|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2012 - Virtual Open Systems and Columbia University | 
|  | * Author: Christoffer Dall <c.dall@virtualopensystems.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/bug.h> | 
|  | #include <linux/cpu_pm.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kvm.h> | 
|  | #include <linux/kvm_irqfd.h> | 
|  | #include <linux/irqbypass.h> | 
|  | #include <linux/sched/stat.h> | 
|  | #include <trace/events/kvm.h> | 
|  | #include <kvm/arm_pmu.h> | 
|  | #include <kvm/arm_psci.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include "trace.h" | 
|  |  | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/mman.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cpufeature.h> | 
|  | #include <asm/virt.h> | 
|  | #include <asm/kvm_arm.h> | 
|  | #include <asm/kvm_asm.h> | 
|  | #include <asm/kvm_mmu.h> | 
|  | #include <asm/kvm_emulate.h> | 
|  | #include <asm/kvm_coproc.h> | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | #ifdef REQUIRES_VIRT | 
|  | __asm__(".arch_extension	virt"); | 
|  | #endif | 
|  |  | 
|  | DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data); | 
|  | static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); | 
|  |  | 
|  | /* Per-CPU variable containing the currently running vcpu. */ | 
|  | static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); | 
|  |  | 
|  | /* The VMID used in the VTTBR */ | 
|  | static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); | 
|  | static u32 kvm_next_vmid; | 
|  | static DEFINE_SPINLOCK(kvm_vmid_lock); | 
|  |  | 
|  | static bool vgic_present; | 
|  |  | 
|  | static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); | 
|  |  | 
|  | static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | __this_cpu_write(kvm_arm_running_vcpu, vcpu); | 
|  | } | 
|  |  | 
|  | DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); | 
|  |  | 
|  | /** | 
|  | * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. | 
|  | * Must be called from non-preemptible context | 
|  | */ | 
|  | struct kvm_vcpu *kvm_arm_get_running_vcpu(void) | 
|  | { | 
|  | return __this_cpu_read(kvm_arm_running_vcpu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. | 
|  | */ | 
|  | struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) | 
|  | { | 
|  | return &kvm_arm_running_vcpu; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; | 
|  | } | 
|  |  | 
|  | int kvm_arch_hardware_setup(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_check_processor_compat(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * kvm_arch_init_vm - initializes a VM data structure | 
|  | * @kvm:	pointer to the KVM struct | 
|  | */ | 
|  | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) | 
|  | { | 
|  | int ret, cpu; | 
|  |  | 
|  | ret = kvm_arm_setup_stage2(kvm, type); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran)); | 
|  | if (!kvm->arch.last_vcpu_ran) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1; | 
|  |  | 
|  | ret = kvm_alloc_stage2_pgd(kvm); | 
|  | if (ret) | 
|  | goto out_fail_alloc; | 
|  |  | 
|  | ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); | 
|  | if (ret) | 
|  | goto out_free_stage2_pgd; | 
|  |  | 
|  | kvm_vgic_early_init(kvm); | 
|  |  | 
|  | /* Mark the initial VMID generation invalid */ | 
|  | kvm->arch.vmid.vmid_gen = 0; | 
|  |  | 
|  | /* The maximum number of VCPUs is limited by the host's GIC model */ | 
|  | kvm->arch.max_vcpus = vgic_present ? | 
|  | kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; | 
|  |  | 
|  | return ret; | 
|  | out_free_stage2_pgd: | 
|  | kvm_free_stage2_pgd(kvm); | 
|  | out_fail_alloc: | 
|  | free_percpu(kvm->arch.last_vcpu_ran); | 
|  | kvm->arch.last_vcpu_ran = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) | 
|  | { | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * kvm_arch_destroy_vm - destroy the VM data structure | 
|  | * @kvm:	pointer to the KVM struct | 
|  | */ | 
|  | void kvm_arch_destroy_vm(struct kvm *kvm) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | kvm_vgic_destroy(kvm); | 
|  |  | 
|  | free_percpu(kvm->arch.last_vcpu_ran); | 
|  | kvm->arch.last_vcpu_ran = NULL; | 
|  |  | 
|  | for (i = 0; i < KVM_MAX_VCPUS; ++i) { | 
|  | if (kvm->vcpus[i]) { | 
|  | kvm_arch_vcpu_free(kvm->vcpus[i]); | 
|  | kvm->vcpus[i] = NULL; | 
|  | } | 
|  | } | 
|  | atomic_set(&kvm->online_vcpus, 0); | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) | 
|  | { | 
|  | int r; | 
|  | switch (ext) { | 
|  | case KVM_CAP_IRQCHIP: | 
|  | r = vgic_present; | 
|  | break; | 
|  | case KVM_CAP_IOEVENTFD: | 
|  | case KVM_CAP_DEVICE_CTRL: | 
|  | case KVM_CAP_USER_MEMORY: | 
|  | case KVM_CAP_SYNC_MMU: | 
|  | case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: | 
|  | case KVM_CAP_ONE_REG: | 
|  | case KVM_CAP_ARM_PSCI: | 
|  | case KVM_CAP_ARM_PSCI_0_2: | 
