
 | 	struct vsock_sock *vsk; | 
 | 	bool cleanup; | 
 |  | 
 | 	vsk = container_of(work, struct vsock_sock, pending_work.work); | 
 | 	sk = sk_vsock(vsk); | 
 | 	listener = vsk->listener; | 
 | 	cleanup = true; | 
 |  | 
 | 	lock_sock(listener); | 
 | 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 	if (vsock_is_pending(sk)) { | 
 | 		vsock_remove_pending(listener, sk); | 
 |  | 
 | 		listener->sk_ack_backlog--; | 
 | 	} else if (!vsk->rejected) { | 
 | 		/* We are not on the pending list and accept() did not reject | 
 | 		 * us, so we must have been accepted by our user process.  We | 
 | 		 * just need to drop our references to the sockets and be on | 
 | 		 * our way. | 
 | 		 */ | 
 | 		cleanup = false; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* We need to remove ourself from the global connected sockets list so | 
 | 	 * incoming packets can't find this socket, and to reduce the reference | 
 | 	 * count. | 
 | 	 */ | 
 | 	vsock_remove_connected(vsk); | 
 |  | 
 | 	sk->sk_state = TCP_CLOSE; | 
 |  | 
 | out: | 
 | 	release_sock(sk); | 
 | 	release_sock(listener); | 
 | 	if (cleanup) | 
 | 		sock_put(sk); | 
 |  | 
 | 	sock_put(sk); | 
 | 	sock_put(listener); | 
 | } | 
 |  | 
 | /**** SOCKET OPERATIONS ****/ | 
 |  | 
 | static int __vsock_bind_stream(struct vsock_sock *vsk, | 
 | 			       struct sockaddr_vm *addr) | 
 | { | 
 | 	static u32 port; | 
 | 	struct sockaddr_vm new_addr; | 
 |  | 
 | 	if (!port) | 
 | 		port = LAST_RESERVED_PORT + 1 + | 
 | 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT); | 
 |  | 
 | 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port); | 
 |  | 
 | 	if (addr->svm_port == VMADDR_PORT_ANY) { | 
 | 		bool found = false; | 
 | 		unsigned int i; | 
 |  | 
 | 		for (i = 0; i < MAX_PORT_RETRIES; i++) { | 
 | 			if (port <= LAST_RESERVED_PORT) | 
 | 				port = LAST_RESERVED_PORT + 1; | 
 |  | 
 | 			new_addr.svm_port = port++; | 
 |  | 
 | 			if (!__vsock_find_bound_socket(&new_addr)) { | 
 | 				found = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!found) | 
 | 			return -EADDRNOTAVAIL; | 
 | 	} else { | 
 | 		/* If port is in reserved range, ensure caller | 
 | 		 * has necessary privileges. | 
 | 		 */ | 
 | 		if (addr->svm_port <= LAST_RESERVED_PORT && | 
 | 		    !capable(CAP_NET_BIND_SERVICE)) { | 
 | 			return -EACCES; | 
 | 		} | 
 |  | 
 | 		if (__vsock_find_bound_socket(&new_addr)) | 
 | 			return -EADDRINUSE; | 
 | 	} | 
 |  | 
 | 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port); | 
 |  | 
 | 	/* Remove stream sockets from the unbound list and add them to the hash | 
 | 	 * table for easy lookup by its address.  The unbound list is simply an | 
 | 	 * extra entry at the end of the hash table, a trick used by AF_UNIX. | 
 | 	 */ | 
 | 	__vsock_remove_bound(vsk); | 
 | 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __vsock_bind_dgram(struct vsock_sock *vsk, | 
 | 			      struct sockaddr_vm *addr) | 
 | { | 
 | 	return transport->dgram_bind(vsk, addr); | 
 | } | 
 |  | 
 | static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr) | 
 | { | 
 | 	struct vsock_sock *vsk = vsock_sk(sk); | 
 | 	u32 cid; | 
 | 	int retval; | 
 |  | 
 | 	/* First ensure this socket isn't already bound. */ | 
 | 	if (vsock_addr_bound(&vsk->local_addr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Now bind to the provided address or select appropriate values if | 
 | 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that | 
 | 	 * like AF_INET prevents binding to a non-local IP address (in most | 
 | 	 * cases), we only allow binding to the local CID. | 
 | 	 */ | 
 | 	cid = transport->get_local_cid(); | 
 | 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY) | 
 | 		return -EADDRNOTAVAIL; | 
 |  | 
 | 	switch (sk->sk_socket->type) { | 
 | 	case SOCK_STREAM: | 
 | 		spin_lock_bh(&vsock_table_lock); | 
 | 		retval = __vsock_bind_stream(vsk, addr); | 
 | 		spin_unlock_bh(&vsock_table_lock); | 
 | 		break; | 
 |  | 
 | 	case SOCK_DGRAM: | 
 | 		retval = __vsock_bind_dgram(vsk, addr); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		retval = -EINVAL; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static void vsock_connect_timeout(struct work_struct *work); | 
 |  | 
 | struct sock *__vsock_create(struct net *net, | 
 | 			    struct socket *sock, | 
 | 			    struct sock *parent, | 
 | 			    gfp_t priority, | 
 | 			    unsigned short type, | 
 | 			    int kern) | 
 | { | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *psk; | 
 | 	struct vsock_sock *vsk; | 
 |  | 
 | 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern); | 
 | 	if (!sk) | 
 | 		return NULL; | 
 |  | 
 | 	sock_init_data(sock, sk); | 
 |  | 
 | 	/* sk->sk_type is normally set in sock_init_data, but only if sock is | 
 | 	 * non-NULL. We make sure that our sockets always have a type by | 
 | 	 * setting it here if needed. | 
 | 	 */ | 
 | 	if (!sock) | 
 | 		sk->sk_type = type; | 
 |  | 
 | 	vsk = vsock_sk(sk); | 
 | 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); | 
 | 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); | 
 |  | 
 | 	sk->sk_destruct = vsock_sk_destruct; | 
 | 	sk->sk_backlog_rcv = vsock_queue_rcv_skb; | 
 | 	sock_reset_flag(sk, SOCK_DONE); | 
 |  | 
 | 	INIT_LIST_HEAD(&vsk->bound_table); | 
 | 	INIT_LIST_HEAD(&vsk->connected_table); | 
 | 	vsk->listener = NULL; | 
 | 	INIT_LIST_HEAD(&vsk->pending_links); | 
 | 	INIT_LIST_HEAD(&vsk->accept_queue); | 
 | 	vsk->rejected = false; | 
 | 	vsk->sent_request = false; | 
 | 	vsk->ignore_connecting_rst = false; | 