|  | case KVM_CAP_READONLY_MEM: | 
|  | case KVM_CAP_MP_STATE: | 
|  | case KVM_CAP_IMMEDIATE_EXIT: | 
|  | case KVM_CAP_VCPU_EVENTS: | 
|  | r = 1; | 
|  | break; | 
|  | case KVM_CAP_ARM_SET_DEVICE_ADDR: | 
|  | r = 1; | 
|  | break; | 
|  | case KVM_CAP_NR_VCPUS: | 
|  | r = num_online_cpus(); | 
|  | break; | 
|  | case KVM_CAP_MAX_VCPUS: | 
|  | r = KVM_MAX_VCPUS; | 
|  | break; | 
|  | case KVM_CAP_MAX_VCPU_ID: | 
|  | r = KVM_MAX_VCPU_ID; | 
|  | break; | 
|  | case KVM_CAP_MSI_DEVID: | 
|  | if (!kvm) | 
|  | r = -EINVAL; | 
|  | else | 
|  | r = kvm->arch.vgic.msis_require_devid; | 
|  | break; | 
|  | case KVM_CAP_ARM_USER_IRQ: | 
|  | /* | 
|  | * 1: EL1_VTIMER, EL1_PTIMER, and PMU. | 
|  | * (bump this number if adding more devices) | 
|  | */ | 
|  | r = 1; | 
|  | break; | 
|  | default: | 
|  | r = kvm_arch_vm_ioctl_check_extension(kvm, ext); | 
|  | break; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | long kvm_arch_dev_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | struct kvm *kvm_arch_alloc_vm(void) | 
|  | { | 
|  | if (!has_vhe()) | 
|  | return kzalloc(sizeof(struct kvm), GFP_KERNEL); | 
|  |  | 
|  | return vzalloc(sizeof(struct kvm)); | 
|  | } | 
|  |  | 
|  | void kvm_arch_free_vm(struct kvm *kvm) | 
|  | { | 
|  | if (!has_vhe()) | 
|  | kfree(kvm); | 
|  | else | 
|  | vfree(kvm); | 
|  | } | 
|  |  | 
|  | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) | 
|  | { | 
|  | int err; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) { | 
|  | err = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (id >= kvm->arch.max_vcpus) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); | 
|  | if (!vcpu) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = kvm_vcpu_init(vcpu, kvm, id); | 
|  | if (err) | 
|  | goto free_vcpu; | 
|  |  | 
|  | err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); | 
|  | if (err) | 
|  | goto vcpu_uninit; | 
|  |  | 
|  | return vcpu; | 
|  | vcpu_uninit: | 
|  | kvm_vcpu_uninit(vcpu); | 
|  | free_vcpu: | 
|  | kmem_cache_free(kvm_vcpu_cache, vcpu); | 
|  | out: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm))) | 
|  | static_branch_dec(&userspace_irqchip_in_use); | 
|  |  | 
|  | kvm_mmu_free_memory_caches(vcpu); | 
|  | kvm_timer_vcpu_terminate(vcpu); | 
|  | kvm_pmu_vcpu_destroy(vcpu); | 
|  | kvm_vcpu_uninit(vcpu); | 
|  | kmem_cache_free(kvm_vcpu_cache, vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_arch_vcpu_free(vcpu); | 
|  | } | 
|  |  | 
|  | int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return kvm_timer_is_pending(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * If we're about to block (most likely because we've just hit a | 
|  | * WFI), we need to sync back the state of the GIC CPU interface | 
|  | * so that we have the lastest PMR and group enables. This ensures | 
|  | * that kvm_arch_vcpu_runnable has up-to-date data to decide | 
|  | * whether we have pending interrupts. | 
|  | */ | 
|  | preempt_disable(); | 
|  | kvm_vgic_vmcr_sync(vcpu); | 
|  | preempt_enable(); | 
|  |  | 
|  | kvm_vgic_v4_enable_doorbell(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_vgic_v4_disable_doorbell(vcpu); | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* Force users to call KVM_ARM_VCPU_INIT */ | 
|  | vcpu->arch.target = -1; | 
|  | bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); | 
|  |  | 
|  | /* Set up the timer */ | 
|  | kvm_timer_vcpu_init(vcpu); | 
|  |  | 
|  | kvm_pmu_vcpu_init(vcpu); | 
|  |  | 
|  | kvm_arm_reset_debug_ptr(vcpu); | 
|  |  | 
|  | return kvm_vgic_vcpu_init(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | int *last_ran; | 
|  | kvm_host_data_t *cpu_data; | 
|  |  | 
|  | last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran); | 
|  | cpu_data = this_cpu_ptr(&kvm_host_data); | 
|  |  | 
|  | /* | 
|  | * We might get preempted before the vCPU actually runs, but | 
|  | * over-invalidation doesn't affect correctness. | 
|  | */ | 
|  | if (*last_ran != vcpu->vcpu_id) { | 
|  | kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu); | 
|  | *last_ran = vcpu->vcpu_id; | 
|  | } | 
|  |  | 
|  | vcpu->cpu = cpu; | 
|  | vcpu->arch.host_cpu_context = &cpu_data->host_ctxt; | 
|  |  | 
|  | kvm_arm_set_running_vcpu(vcpu); | 
|  | kvm_vgic_load(vcpu); | 
|  | kvm_timer_vcpu_load(vcpu); | 
|  | kvm_vcpu_load_sysregs(vcpu); | 
|  | kvm_arch_vcpu_load_fp(vcpu); | 
|  | kvm_vcpu_pmu_restore_guest(vcpu); | 
|  |  | 
|  | if (single_task_running()) | 
|  | vcpu_clear_wfe_traps(vcpu); | 
|  | else | 
|  | vcpu_set_wfe_traps(vcpu); | 
|  |  | 
|  | vcpu_ptrauth_setup_lazy(vcpu); | 
|  | } | 
|  |  | 
|  | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_arch_vcpu_put_fp(vcpu); | 
|  | kvm_vcpu_put_sysregs(vcpu); | 
|  | kvm_timer_vcpu_put(vcpu); | 
|  | kvm_vgic_put(vcpu); | 
|  | kvm_vcpu_pmu_restore_host(vcpu); | 