 | 	vsk->peer_shutdown = 0; | 
 | 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout); | 
 | 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work); | 
 |  | 
 | 	psk = parent ? vsock_sk(parent) : NULL; | 
 | 	if (parent) { | 
 | 		vsk->trusted = psk->trusted; | 
 | 		vsk->owner = get_cred(psk->owner); | 
 | 		vsk->connect_timeout = psk->connect_timeout; | 
 | 	} else { | 
 | 		vsk->trusted = capable(CAP_NET_ADMIN); | 
 | 		vsk->owner = get_current_cred(); | 
 | 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT; | 
 | 	} | 
 |  | 
 | 	if (transport->init(vsk, psk) < 0) { | 
 | 		sk_free(sk); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (sock) | 
 | 		vsock_insert_unbound(vsk); | 
 |  | 
 | 	return sk; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__vsock_create); | 
 |  | 
 | static void __vsock_release(struct sock *sk, int level) | 
 | { | 
 | 	if (sk) { | 
 | 		struct sk_buff *skb; | 
 | 		struct sock *pending; | 
 | 		struct vsock_sock *vsk; | 
 |  | 
 | 		vsk = vsock_sk(sk); | 
 | 		pending = NULL;	/* Compiler warning. */ | 
 |  | 
 | 		/* The release call is supposed to use lock_sock_nested() | 
 | 		 * rather than lock_sock(), if a sock lock should be acquired. | 
 | 		 */ | 
 | 		transport->release(vsk); | 
 |  | 
 | 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested | 
 | 		 * version to avoid the warning "possible recursive locking | 
 | 		 * detected". When "level" is 0, lock_sock_nested(sk, level) | 
 | 		 * is the same as lock_sock(sk). | 
 | 		 */ | 
 | 		lock_sock_nested(sk, level); | 
 | 		sock_orphan(sk); | 
 | 		sk->sk_shutdown = SHUTDOWN_MASK; | 
 |  | 
 | 		while ((skb = skb_dequeue(&sk->sk_receive_queue))) | 
 | 			kfree_skb(skb); | 
 |  | 
 | 		/* Clean up any sockets that never were accepted. */ | 
 | 		while ((pending = vsock_dequeue_accept(sk)) != NULL) { | 
 | 			__vsock_release(pending, SINGLE_DEPTH_NESTING); | 
 | 			sock_put(pending); | 
 | 		} | 
 |  | 
 | 		release_sock(sk); | 
 | 		sock_put(sk); | 
 | 	} | 
 | } | 
 |  | 
 | static void vsock_sk_destruct(struct sock *sk) | 
 | { | 
 | 	struct vsock_sock *vsk = vsock_sk(sk); | 
 |  | 
 | 	transport->destruct(vsk); | 
 |  | 
 | 	/* When clearing these addresses, there's no need to set the family and | 
 | 	 * possibly register the address family with the kernel. | 
 | 	 */ | 
 | 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); | 
 | 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); | 
 |  | 
 | 	put_cred(vsk->owner); | 
 | } | 
 |  | 
 | static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = sock_queue_rcv_skb(sk, skb); | 
 | 	if (err) | 
 | 		kfree_skb(skb); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | s64 vsock_stream_has_data(struct vsock_sock *vsk) | 
 | { | 
 | 	return transport->stream_has_data(vsk); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_stream_has_data); | 
 |  | 
 | s64 vsock_stream_has_space(struct vsock_sock *vsk) | 
 | { | 
 | 	return transport->stream_has_space(vsk); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_stream_has_space); | 
 |  | 
 | static int vsock_release(struct socket *sock) | 
 | { | 
 | 	__vsock_release(sock->sk, 0); | 
 | 	sock->sk = NULL; | 
 | 	sock->state = SS_FREE; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) | 
 | { | 
 | 	int err; | 
 | 	struct sock *sk; | 
 | 	struct sockaddr_vm *vm_addr; | 
 |  | 
 | 	sk = sock->sk; | 
 |  | 
 | 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	lock_sock(sk); | 
 | 	err = __vsock_bind(sk, vm_addr); | 
 | 	release_sock(sk); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int vsock_getname(struct socket *sock, | 
 | 			 struct sockaddr *addr, int peer) | 
 | { | 
 | 	int err; | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *vsk; | 
 | 	struct sockaddr_vm *vm_addr; | 
 |  | 
 | 	sk = sock->sk; | 
 | 	vsk = vsock_sk(sk); | 
 | 	err = 0; | 
 |  | 
 | 	lock_sock(sk); | 
 |  | 
 | 	if (peer) { | 
 | 		if (sock->state != SS_CONNECTED) { | 
 | 			err = -ENOTCONN; | 
 | 			goto out; | 
 | 		} | 
 | 		vm_addr = &vsk->remote_addr; | 
 | 	} else { | 
 | 		vm_addr = &vsk->local_addr; | 
 | 	} | 
 |  | 
 | 	if (!vm_addr) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* sys_getsockname() and sys_getpeername() pass us a | 
 | 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately | 
 | 	 * that macro is defined in socket.c instead of .h, so we hardcode its | 
 | 	 * value here. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(*vm_addr) > 128); | 
 | 	memcpy(addr, vm_addr, sizeof(*vm_addr)); | 
 | 	err = sizeof(*vm_addr); | 
 |  | 
 | out: | 
 | 	release_sock(sk); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int vsock_shutdown(struct socket *sock, int mode) | 
 | { | 
 | 	int err; | 
 | 	struct sock *sk; | 
 |  | 
 | 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses | 
 | 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode | 
 | 	 * here like the other address families do.  Note also that the | 
 | 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3), | 
 | 	 * which is what we want. | 
 | 	 */ | 
 | 	mode++; | 
 |  | 
 | 	if ((mode & ~SHUTDOWN_MASK) || !mode) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* If this is a STREAM socket and it is not connected then bail out | 
 | 	 * immediately.  If it is a DGRAM socket then we must first kick the | 
 | 	 * socket so that it wakes up from any sleeping calls, for example | 
 | 	 * recv(), and then afterwards return the error. | 
 | 	 */ | 
 |  | 
 | 	sk = sock->sk; | 
 | 	if (sock->state == SS_UNCONNECTED) { | 