|  |  | 
|  | vcpu->cpu = -1; | 
|  |  | 
|  | kvm_arm_set_running_vcpu(NULL); | 
|  | } | 
|  |  | 
|  | static void vcpu_power_off(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.power_off = true; | 
|  | kvm_make_request(KVM_REQ_SLEEP, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mp_state *mp_state) | 
|  | { | 
|  | if (vcpu->arch.power_off) | 
|  | mp_state->mp_state = KVM_MP_STATE_STOPPED; | 
|  | else | 
|  | mp_state->mp_state = KVM_MP_STATE_RUNNABLE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mp_state *mp_state) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | switch (mp_state->mp_state) { | 
|  | case KVM_MP_STATE_RUNNABLE: | 
|  | vcpu->arch.power_off = false; | 
|  | break; | 
|  | case KVM_MP_STATE_STOPPED: | 
|  | vcpu_power_off(vcpu); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled | 
|  | * @v:		The VCPU pointer | 
|  | * | 
|  | * If the guest CPU is not waiting for interrupts or an interrupt line is | 
|  | * asserted, the CPU is by definition runnable. | 
|  | */ | 
|  | int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) | 
|  | { | 
|  | bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); | 
|  | return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) | 
|  | && !v->arch.power_off && !v->arch.pause); | 
|  | } | 
|  |  | 
|  | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vcpu_mode_priv(vcpu); | 
|  | } | 
|  |  | 
|  | /* Just ensure a guest exit from a particular CPU */ | 
|  | static void exit_vm_noop(void *info) | 
|  | { | 
|  | } | 
|  |  | 
|  | void force_vm_exit(const cpumask_t *mask) | 
|  | { | 
|  | preempt_disable(); | 
|  | smp_call_function_many(mask, exit_vm_noop, NULL, true); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * need_new_vmid_gen - check that the VMID is still valid | 
|  | * @vmid: The VMID to check | 
|  | * | 
|  | * return true if there is a new generation of VMIDs being used | 
|  | * | 
|  | * The hardware supports a limited set of values with the value zero reserved | 
|  | * for the host, so we check if an assigned value belongs to a previous | 
|  | * generation, which which requires us to assign a new value. If we're the | 
|  | * first to use a VMID for the new generation, we must flush necessary caches | 
|  | * and TLBs on all CPUs. | 
|  | */ | 
|  | static bool need_new_vmid_gen(struct kvm_vmid *vmid) | 
|  | { | 
|  | u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen); | 
|  | smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */ | 
|  | return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_vmid - Update the vmid with a valid VMID for the current generation | 
|  | * @kvm: The guest that struct vmid belongs to | 
|  | * @vmid: The stage-2 VMID information struct | 
|  | */ | 
|  | static void update_vmid(struct kvm_vmid *vmid) | 
|  | { | 
|  | if (!need_new_vmid_gen(vmid)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&kvm_vmid_lock); | 
|  |  | 
|  | /* | 
|  | * We need to re-check the vmid_gen here to ensure that if another vcpu | 
|  | * already allocated a valid vmid for this vm, then this vcpu should | 
|  | * use the same vmid. | 
|  | */ | 
|  | if (!need_new_vmid_gen(vmid)) { | 
|  | spin_unlock(&kvm_vmid_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* First user of a new VMID generation? */ | 
|  | if (unlikely(kvm_next_vmid == 0)) { | 
|  | atomic64_inc(&kvm_vmid_gen); | 
|  | kvm_next_vmid = 1; | 
|  |  | 
|  | /* | 
|  | * On SMP we know no other CPUs can use this CPU's or each | 
|  | * other's VMID after force_vm_exit returns since the | 
|  | * kvm_vmid_lock blocks them from reentry to the guest. | 
|  | */ | 
|  | force_vm_exit(cpu_all_mask); | 
|  | /* | 
|  | * Now broadcast TLB + ICACHE invalidation over the inner | 
|  | * shareable domain to make sure all data structures are | 
|  | * clean. | 
|  | */ | 
|  | kvm_call_hyp(__kvm_flush_vm_context); | 
|  | } | 
|  |  | 
|  | vmid->vmid = kvm_next_vmid; | 
|  | kvm_next_vmid++; | 
|  | kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1; | 
|  |  | 
|  | smp_wmb(); | 
|  | WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen)); | 
|  |  | 
|  | spin_unlock(&kvm_vmid_lock); | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | int ret = 0; | 
|  |  | 
|  | if (likely(vcpu->arch.has_run_once)) | 
|  | return 0; | 
|  |  | 
|  | if (!kvm_arm_vcpu_is_finalized(vcpu)) | 
|  | return -EPERM; | 
|  |  | 
|  | vcpu->arch.has_run_once = true; | 
|  |  | 
|  | if (likely(irqchip_in_kernel(kvm))) { | 
|  | /* | 
|  | * Map the VGIC hardware resources before running a vcpu the | 
|  | * first time on this VM. | 
|  | */ | 
|  | if (unlikely(!vgic_ready(kvm))) { | 
|  | ret = kvm_vgic_map_resources(kvm); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Tell the rest of the code that there are userspace irqchip | 
|  | * VMs in the wild. | 
|  | */ | 