 | 		err = -ENOTCONN; | 
 | 		if (sk->sk_type == SOCK_STREAM) | 
 | 			return err; | 
 | 	} else { | 
 | 		sock->state = SS_DISCONNECTING; | 
 | 		err = 0; | 
 | 	} | 
 |  | 
 | 	/* Receive and send shutdowns are treated alike. */ | 
 | 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN); | 
 | 	if (mode) { | 
 | 		lock_sock(sk); | 
 | 		sk->sk_shutdown |= mode; | 
 | 		sk->sk_state_change(sk); | 
 | 		release_sock(sk); | 
 |  | 
 | 		if (sk->sk_type == SOCK_STREAM) { | 
 | 			sock_reset_flag(sk, SOCK_DONE); | 
 | 			vsock_send_shutdown(sk, mode); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static __poll_t vsock_poll(struct file *file, struct socket *sock, | 
 | 			       poll_table *wait) | 
 | { | 
 | 	struct sock *sk; | 
 | 	__poll_t mask; | 
 | 	struct vsock_sock *vsk; | 
 |  | 
 | 	sk = sock->sk; | 
 | 	vsk = vsock_sk(sk); | 
 |  | 
 | 	poll_wait(file, sk_sleep(sk), wait); | 
 | 	mask = 0; | 
 |  | 
 | 	if (sk->sk_err) | 
 | 		/* Signify that there has been an error on this socket. */ | 
 | 		mask |= EPOLLERR; | 
 |  | 
 | 	/* INET sockets treat local write shutdown and peer write shutdown as a | 
 | 	 * case of EPOLLHUP set. | 
 | 	 */ | 
 | 	if ((sk->sk_shutdown == SHUTDOWN_MASK) || | 
 | 	    ((sk->sk_shutdown & SEND_SHUTDOWN) && | 
 | 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) { | 
 | 		mask |= EPOLLHUP; | 
 | 	} | 
 |  | 
 | 	if (sk->sk_shutdown & RCV_SHUTDOWN || | 
 | 	    vsk->peer_shutdown & SEND_SHUTDOWN) { | 
 | 		mask |= EPOLLRDHUP; | 
 | 	} | 
 |  | 
 | 	if (sock->type == SOCK_DGRAM) { | 
 | 		/* For datagram sockets we can read if there is something in | 
 | 		 * the queue and write as long as the socket isn't shutdown for | 
 | 		 * sending. | 
 | 		 */ | 
 | 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || | 
 | 		    (sk->sk_shutdown & RCV_SHUTDOWN)) { | 
 | 			mask |= EPOLLIN | EPOLLRDNORM; | 
 | 		} | 
 |  | 
 | 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) | 
 | 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; | 
 |  | 
 | 	} else if (sock->type == SOCK_STREAM) { | 
 | 		lock_sock(sk); | 
 |  | 
 | 		/* Listening sockets that have connections in their accept | 
 | 		 * queue can be read. | 
 | 		 */ | 
 | 		if (sk->sk_state == TCP_LISTEN | 
 | 		    && !vsock_is_accept_queue_empty(sk)) | 
 | 			mask |= EPOLLIN | EPOLLRDNORM; | 
 |  | 
 | 		/* If there is something in the queue then we can read. */ | 
 | 		if (transport->stream_is_active(vsk) && | 
 | 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) { | 
 | 			bool data_ready_now = false; | 
 | 			int ret = transport->notify_poll_in( | 
 | 					vsk, 1, &data_ready_now); | 
 | 			if (ret < 0) { | 
 | 				mask |= EPOLLERR; | 
 | 			} else { | 
 | 				if (data_ready_now) | 
 | 					mask |= EPOLLIN | EPOLLRDNORM; | 
 |  | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Sockets whose connections have been closed, reset, or | 
 | 		 * terminated should also be considered read, and we check the | 
 | 		 * shutdown flag for that. | 
 | 		 */ | 
 | 		if (sk->sk_shutdown & RCV_SHUTDOWN || | 
 | 		    vsk->peer_shutdown & SEND_SHUTDOWN) { | 
 | 			mask |= EPOLLIN | EPOLLRDNORM; | 
 | 		} | 
 |  | 
 | 		/* Connected sockets that can produce data can be written. */ | 
 | 		if (sk->sk_state == TCP_ESTABLISHED) { | 
 | 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { | 
 | 				bool space_avail_now = false; | 
 | 				int ret = transport->notify_poll_out( | 
 | 						vsk, 1, &space_avail_now); | 
 | 				if (ret < 0) { | 
 | 					mask |= EPOLLERR; | 
 | 				} else { | 
 | 					if (space_avail_now) | 
 | 						/* Remove EPOLLWRBAND since INET | 
 | 						 * sockets are not setting it. | 
 | 						 */ | 
 | 						mask |= EPOLLOUT | EPOLLWRNORM; | 
 |  | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Simulate INET socket poll behaviors, which sets | 
 | 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read, | 
 | 		 * but local send is not shutdown. | 
 | 		 */ | 
 | 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) { | 
 | 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) | 
 | 				mask |= EPOLLOUT | EPOLLWRNORM; | 
 |  | 
 | 		} | 
 |  | 
 | 		release_sock(sk); | 
 | 	} | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg, | 
 | 			       size_t len) | 
 | { | 
 | 	int err; | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *vsk; | 
 | 	struct sockaddr_vm *remote_addr; | 
 |  | 
 | 	if (msg->msg_flags & MSG_OOB) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	/* For now, MSG_DONTWAIT is always assumed... */ | 
 | 	err = 0; | 
 | 	sk = sock->sk; | 
 | 	vsk = vsock_sk(sk); | 
 |  | 
 | 	lock_sock(sk); | 
 |  | 
 | 	err = vsock_auto_bind(vsk); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 |  | 
 | 	/* If the provided message contains an address, use that.  Otherwise | 
 | 	 * fall back on the socket's remote handle (if it has been connected). | 
 | 	 */ | 
 | 	if (msg->msg_name && | 
 | 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen, | 
 | 			    &remote_addr) == 0) { | 
 | 		/* Ensure this address is of the right type and is a valid | 
 | 		 * destination. | 
 | 		 */ | 
 |  | 
 | 		if (remote_addr->svm_cid == VMADDR_CID_ANY) | 
 | 			remote_addr->svm_cid = transport->get_local_cid(); | 
 |  | 
 | 		if (!vsock_addr_bound(remote_addr)) { | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} else if (sock->state == SS_CONNECTED) { | 
 | 		remote_addr = &vsk->remote_addr; | 
 |  | 
 | 		if (remote_addr->svm_cid == VMADDR_CID_ANY) | 
 | 			remote_addr->svm_cid = transport->get_local_cid(); | 
 |  | 