|  | static_branch_inc(&userspace_irqchip_in_use); | 
|  | } | 
|  |  | 
|  | ret = kvm_timer_enable(vcpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = kvm_arm_pmu_v3_enable(vcpu); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool kvm_arch_intc_initialized(struct kvm *kvm) | 
|  | { | 
|  | return vgic_initialized(kvm); | 
|  | } | 
|  |  | 
|  | void kvm_arm_halt_guest(struct kvm *kvm) | 
|  | { | 
|  | int i; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) | 
|  | vcpu->arch.pause = true; | 
|  | kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); | 
|  | } | 
|  |  | 
|  | void kvm_arm_resume_guest(struct kvm *kvm) | 
|  | { | 
|  | int i; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | vcpu->arch.pause = false; | 
|  | swake_up_one(kvm_arch_vcpu_wq(vcpu)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vcpu_req_sleep(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); | 
|  |  | 
|  | swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) && | 
|  | (!vcpu->arch.pause))); | 
|  |  | 
|  | if (vcpu->arch.power_off || vcpu->arch.pause) { | 
|  | /* Awaken to handle a signal, request we sleep again later. */ | 
|  | kvm_make_request(KVM_REQ_SLEEP, vcpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure we will observe a potential reset request if we've | 
|  | * observed a change to the power state. Pairs with the smp_wmb() in | 
|  | * kvm_psci_vcpu_on(). | 
|  | */ | 
|  | smp_rmb(); | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vcpu->arch.target >= 0; | 
|  | } | 
|  |  | 
|  | static void check_vcpu_requests(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (kvm_request_pending(vcpu)) { | 
|  | if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) | 
|  | vcpu_req_sleep(vcpu); | 
|  |  | 
|  | if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) | 
|  | kvm_reset_vcpu(vcpu); | 
|  |  | 
|  | /* | 
|  | * Clear IRQ_PENDING requests that were made to guarantee | 
|  | * that a VCPU sees new virtual interrupts. | 
|  | */ | 
|  | kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code | 
|  | * @vcpu:	The VCPU pointer | 
|  | * @run:	The kvm_run structure pointer used for userspace state exchange | 
|  | * | 
|  | * This function is called through the VCPU_RUN ioctl called from user space. It | 
|  | * will execute VM code in a loop until the time slice for the process is used | 
|  | * or some emulation is needed from user space in which case the function will | 
|  | * return with return value 0 and with the kvm_run structure filled in with the | 
|  | * required data for the requested emulation. | 
|  | */ | 
|  | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(!kvm_vcpu_initialized(vcpu))) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | ret = kvm_vcpu_first_run_init(vcpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (run->exit_reason == KVM_EXIT_MMIO) { | 
|  | ret = kvm_handle_mmio_return(vcpu, vcpu->run); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (run->immediate_exit) | 
|  | return -EINTR; | 
|  |  | 
|  | vcpu_load(vcpu); | 
|  |  | 
|  | kvm_sigset_activate(vcpu); | 
|  |  | 
|  | ret = 1; | 
|  | run->exit_reason = KVM_EXIT_UNKNOWN; | 
|  | while (ret > 0) { | 
|  | /* | 
|  | * Check conditions before entering the guest | 
|  | */ | 
|  | cond_resched(); | 
|  |  | 
|  | update_vmid(&vcpu->kvm->arch.vmid); | 
|  |  | 
|  | check_vcpu_requests(vcpu); | 
|  |  | 
|  | /* | 
|  | * Preparing the interrupts to be injected also | 
|  | * involves poking the GIC, which must be done in a | 
|  | * non-preemptible context. | 
|  | */ | 
|  | preempt_disable(); | 
|  |  | 
|  | kvm_pmu_flush_hwstate(vcpu); | 
|  |  | 
|  | local_irq_disable(); | 
|  |  | 
|  | kvm_vgic_flush_hwstate(vcpu); | 
|  |  | 
|  | /* | 
|  | * Exit if we have a signal pending so that we can deliver the | 
|  | * signal to user space. | 
|  | */ | 
|  | if (signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | run->exit_reason = KVM_EXIT_INTR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're using a userspace irqchip, then check if we need | 
|  | * to tell a userspace irqchip about timer or PMU level | 
|  | * changes and if so, exit to userspace (the actual level | 
|  | * state gets updated in kvm_timer_update_run and | 
|  | * kvm_pmu_update_run below). | 
|  | */ | 
|  | if (static_branch_unlikely(&userspace_irqchip_in_use)) { | 
|  | if (kvm_timer_should_notify_user(vcpu) || | 
|  | kvm_pmu_should_notify_user(vcpu)) { | 
|  | ret = -EINTR; | 
|  | run->exit_reason = KVM_EXIT_INTR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure we set mode to IN_GUEST_MODE after we disable | 
|  | * interrupts and before the final VCPU requests check. | 
|  | * See the comment in kvm_vcpu_exiting_guest_mode() and | 
|  | * Documentation/virt/kvm/vcpu-requests.rst | 
|  | */ | 
|  | smp_store_mb(vcpu->mode, IN_GUEST_MODE); | 
|  |  | 
|  | if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) || | 
|  | kvm_request_pending(vcpu)) { | 
|  | vcpu->mode = OUTSIDE_GUEST_MODE; | 
|  | isb(); /* Ensure work in x_flush_hwstate is committed */ | 
|  | kvm_pmu_sync_hwstate(vcpu); | 
|  | if (static_branch_unlikely(&userspace_irqchip_in_use)) | 
|  | kvm_timer_sync_hwstate(vcpu); | 
|  | kvm_vgic_sync_hwstate(vcpu); | 
|  | local_irq_enable(); | 
|  | preempt_enable(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | kvm_arm_setup_debug(vcpu); | 
|  |  | 
|  | /************************************************************** | 
|  | * Enter the guest | 
|  | */ | 
|  | trace_kvm_entry(*vcpu_pc(vcpu)); | 
|  | guest_enter_irqoff(); | 
|  |  | 
|  | if (has_vhe()) { | 
|  | kvm_arm_vhe_guest_enter(); | 
|  | ret = kvm_vcpu_run_vhe(vcpu); | 
|  | kvm_arm_vhe_guest_exit(); | 
|  | } else { | 
|  | ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu); | 
|  | } | 
|  |  | 
|  | vcpu->mode = OUTSIDE_GUEST_MODE; | 
|  | vcpu->stat.exits++; | 
|  | /* | 
|  | * Back from guest | 
|  | *************************************************************/ | 
|  |  | 
|  | kvm_arm_clear_debug(vcpu); | 
|  |  | 
|  | /* | 
|  | * We must sync the PMU state before the vgic state so | 
|  | * that the vgic can properly sample the updated state of the | 
|  | * interrupt line. | 
|  | */ | 
|  | kvm_pmu_sync_hwstate(vcpu); | 
|  |  | 
|  | /* | 
|  | * Sync the vgic state before syncing the timer state because | 
|  | * the timer code needs to know if the virtual timer | 
|  | * interrupts are active. | 
|  | */ | 
|  | kvm_vgic_sync_hwstate(vcpu); | 
|  |  | 
|  | /* | 
|  | * Sync the timer hardware state before enabling interrupts as | 
|  | * we don't want vtimer interrupts to race with syncing the | 
|  | * timer virtual interrupt state. | 
|  | */ | 
|  | if (static_branch_unlikely(&userspace_irqchip_in_use)) | 
|  | kvm_timer_sync_hwstate(vcpu); | 
|  |  | 
|  | kvm_arch_vcpu_ctxsync_fp(vcpu); | 
|  |  | 
|  | /* | 
|  | * We may have taken a host interrupt in HYP mode (ie | 
|  | * while executing the guest). This interrupt is still | 
|  | * pending, as we haven't serviced it yet! | 
|  | * | 
|  | * We're now back in SVC mode, with interrupts | 
|  | * disabled.  Enabling the interrupts now will have | 
|  | * the effect of taking the interrupt again, in SVC | 
|  | * mode this time. | 
|  | */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* | 
|  | * We do local_irq_enable() before calling guest_exit() so | 
|  | * that if a timer interrupt hits while running the guest we | 
|  | * account that tick as being spent in the guest.  We enable | 
|  | * preemption after calling guest_exit() so that if we get | 
|  | * preempted we make sure ticks after that is not counted as | 
|  | * guest time. | 
|  | */ | 
|  | guest_exit(); | 
|  | trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); | 
|  |  | 
|  | /* Exit types that need handling before we can be preempted */ | 
|  | handle_exit_early(vcpu, run, ret); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | ret = handle_exit(vcpu, run, ret); | 
|  | } | 
|  |  | 
|  | /* Tell userspace about in-kernel device output levels */ | 
|  | if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { | 
|  | kvm_timer_update_run(vcpu); | 
|  | kvm_pmu_update_run(vcpu); | 
|  | } | 
|  |  | 
|  | kvm_sigset_deactivate(vcpu); | 
|  |  | 
|  | vcpu_put(vcpu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) | 
|  | { | 
|  | int bit_index; | 
|  | bool set; | 
|  | unsigned long *hcr; | 
|  |  | 
|  | if (number == KVM_ARM_IRQ_CPU_IRQ) | 
|  | bit_index = __ffs(HCR_VI); | 
|  | else /* KVM_ARM_IRQ_CPU_FIQ */ | 
|  | bit_index = __ffs(HCR_VF); | 
|  |  | 
|  | hcr = vcpu_hcr(vcpu); | 
|  | if (level) | 
|  | set = test_and_set_bit(bit_index, hcr); | 
|  | else | 
|  | set = test_and_clear_bit(bit_index, hcr); | 
|  |  | 
|  | /* | 
|  | * If we didn't change anything, no need to wake up or kick other CPUs | 
|  | */ | 
|  | if (set == level) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The vcpu irq_lines field was updated, wake up sleeping VCPUs and | 
|  | * trigger a world-switch round on the running physical CPU to set the | 
|  | * virtual IRQ/FIQ fields in the HCR appropriately. | 
|  | */ | 
|  | kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); | 
|  | kvm_vcpu_kick(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, | 
|  | bool line_status) | 
|  | { | 
|  | u32 irq = irq_level->irq; | 
|  | unsigned int irq_type, vcpu_idx, irq_num; | 
|  | int nrcpus = atomic_read(&kvm->online_vcpus); | 
|  | struct kvm_vcpu *vcpu = NULL; | 
|  | bool level = irq_level->level; | 
|  |  | 
|  | irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; | 
|  | vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; | 
|  | irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; | 