 | 		/* XXX Should connect() or this function ensure remote_addr is | 
 | 		 * bound? | 
 | 		 */ | 
 | 		if (!vsock_addr_bound(&vsk->remote_addr)) { | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!transport->dgram_allow(remote_addr->svm_cid, | 
 | 				    remote_addr->svm_port)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len); | 
 |  | 
 | out: | 
 | 	release_sock(sk); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int vsock_dgram_connect(struct socket *sock, | 
 | 			       struct sockaddr *addr, int addr_len, int flags) | 
 | { | 
 | 	int err; | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *vsk; | 
 | 	struct sockaddr_vm *remote_addr; | 
 |  | 
 | 	sk = sock->sk; | 
 | 	vsk = vsock_sk(sk); | 
 |  | 
 | 	err = vsock_addr_cast(addr, addr_len, &remote_addr); | 
 | 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) { | 
 | 		lock_sock(sk); | 
 | 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, | 
 | 				VMADDR_PORT_ANY); | 
 | 		sock->state = SS_UNCONNECTED; | 
 | 		release_sock(sk); | 
 | 		return 0; | 
 | 	} else if (err != 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	lock_sock(sk); | 
 |  | 
 | 	err = vsock_auto_bind(vsk); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (!transport->dgram_allow(remote_addr->svm_cid, | 
 | 				    remote_addr->svm_port)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr)); | 
 | 	sock->state = SS_CONNECTED; | 
 |  | 
 | out: | 
 | 	release_sock(sk); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg, | 
 | 			       size_t len, int flags) | 
 | { | 
 | 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags); | 
 | } | 
 |  | 
 | static const struct proto_ops vsock_dgram_ops = { | 
 | 	.family = PF_VSOCK, | 
 | 	.owner = THIS_MODULE, | 
 | 	.release = vsock_release, | 
 | 	.bind = vsock_bind, | 
 | 	.connect = vsock_dgram_connect, | 
 | 	.socketpair = sock_no_socketpair, | 
 | 	.accept = sock_no_accept, | 
 | 	.getname = vsock_getname, | 
 | 	.poll = vsock_poll, | 
 | 	.ioctl = sock_no_ioctl, | 
 | 	.listen = sock_no_listen, | 
 | 	.shutdown = vsock_shutdown, | 
 | 	.setsockopt = sock_no_setsockopt, | 
 | 	.getsockopt = sock_no_getsockopt, | 
 | 	.sendmsg = vsock_dgram_sendmsg, | 
 | 	.recvmsg = vsock_dgram_recvmsg, | 
 | 	.mmap = sock_no_mmap, | 
 | 	.sendpage = sock_no_sendpage, | 
 | }; | 
 |  | 
 | static int vsock_transport_cancel_pkt(struct vsock_sock *vsk) | 
 | { | 
 | 	if (!transport->cancel_pkt) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	return transport->cancel_pkt(vsk); | 
 | } | 
 |  | 
 | static void vsock_connect_timeout(struct work_struct *work) | 
 | { | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *vsk; | 
 | 	int cancel = 0; | 
 |  | 
 | 	vsk = container_of(work, struct vsock_sock, connect_work.work); | 
 | 	sk = sk_vsock(vsk); | 
 |  | 
 | 	lock_sock(sk); | 
 | 	if (sk->sk_state == TCP_SYN_SENT && | 
 | 	    (sk->sk_shutdown != SHUTDOWN_MASK)) { | 
 | 		sk->sk_state = TCP_CLOSE; | 
 | 		sk->sk_err = ETIMEDOUT; | 
 | 		sk->sk_error_report(sk); | 
 | 		cancel = 1; | 
 | 	} | 
 | 	release_sock(sk); | 
 | 	if (cancel) | 
 | 		vsock_transport_cancel_pkt(vsk); | 
 |  | 
 | 	sock_put(sk); | 
 | } | 
 |  | 
 | static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr, | 
 | 				int addr_len, int flags) | 
 | { | 
 | 	int err; | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *vsk; | 
 | 	struct sockaddr_vm *remote_addr; | 
 | 	long timeout; | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	err = 0; | 
 | 	sk = sock->sk; | 
 | 	vsk = vsock_sk(sk); | 
 |  | 
 | 	lock_sock(sk); | 
 |  | 
 | 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */ | 
 | 	switch (sock->state) { | 
 | 	case SS_CONNECTED: | 
 | 		err = -EISCONN; | 
 | 		goto out; | 
 | 	case SS_DISCONNECTING: | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	case SS_CONNECTING: | 
 | 		/* This continues on so we can move sock into the SS_CONNECTED | 
 | 		 * state once the connection has completed (at which point err | 
 | 		 * will be set to zero also).  Otherwise, we will either wait | 
 | 		 * for the connection or return -EALREADY should this be a | 
 | 		 * non-blocking call. | 
 | 		 */ | 
 | 		err = -EALREADY; | 
 | 		break; | 
 | 	default: | 
 | 		if ((sk->sk_state == TCP_LISTEN) || | 
 | 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) { | 
 | 			err = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* The hypervisor and well-known contexts do not have socket | 
 | 		 * endpoints. | 
 | 		 */ | 
 | 		if (!transport->stream_allow(remote_addr->svm_cid, | 
 | 					     remote_addr->svm_port)) { | 
 | 			err = -ENETUNREACH; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* Set the remote address that we are connecting to. */ | 
 | 		memcpy(&vsk->remote_addr, remote_addr, | 
 | 		       sizeof(vsk->remote_addr)); | 
 |  | 
 | 		err = vsock_auto_bind(vsk); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		sk->sk_state = TCP_SYN_SENT; | 
 |  | 
 | 		err = transport->connect(vsk); | 
 | 		if (err < 0) | 
 | 			goto out; | 
 |  | 
 | 		/* Mark sock as connecting and set the error code to in | 
 | 		 * progress in case this is a non-blocking connect. | 
 | 		 */ | 
 | 		sock->state = SS_CONNECTING; | 
 | 		err = -EINPROGRESS; | 
 | 	} | 
 |  | 
 | 	/* The receive path will handle all communication until we are able to | 
 | 	 * enter the connected state.  Here we wait for the connection to be | 
 | 	 * completed or a notification of an error. | 
 | 	 */ | 
 | 	timeout = vsk->connect_timeout; | 
 | 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); | 
 |  | 
 | 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) { | 
 | 		if (flags & O_NONBLOCK) { | 
 | 			/* If we're not going to block, we schedule a timeout | 
 | 			 * function to generate a timeout on the connection | 
 | 			 * attempt, in case the peer doesn't respond in a | 
 | 			 * timely manner. We hold on to the socket until the | 
 | 			 * timeout fires. | 
 | 			 */ | 
 | 			sock_hold(sk); | 
 | 			schedule_delayed_work(&vsk->connect_work, timeout); | 
 |  | 
 | 			/* Skip ahead to preserve error code set above. */ | 
 | 			goto out_wait; | 
 | 		} | 
 |  | 
 | 		release_sock(sk); | 
 | 		timeout = schedule_timeout(timeout); | 
 | 		lock_sock(sk); | 
 |  | 
 | 		if (signal_pending(current)) { | 
 | 			err = sock_intr_errno(timeout); | 
 | 			sk->sk_state = TCP_CLOSE; | 
 | 			sock->state = SS_UNCONNECTED; | 
 | 			vsock_transport_cancel_pkt(vsk); | 
 | 			goto out_wait; | 
 | 		} else if (timeout == 0) { | 
 | 			err = -ETIMEDOUT; | 
 | 			sk->sk_state = TCP_CLOSE; | 
 | 			sock->state = SS_UNCONNECTED; | 
 | 			vsock_transport_cancel_pkt(vsk); | 
 | 			goto out_wait; | 
 | 		} | 
 |  | 
 | 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); | 
 | 	} | 
 |  | 
 | 	if (sk->sk_err) { | 
 | 		err = -sk->sk_err; | 
 | 		sk->sk_state = TCP_CLOSE; | 
 | 		sock->state = SS_UNCONNECTED; | 
 | 	} else { | 
 | 		err = 0; | 
 | 	} | 
 |  | 
 | out_wait: | 
 | 	finish_wait(sk_sleep(sk), &wait); | 
 | out: | 
 | 	release_sock(sk); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int vsock_accept(struct socket *sock, struct socket *newsock, int flags, | 
 | 			bool kern) | 
 | { | 
 | 	struct sock *listener; | 
 | 	int err; | 
 | 	struct sock *connected; | 
 | 	struct vsock_sock *vconnected; | 
 | 	long timeout; | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	err = 0; | 
 | 	listener = sock->sk; | 
 |  | 
 | 	lock_sock(listener); | 
 |  | 
 | 	if (sock->type != SOCK_STREAM) { | 
 | 		err = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (listener->sk_state != TCP_LISTEN) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Wait for children sockets to appear; these are the new sockets | 
 | 	 * created upon connection establishment. | 
 | 	 */ | 
 | 	timeout = sock_sndtimeo(listener, flags & O_NONBLOCK); | 
 | 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); | 
 |  | 
 | 	while ((connected = vsock_dequeue_accept(listener)) == NULL && | 
 | 	       listener->sk_err == 0) { | 
 | 		release_sock(listener); | 
 | 		timeout = schedule_timeout(timeout); | 
 | 		finish_wait(sk_sleep(listener), &wait); | 
 | 		lock_sock(listener); | 
 |  | 
 | 		if (signal_pending(current)) { | 
 | 			err = sock_intr_errno(timeout); | 
 | 			goto out; | 
 | 		} else if (timeout == 0) { | 
 | 			err = -EAGAIN; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE); | 
 | 	} | 
 | 	finish_wait(sk_sleep(listener), &wait); | 
 |  | 
 | 	if (listener->sk_err) | 
 | 		err = -listener->sk_err; | 
 |  | 
 | 	if (connected) { | 
 | 		listener->sk_ack_backlog--; | 
 |  | 
 | 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING); | 
 | 		vconnected = vsock_sk(connected); | 
 |  | 
 | 		/* If the listener socket has received an error, then we should | 
 | 		 * reject this socket and return.  Note that we simply mark the | 
 | 		 * socket rejected, drop our reference, and let the cleanup | 
 | 		 * function handle the cleanup; the fact that we found it in | 
 | 		 * the listener's accept queue guarantees that the cleanup | 
 | 		 * function hasn't run yet. | 
 | 		 */ | 
 | 		if (err) { | 
 | 			vconnected->rejected = true; | 
 | 		} else { | 
 | 			newsock->state = SS_CONNECTED; | 
 | 			sock_graft(connected, newsock); | 
 | 		} | 
 |  | 
 | 		release_sock(connected); | 
 | 		sock_put(connected); | 
 | 	} | 
 |  | 
 | out: | 
 | 	release_sock(listener); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int vsock_listen(struct socket *sock, int backlog) | 
 | { | 
 | 	int err; | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *vsk; | 
 |  | 
 | 	sk = sock->sk; | 
 |  | 
 | 	lock_sock(sk); | 
 |  | 
 | 	if (sock->type != SOCK_STREAM) { | 
 | 		err = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (sock->state != SS_UNCONNECTED) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	vsk = vsock_sk(sk); | 
 |  | 
 | 	if (!vsock_addr_bound(&vsk->local_addr)) { | 
 | 		err = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	sk->sk_max_ack_backlog = backlog; | 
 | 	sk->sk_state = TCP_LISTEN; | 
 |  | 
 | 	err = 0; | 
 |  | 
 | out: | 
 | 	release_sock(sk); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int vsock_stream_setsockopt(struct socket *sock, | 
 | 				   int level, | 
 | 				   int optname, | 
 | 				   char __user *optval, | 
 | 				   unsigned int optlen) | 
 | { | 
 | 	int err; | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *vsk; | 
 | 	u64 val; | 
 |  | 
 | 	if (level != AF_VSOCK) | 
 | 		return -ENOPROTOOPT; | 
 |  | 
 | #define COPY_IN(_v)                                       \ | 
 | 	do {						  \ | 
 | 		if (optlen < sizeof(_v)) {		  \ | 
 | 			err = -EINVAL;			  \ | 
 | 			goto exit;			  \ | 
 | 		}					  \ | 
 | 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\ | 
 | 			err = -EFAULT;					\ | 
 | 			goto exit;					\ | 
 | 		}							\ | 
 | 	} while (0) | 
 |  | 
 | 	err = 0; | 
 | 	sk = sock->sk; | 
 | 	vsk = vsock_sk(sk); | 
 |  | 
 | 	lock_sock(sk); | 
 |  | 
 | 	switch (optname) { | 
 | 	case SO_VM_SOCKETS_BUFFER_SIZE: | 
 | 		COPY_IN(val); | 
 | 		transport->set_buffer_size(vsk, val); | 