|  |  | 
|  | trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); | 
|  |  | 
|  | switch (irq_type) { | 
|  | case KVM_ARM_IRQ_TYPE_CPU: | 
|  | if (irqchip_in_kernel(kvm)) | 
|  | return -ENXIO; | 
|  |  | 
|  | if (vcpu_idx >= nrcpus) | 
|  | return -EINVAL; | 
|  |  | 
|  | vcpu = kvm_get_vcpu(kvm, vcpu_idx); | 
|  | if (!vcpu) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (irq_num > KVM_ARM_IRQ_CPU_FIQ) | 
|  | return -EINVAL; | 
|  |  | 
|  | return vcpu_interrupt_line(vcpu, irq_num, level); | 
|  | case KVM_ARM_IRQ_TYPE_PPI: | 
|  | if (!irqchip_in_kernel(kvm)) | 
|  | return -ENXIO; | 
|  |  | 
|  | if (vcpu_idx >= nrcpus) | 
|  | return -EINVAL; | 
|  |  | 
|  | vcpu = kvm_get_vcpu(kvm, vcpu_idx); | 
|  | if (!vcpu) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) | 
|  | return -EINVAL; | 
|  |  | 
|  | return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); | 
|  | case KVM_ARM_IRQ_TYPE_SPI: | 
|  | if (!irqchip_in_kernel(kvm)) | 
|  | return -ENXIO; | 
|  |  | 
|  | if (irq_num < VGIC_NR_PRIVATE_IRQS) | 
|  | return -EINVAL; | 
|  |  | 
|  | return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, | 
|  | const struct kvm_vcpu_init *init) | 
|  | { | 
|  | unsigned int i, ret; | 
|  | int phys_target = kvm_target_cpu(); | 
|  |  | 
|  | if (init->target != phys_target) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must | 
|  | * use the same target. | 
|  | */ | 
|  | if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ | 
|  | for (i = 0; i < sizeof(init->features) * 8; i++) { | 
|  | bool set = (init->features[i / 32] & (1 << (i % 32))); | 
|  |  | 
|  | if (set && i >= KVM_VCPU_MAX_FEATURES) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* | 
|  | * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must | 
|  | * use the same feature set. | 
|  | */ | 
|  | if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && | 
|  | test_bit(i, vcpu->arch.features) != set) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (set) | 
|  | set_bit(i, vcpu->arch.features); | 
|  | } | 
|  |  | 
|  | vcpu->arch.target = phys_target; | 
|  |  | 
|  | /* Now we know what it is, we can reset it. */ | 
|  | ret = kvm_reset_vcpu(vcpu); | 
|  | if (ret) { | 
|  | vcpu->arch.target = -1; | 
|  | bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, | 
|  | struct kvm_vcpu_init *init) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_vcpu_set_target(vcpu, init); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Ensure a rebooted VM will fault in RAM pages and detect if the | 
|  | * guest MMU is turned off and flush the caches as needed. | 
|  | */ | 
|  | if (vcpu->arch.has_run_once) | 
|  | stage2_unmap_vm(vcpu->kvm); | 
|  |  | 
|  | vcpu_reset_hcr(vcpu); | 
|  |  | 
|  | /* | 
|  | * Handle the "start in power-off" case. | 
|  | */ | 
|  | if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) | 
|  | vcpu_power_off(vcpu); | 
|  | else | 
|  | vcpu->arch.power_off = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, | 
|  | struct kvm_device_attr *attr) | 
|  | { | 
|  | int ret = -ENXIO; | 
|  |  | 
|  | switch (attr->group) { | 
|  | default: | 
|  | ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, | 
|  | struct kvm_device_attr *attr) | 
|  | { | 
|  | int ret = -ENXIO; | 
|  |  | 
|  | switch (attr->group) { | 
|  | default: | 
|  | ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, | 
|  | struct kvm_device_attr *attr) | 
|  | { | 
|  | int ret = -ENXIO; | 
|  |  | 
|  | switch (attr->group) { | 
|  | default: | 
|  | ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, | 
|  | struct kvm_vcpu_events *events) | 
|  | { | 
|  | memset(events, 0, sizeof(*events)); | 
|  |  | 
|  | return __kvm_arm_vcpu_get_events(vcpu, events); | 
|  | } | 
|  |  | 
|  | static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, | 
|  | struct kvm_vcpu_events *events) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* check whether the reserved field is zero */ | 
|  | for (i = 0; i < ARRAY_SIZE(events->reserved); i++) | 
|  | if (events->reserved[i]) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* check whether the pad field is zero */ | 
|  | for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) | 
|  | if (events->exception.pad[i]) | 
|  | return -EINVAL; | 
|  |  | 
|  | return __kvm_arm_vcpu_set_events(vcpu, events); | 
|  | } | 
|  |  | 
|  | long kvm_arch_vcpu_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = filp->private_data; | 
|  | void __user *argp = (void __user *)arg; | 
|  | struct kvm_device_attr attr; | 
|  | long r; | 
|  |  | 
|  | switch (ioctl) { | 
|  | case KVM_ARM_VCPU_INIT: { | 
|  | struct kvm_vcpu_init init; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&init, argp, sizeof(init))) | 
|  | break; | 
|  |  | 
|  | r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); | 
|  | break; | 
|  | } | 
|  | case KVM_SET_ONE_REG: | 
|  | case KVM_GET_ONE_REG: { | 
|  | struct kvm_one_reg reg; | 
|  |  | 
|  | r = -ENOEXEC; | 
|  | if (unlikely(!kvm_vcpu_initialized(vcpu))) | 
|  | break; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(®, argp, sizeof(reg))) | 
|  | break; | 
|  |  | 
|  | if (ioctl == KVM_SET_ONE_REG) | 
|  | r = kvm_arm_set_reg(vcpu, ®); | 
|  | else | 
|  | r = kvm_arm_get_reg(vcpu, ®); | 
|  | break; | 
|  | } | 
|  | case KVM_GET_REG_LIST: { | 
|  | struct kvm_reg_list __user *user_list = argp; | 
|  | struct kvm_reg_list reg_list; | 
|  | unsigned n; | 
|  |  | 
|  | r = -ENOEXEC; | 
|  | if (unlikely(!kvm_vcpu_initialized(vcpu))) | 
|  | break; | 
|  |  | 
|  | r = -EPERM; | 
|  | if (!kvm_arm_vcpu_is_finalized(vcpu)) | 
|  | break; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(®_list, user_list, sizeof(reg_list))) | 
|  | break; | 
|  | n = reg_list.n; | 
|  | reg_list.n = kvm_arm_num_regs(vcpu); | 
|  | if (copy_to_user(user_list, ®_list, sizeof(reg_list))) | 
|  | break; | 
|  | r = -E2BIG; | 
|  | if (n < reg_list.n) | 
|  | break; | 
|  | r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); | 
|  | break; | 
|  | } | 
|  | case KVM_SET_DEVICE_ATTR: { | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&attr, argp, sizeof(attr))) | 
|  | break; | 
|  | r = kvm_arm_vcpu_set_attr(vcpu, &attr); | 
|  | break; | 
|  | } | 
|  | case KVM_GET_DEVICE_ATTR: { | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&attr, argp, sizeof(attr))) | 
|  | break; | 
|  | r = kvm_arm_vcpu_get_attr(vcpu, &attr); | 
|  | break; | 
|  | } | 
|  | case KVM_HAS_DEVICE_ATTR: { | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(&attr, argp, sizeof(attr))) | 
|  | break; | 
|  | r = kvm_arm_vcpu_has_attr(vcpu, &attr); | 
|  | break; | 
|  | } | 
|  | case KVM_GET_VCPU_EVENTS: { | 
|  | struct kvm_vcpu_events events; | 
|  |  | 
|  | if (kvm_arm_vcpu_get_events(vcpu, &events)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_to_user(argp, &events, sizeof(events))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | case KVM_SET_VCPU_EVENTS: { | 
|  | struct kvm_vcpu_events events; | 
|  |  | 
|  | if (copy_from_user(&events, argp, sizeof(events))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return kvm_arm_vcpu_set_events(vcpu, &events); | 
|  | } | 
|  | case KVM_ARM_VCPU_FINALIZE: { | 
|  | int what; | 
|  |  | 
|  | if (!kvm_vcpu_initialized(vcpu)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | if (get_user(what, (const int __user *)argp)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return kvm_arm_vcpu_finalize(vcpu, what); | 
|  | } | 
|  | default: | 
|  | r = -EINVAL; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot | 
|  | * @kvm: kvm instance | 
|  | * @log: slot id and address to which we copy the log | 
|  | * | 
|  | * Steps 1-4 below provide general overview of dirty page logging. See | 
|  | * kvm_get_dirty_log_protect() function description for additional details. | 
|  | * | 
|  | * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we | 
|  | * always flush the TLB (step 4) even if previous step failed  and the dirty | 
|  | * bitmap may be corrupt. Regardless of previous outcome the KVM logging API | 
|  | * does not preclude user space subsequent dirty log read. Flushing TLB ensures | 
|  | * writes will be marked dirty for next log read. | 
|  | * | 
|  | *   1. Take a snapshot of the bit and clear it if needed. | 
|  | *   2. Write protect the corresponding page. | 
|  | *   3. Copy the snapshot to the userspace. | 
|  | *   4. Flush TLB's if needed. | 
|  | */ | 
|  | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) | 
|  | { | 
|  | bool flush = false; | 
|  | int r; | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  |  | 
|  | r = kvm_get_dirty_log_protect(kvm, log, &flush); | 
|  |  | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log) | 
|  | { | 
|  | bool flush = false; | 
|  | int r; | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  |  | 
|  | r = kvm_clear_dirty_log_protect(kvm, log, &flush); | 
|  |  | 
|  | if (flush) | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  |  | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, | 
|  | struct kvm_arm_device_addr *dev_addr) | 
|  | { | 
|  | unsigned long dev_id, type; | 
|  |  | 
|  | dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> | 
|  | KVM_ARM_DEVICE_ID_SHIFT; | 
|  | type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> | 
|  | KVM_ARM_DEVICE_TYPE_SHIFT; | 
|  |  | 
|  | switch (dev_id) { | 
|  | case KVM_ARM_DEVICE_VGIC_V2: | 
|  | if (!vgic_present) | 
|  | return -ENXIO; | 
|  | return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); | 
|  | default: | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | long kvm_arch_vm_ioctl(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | struct kvm *kvm = filp->private_data; | 