 | 		break; | 
 |  | 
 | 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE: | 
 | 		COPY_IN(val); | 
 | 		transport->set_max_buffer_size(vsk, val); | 
 | 		break; | 
 |  | 
 | 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE: | 
 | 		COPY_IN(val); | 
 | 		transport->set_min_buffer_size(vsk, val); | 
 | 		break; | 
 |  | 
 | 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: { | 
 | 		struct __kernel_old_timeval tv; | 
 | 		COPY_IN(tv); | 
 | 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC && | 
 | 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) { | 
 | 			vsk->connect_timeout = tv.tv_sec * HZ + | 
 | 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ)); | 
 | 			if (vsk->connect_timeout == 0) | 
 | 				vsk->connect_timeout = | 
 | 				    VSOCK_DEFAULT_CONNECT_TIMEOUT; | 
 |  | 
 | 		} else { | 
 | 			err = -ERANGE; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	default: | 
 | 		err = -ENOPROTOOPT; | 
 | 		break; | 
 | 	} | 
 |  | 
 | #undef COPY_IN | 
 |  | 
 | exit: | 
 | 	release_sock(sk); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int vsock_stream_getsockopt(struct socket *sock, | 
 | 				   int level, int optname, | 
 | 				   char __user *optval, | 
 | 				   int __user *optlen) | 
 | { | 
 | 	int err; | 
 | 	int len; | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *vsk; | 
 | 	u64 val; | 
 |  | 
 | 	if (level != AF_VSOCK) | 
 | 		return -ENOPROTOOPT; | 
 |  | 
 | 	err = get_user(len, optlen); | 
 | 	if (err != 0) | 
 | 		return err; | 
 |  | 
 | #define COPY_OUT(_v)                            \ | 
 | 	do {					\ | 
 | 		if (len < sizeof(_v))		\ | 
 | 			return -EINVAL;		\ | 
 | 						\ | 
 | 		len = sizeof(_v);		\ | 
 | 		if (copy_to_user(optval, &_v, len) != 0)	\ | 
 | 			return -EFAULT;				\ | 
 | 								\ | 
 | 	} while (0) | 
 |  | 
 | 	err = 0; | 
 | 	sk = sock->sk; | 
 | 	vsk = vsock_sk(sk); | 
 |  | 
 | 	switch (optname) { | 
 | 	case SO_VM_SOCKETS_BUFFER_SIZE: | 
 | 		val = transport->get_buffer_size(vsk); | 
 | 		COPY_OUT(val); | 
 | 		break; | 
 |  | 
 | 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE: | 
 | 		val = transport->get_max_buffer_size(vsk); | 
 | 		COPY_OUT(val); | 
 | 		break; | 
 |  | 
 | 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE: | 
 | 		val = transport->get_min_buffer_size(vsk); | 
 | 		COPY_OUT(val); | 
 | 		break; | 
 |  | 
 | 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: { | 
 | 		struct __kernel_old_timeval tv; | 
 | 		tv.tv_sec = vsk->connect_timeout / HZ; | 
 | 		tv.tv_usec = | 
 | 		    (vsk->connect_timeout - | 
 | 		     tv.tv_sec * HZ) * (1000000 / HZ); | 
 | 		COPY_OUT(tv); | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		return -ENOPROTOOPT; | 
 | 	} | 
 |  | 
 | 	err = put_user(len, optlen); | 
 | 	if (err != 0) | 
 | 		return -EFAULT; | 
 |  | 
 | #undef COPY_OUT | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg, | 
 | 				size_t len) | 
 | { | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *vsk; | 
 | 	ssize_t total_written; | 
 | 	long timeout; | 
 | 	int err; | 
 | 	struct vsock_transport_send_notify_data send_data; | 
 | 	DEFINE_WAIT_FUNC(wait, woken_wake_function); | 
 |  | 
 | 	sk = sock->sk; | 
 | 	vsk = vsock_sk(sk); | 
 | 	total_written = 0; | 
 | 	err = 0; | 
 |  | 
 | 	if (msg->msg_flags & MSG_OOB) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	lock_sock(sk); | 
 |  | 
 | 	/* Callers should not provide a destination with stream sockets. */ | 
 | 	if (msg->msg_namelen) { | 
 | 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Send data only if both sides are not shutdown in the direction. */ | 
 | 	if (sk->sk_shutdown & SEND_SHUTDOWN || | 
 | 	    vsk->peer_shutdown & RCV_SHUTDOWN) { | 
 | 		err = -EPIPE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (sk->sk_state != TCP_ESTABLISHED || | 
 | 	    !vsock_addr_bound(&vsk->local_addr)) { | 
 | 		err = -ENOTCONN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!vsock_addr_bound(&vsk->remote_addr)) { | 
 | 		err = -EDESTADDRREQ; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Wait for room in the produce queue to enqueue our user's data. */ | 
 | 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); | 
 |  | 
 | 	err = transport->notify_send_init(vsk, &send_data); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (total_written < len) { | 
 | 		ssize_t written; | 
 |  | 
 | 		add_wait_queue(sk_sleep(sk), &wait); | 
 | 		while (vsock_stream_has_space(vsk) == 0 && | 
 | 		       sk->sk_err == 0 && | 
 | 		       !(sk->sk_shutdown & SEND_SHUTDOWN) && | 
 | 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) { | 
 |  | 
 | 			/* Don't wait for non-blocking sockets. */ | 
 | 			if (timeout == 0) { | 
 | 				err = -EAGAIN; | 
 | 				remove_wait_queue(sk_sleep(sk), &wait); | 
 | 				goto out_err; | 
 | 			} | 
 |  | 
 | 			err = transport->notify_send_pre_block(vsk, &send_data); | 
 | 			if (err < 0) { | 
 | 				remove_wait_queue(sk_sleep(sk), &wait); | 
 | 				goto out_err; | 
 | 			} | 
 |  | 
 | 			release_sock(sk); | 
 | 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout); | 
 | 			lock_sock(sk); | 
 | 			if (signal_pending(current)) { | 
 | 				err = sock_intr_errno(timeout); | 
 | 				remove_wait_queue(sk_sleep(sk), &wait); | 
 | 				goto out_err; | 
 | 			} else if (timeout == 0) { | 
 | 				err = -EAGAIN; | 
 | 				remove_wait_queue(sk_sleep(sk), &wait); | 
 | 				goto out_err; | 
 | 			} | 
 | 		} | 
 | 		remove_wait_queue(sk_sleep(sk), &wait); | 
 |  | 
 | 		/* These checks occur both as part of and after the loop | 
 | 		 * conditional since we need to check before and after | 
 | 		 * sleeping. | 
 | 		 */ | 
 | 		if (sk->sk_err) { | 
 | 			err = -sk->sk_err; | 
 | 			goto out_err; | 
 | 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) || | 
 | 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) { | 
 | 			err = -EPIPE; | 
 | 			goto out_err; | 
 | 		} | 
 |  | 
 | 		err = transport->notify_send_pre_enqueue(vsk, &send_data); | 
 | 		if (err < 0) | 
 | 			goto out_err; | 
 |  | 
 | 		/* Note that enqueue will only write as many bytes as are free | 
 | 		 * in the produce queue, so we don't need to ensure len is | 
 | 		 * smaller than the queue size.  It is the caller's | 
 | 		 * responsibility to check how many bytes we were able to send. | 
 | 		 */ | 
 |  | 
 | 		written = transport->stream_enqueue( | 
 | 				vsk, msg, | 
 | 				len - total_written); | 
 | 		if (written < 0) { | 
 | 			err = -ENOMEM; | 
 | 			goto out_err; | 
 | 		} | 
 |  | 
 | 		total_written += written; | 
 |  | 
 | 		err = transport->notify_send_post_enqueue( | 
 | 				vsk, written, &send_data); | 
 | 		if (err < 0) | 
 | 			goto out_err; | 
 |  | 
 | 	} | 
 |  | 
 | out_err: | 
 | 	if (total_written > 0) | 
 | 		err = total_written; | 
 | out: | 
 | 	release_sock(sk); | 
 | 	return err; | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, | 
 | 		     int flags) | 
 | { | 
 | 	struct sock *sk; | 
 | 	struct vsock_sock *vsk; | 
 | 	int err; | 
 | 	size_t target; | 
 | 	ssize_t copied; | 
 | 	long timeout; | 
 | 	struct vsock_transport_recv_notify_data recv_data; | 
 |  | 
 | 	DEFINE_WAIT(wait); | 
 |  | 
 | 	sk = sock->sk; | 
 | 	vsk = vsock_sk(sk); | 
 | 	err = 0; | 
 |  | 
 | 	lock_sock(sk); | 
 |  | 
 | 	if (sk->sk_state != TCP_ESTABLISHED) { | 
 | 		/* Recvmsg is supposed to return 0 if a peer performs an | 
 | 		 * orderly shutdown. Differentiate between that case and when a | 
 | 		 * peer has not connected or a local shutdown occured with the | 
 | 		 * SOCK_DONE flag. | 
 | 		 */ | 
 | 		if (sock_flag(sk, SOCK_DONE)) | 
 | 			err = 0; | 
 | 		else | 
 | 			err = -ENOTCONN; | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (flags & MSG_OOB) { | 
 | 		err = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* We don't check peer_shutdown flag here since peer may actually shut | 
 | 	 * down, but there can be data in the queue that a local socket can | 
 | 	 * receive. | 
 | 	 */ | 
 | 	if (sk->sk_shutdown & RCV_SHUTDOWN) { | 
 | 		err = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* It is valid on Linux to pass in a zero-length receive buffer.  This | 
 | 	 * is not an error.  We may as well bail out now. | 
 | 	 */ | 
 | 	if (!len) { | 
 | 		err = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* We must not copy less than target bytes into the user's buffer | 
 | 	 * before returning successfully, so we wait for the consume queue to | 
 | 	 * have that much data to consume before dequeueing.  Note that this | 
 | 	 * makes it impossible to handle cases where target is greater than the | 
 | 	 * queue size. | 
 | 	 */ | 
 | 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); | 
 | 	if (target >= transport->stream_rcvhiwat(vsk)) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); | 
 | 	copied = 0; | 
 |  | 
 | 	err = transport->notify_recv_init(vsk, target, &recv_data); | 
 | 	if (err < 0) | 
 | 		goto out; | 
 |  | 
 |  | 
 | 	while (1) { | 
 | 		s64 ready; | 
 |  | 
 | 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); | 
 | 		ready = vsock_stream_has_data(vsk); | 
 |  | 
 | 		if (ready == 0) { | 
 | 			if (sk->sk_err != 0 || | 
 | 			    (sk->sk_shutdown & RCV_SHUTDOWN) || | 
 | 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) { | 
 | 				finish_wait(sk_sleep(sk), &wait); | 
 | 				break; | 
 | 			} | 
 | 			/* Don't wait for non-blocking sockets. */ | 
 | 			if (timeout == 0) { | 
 | 				err = -EAGAIN; | 
 | 				finish_wait(sk_sleep(sk), &wait); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			err = transport->notify_recv_pre_block( | 
 | 					vsk, target, &recv_data); | 
 | 			if (err < 0) { | 
 | 				finish_wait(sk_sleep(sk), &wait); | 
 | 				break; | 
 | 			} | 
 | 			release_sock(sk); | 
 | 			timeout = schedule_timeout(timeout); | 
 | 			lock_sock(sk); | 
 |  | 
 | 			if (signal_pending(current)) { | 
 | 				err = sock_intr_errno(timeout); | 
 | 				finish_wait(sk_sleep(sk), &wait); | 
 | 				break; | 
 | 			} else if (timeout == 0) { | 
 | 				err = -EAGAIN; | 
 | 				finish_wait(sk_sleep(sk), &wait); | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			ssize_t read; | 
 |  | 
 | 			finish_wait(sk_sleep(sk), &wait); | 
 |  | 
 | 			if (ready < 0) { | 
 | 				/* Invalid queue pair content. XXX This should | 
 | 				* be changed to a connection reset in a later | 
 | 				* change. | 
 | 				*/ | 
 |  | 
 | 				err = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			err = transport->notify_recv_pre_dequeue( | 
 | 					vsk, target, &recv_data); | 
 | 			if (err < 0) | 
 | 				break; | 
 |  | 
 | 			read = transport->stream_dequeue( | 
 | 					vsk, msg, | 
 | 					len - copied, flags); | 
 | 			if (read < 0) { | 
 | 				err = -ENOMEM; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			copied += read; | 
 |  | 
 | 			err = transport->notify_recv_post_dequeue( | 
 | 					vsk, target, read, | 
 | 					!(flags & MSG_PEEK), &recv_data); | 
 | 			if (err < 0) | 
 | 				goto out; | 
 |  | 
 | 			if (read >= target || flags & MSG_PEEK) | 
 | 				break; | 
 |  | 
 | 			target -= read; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sk->sk_err) | 
 | 		err = -sk->sk_err; | 
 | 	else if (sk->sk_shutdown & RCV_SHUTDOWN) | 
 | 		err = 0; | 
 |  | 
 | 	if (copied > 0) | 
 | 		err = copied; | 
 |  | 
 | out: | 
 | 	release_sock(sk); | 
 | 	return err; | 
 | } | 
 |  | 
 | static const struct proto_ops vsock_stream_ops = { | 
 | 	.family = PF_VSOCK, | 
 | 	.owner = THIS_MODULE, | 
 | 	.release = vsock_release, | 
 | 	.bind = vsock_bind, | 
 | 	.connect = vsock_stream_connect, | 
 | 	.socketpair = sock_no_socketpair, | 
 | 	.accept = vsock_accept, | 
 | 	.getname = vsock_getname, | 
 | 	.poll = vsock_poll, | 
 | 	.ioctl = sock_no_ioctl, | 
 | 	.listen = vsock_listen, | 
 | 	.shutdown = vsock_shutdown, | 
 | 	.setsockopt = vsock_stream_setsockopt, | 
 | 	.getsockopt = vsock_stream_getsockopt, | 
 | 	.sendmsg = vsock_stream_sendmsg, | 
 | 	.recvmsg = vsock_stream_recvmsg, | 
 | 	.mmap = sock_no_mmap, | 
 | 	.sendpage = sock_no_sendpage, | 
 | }; | 
 |  | 
 | static int vsock_create(struct net *net, struct socket *sock, | 
 | 			int protocol, int kern) | 
 | { | 
 | 	if (!sock) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (protocol && protocol != PF_VSOCK) | 
 | 		return -EPROTONOSUPPORT; | 
 |  | 
 | 	switch (sock->type) { | 
 | 	case SOCK_DGRAM: | 
 | 		sock->ops = &vsock_dgram_ops; | 
 | 		break; | 
 | 	case SOCK_STREAM: | 
 | 		sock->ops = &vsock_stream_ops; | 
 | 		break; | 
 | 	default: | 
 | 		return -ESOCKTNOSUPPORT; | 
 | 	} | 
 |  | 
 | 	sock->state = SS_UNCONNECTED; | 
 |  | 
 | 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM; | 
 | } | 
 |  | 
 | static const struct net_proto_family vsock_family_ops = { | 
 | 	.family = AF_VSOCK, | 
 | 	.create = vsock_create, | 
 | 	.owner = THIS_MODULE, | 
 | }; | 
 |  | 
 | static long vsock_dev_do_ioctl(struct file *filp, | 
 | 			       unsigned int cmd, void __user *ptr) | 
 | { | 
 | 	u32 __user *p = ptr; | 
 | 	int retval = 0; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID: | 
 | 		if (put_user(transport->get_local_cid(), p) != 0) | 
 | 			retval = -EFAULT; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		pr_err("Unknown ioctl %d\n", cmd); | 
 | 		retval = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static long vsock_dev_ioctl(struct file *filp, | 
 | 			    unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg); | 
 | } | 
 |  | 
 | #ifdef CONFIG_COMPAT | 
 | static long vsock_dev_compat_ioctl(struct file *filp, | 
 | 				   unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg)); | 
 | } | 
 | #endif | 
 |  | 
 | static const struct file_operations vsock_device_ops = { | 
 | 	.owner		= THIS_MODULE, | 
 | 	.unlocked_ioctl	= vsock_dev_ioctl, | 
 | #ifdef CONFIG_COMPAT | 
 | 	.compat_ioctl	= vsock_dev_compat_ioctl, | 
 | #endif | 
 | 	.open		= nonseekable_open, | 
 | }; | 
 |  | 
 | static struct miscdevice vsock_device = { | 
 | 	.name		= "vsock", | 
 | 	.fops		= &vsock_device_ops, | 
 | }; | 
 |  | 
 | int __vsock_core_init(const struct vsock_transport *t, struct module *owner) | 
 | { | 
 | 	int err = mutex_lock_interruptible(&vsock_register_mutex); | 
 |  | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (transport) { | 
 | 		err = -EBUSY; | 
 | 		goto err_busy; | 
 | 	} | 
 |  | 
 | 	/* Transport must be the owner of the protocol so that it can't | 
 | 	 * unload while there are open sockets. | 
 | 	 */ | 
 | 	vsock_proto.owner = owner; | 
 | 	transport = t; | 
 |  | 
 | 	vsock_device.minor = MISC_DYNAMIC_MINOR; | 
 | 	err = misc_register(&vsock_device); | 
 | 	if (err) { | 
 | 		pr_err("Failed to register misc device\n"); | 
 | 		goto err_reset_transport; | 
 | 	} | 
 |  | 
 | 	err = proto_register(&vsock_proto, 1);	/* we want our slab */ | 
 | 	if (err) { | 
 | 		pr_err("Cannot register vsock protocol\n"); | 
 | 		goto err_deregister_misc; | 
 | 	} | 
 |  | 
 | 	err = sock_register(&vsock_family_ops); | 
 | 	if (err) { | 
 | 		pr_err("could not register af_vsock (%d) address family: %d\n", | 
 | 		       AF_VSOCK, err); | 
 | 		goto err_unregister_proto; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&vsock_register_mutex); | 
 | 	return 0; | 
 |  | 
 | err_unregister_proto: | 
 | 	proto_unregister(&vsock_proto); | 
 | err_deregister_misc: | 
 | 	misc_deregister(&vsock_device); | 
 | err_reset_transport: | 
 | 	transport = NULL; | 
 | err_busy: | 
 | 	mutex_unlock(&vsock_register_mutex); | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__vsock_core_init); | 
 |  | 
 | void vsock_core_exit(void) | 
 | { | 
 | 	mutex_lock(&vsock_register_mutex); | 
 |  | 
 | 	misc_deregister(&vsock_device); | 
 | 	sock_unregister(AF_VSOCK); | 
 | 	proto_unregister(&vsock_proto); | 
 |  | 
 | 	/* We do not want the assignment below re-ordered. */ | 
 | 	mb(); | 
 | 	transport = NULL; | 
 |  | 
 | 	mutex_unlock(&vsock_register_mutex); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_core_exit); | 
 |  | 
 | const struct vsock_transport *vsock_core_get_transport(void) | 
 | { | 
 | 	/* vsock_register_mutex not taken since only the transport uses this | 
 | 	 * function and only while registered. | 
 | 	 */ | 
 | 	return transport; | 
 | } | 
 | EXPORT_SYMBOL_GPL(vsock_core_get_transport); | 
 |  | 
 | static void __exit vsock_exit(void) | 
 | { | 
 | 	/* Do nothing.  This function makes this module removable. */ | 
 | } | 
 |  | 
 | module_init(vsock_init_tables); | 
 | module_exit(vsock_exit); | 
 |  | 
 | MODULE_AUTHOR("VMware, Inc."); | 
 | MODULE_DESCRIPTION("VMware Virtual Socket Family"); | 
 | MODULE_VERSION("1.0.2.0-k"); | 
 | MODULE_LICENSE("GPL v2"); |