|  | void __user *argp = (void __user *)arg; | 
|  |  | 
|  | switch (ioctl) { | 
|  | case KVM_CREATE_IRQCHIP: { | 
|  | int ret; | 
|  | if (!vgic_present) | 
|  | return -ENXIO; | 
|  | mutex_lock(&kvm->lock); | 
|  | ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); | 
|  | mutex_unlock(&kvm->lock); | 
|  | return ret; | 
|  | } | 
|  | case KVM_ARM_SET_DEVICE_ADDR: { | 
|  | struct kvm_arm_device_addr dev_addr; | 
|  |  | 
|  | if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) | 
|  | return -EFAULT; | 
|  | return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); | 
|  | } | 
|  | case KVM_ARM_PREFERRED_TARGET: { | 
|  | int err; | 
|  | struct kvm_vcpu_init init; | 
|  |  | 
|  | err = kvm_vcpu_preferred_target(&init); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (copy_to_user(argp, &init, sizeof(init))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cpu_init_hyp_mode(void *dummy) | 
|  | { | 
|  | phys_addr_t pgd_ptr; | 
|  | unsigned long hyp_stack_ptr; | 
|  | unsigned long stack_page; | 
|  | unsigned long vector_ptr; | 
|  |  | 
|  | /* Switch from the HYP stub to our own HYP init vector */ | 
|  | __hyp_set_vectors(kvm_get_idmap_vector()); | 
|  |  | 
|  | pgd_ptr = kvm_mmu_get_httbr(); | 
|  | stack_page = __this_cpu_read(kvm_arm_hyp_stack_page); | 
|  | hyp_stack_ptr = stack_page + PAGE_SIZE; | 
|  | vector_ptr = (unsigned long)kvm_get_hyp_vector(); | 
|  |  | 
|  | __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr); | 
|  | __cpu_init_stage2(); | 
|  | } | 
|  |  | 
|  | static void cpu_hyp_reset(void) | 
|  | { | 
|  | if (!is_kernel_in_hyp_mode()) | 
|  | __hyp_reset_vectors(); | 
|  | } | 
|  |  | 
|  | static void cpu_hyp_reinit(void) | 
|  | { | 
|  | kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt); | 
|  |  | 
|  | cpu_hyp_reset(); | 
|  |  | 
|  | if (is_kernel_in_hyp_mode()) | 
|  | kvm_timer_init_vhe(); | 
|  | else | 
|  | cpu_init_hyp_mode(NULL); | 
|  |  | 
|  | kvm_arm_init_debug(); | 
|  |  | 
|  | if (vgic_present) | 
|  | kvm_vgic_init_cpu_hardware(); | 
|  | } | 
|  |  | 
|  | static void _kvm_arch_hardware_enable(void *discard) | 
|  | { | 
|  | if (!__this_cpu_read(kvm_arm_hardware_enabled)) { | 
|  | cpu_hyp_reinit(); | 
|  | __this_cpu_write(kvm_arm_hardware_enabled, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_arch_hardware_enable(void) | 
|  | { | 
|  | _kvm_arch_hardware_enable(NULL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void _kvm_arch_hardware_disable(void *discard) | 
|  | { | 
|  | if (__this_cpu_read(kvm_arm_hardware_enabled)) { | 
|  | cpu_hyp_reset(); | 
|  | __this_cpu_write(kvm_arm_hardware_enabled, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_arch_hardware_disable(void) | 
|  | { | 
|  | _kvm_arch_hardware_disable(NULL); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_PM | 
|  | static int hyp_init_cpu_pm_notifier(struct notifier_block *self, | 
|  | unsigned long cmd, | 
|  | void *v) | 
|  | { | 
|  | /* | 
|  | * kvm_arm_hardware_enabled is left with its old value over | 
|  | * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should | 
|  | * re-enable hyp. | 
|  | */ | 
|  | switch (cmd) { | 
|  | case CPU_PM_ENTER: | 
|  | if (__this_cpu_read(kvm_arm_hardware_enabled)) | 
|  | /* | 
|  | * don't update kvm_arm_hardware_enabled here | 
|  | * so that the hardware will be re-enabled | 
|  | * when we resume. See below. | 
|  | */ | 
|  | cpu_hyp_reset(); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | case CPU_PM_ENTER_FAILED: | 
|  | case CPU_PM_EXIT: | 
|  | if (__this_cpu_read(kvm_arm_hardware_enabled)) | 
|  | /* The hardware was enabled before suspend. */ | 
|  | cpu_hyp_reinit(); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct notifier_block hyp_init_cpu_pm_nb = { | 
|  | .notifier_call = hyp_init_cpu_pm_notifier, | 
|  | }; | 
|  |  | 
|  | static void __init hyp_cpu_pm_init(void) | 
|  | { | 
|  | cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); | 
|  | } | 
|  | static void __init hyp_cpu_pm_exit(void) | 
|  | { | 
|  | cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); | 
|  | } | 
|  | #else | 
|  | static inline void hyp_cpu_pm_init(void) | 
|  | { | 
|  | } | 
|  | static inline void hyp_cpu_pm_exit(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int init_common_resources(void) | 
|  | { | 
|  | kvm_set_ipa_limit(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int init_subsystems(void) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * Enable hardware so that subsystem initialisation can access EL2. | 
|  | */ | 
|  | on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); | 
|  |  | 
|  | /* | 
|  | * Register CPU lower-power notifier | 
|  | */ | 
|  | hyp_cpu_pm_init(); | 
|  |  | 
|  | /* | 
|  | * Init HYP view of VGIC | 
|  | */ | 
|  | err = kvm_vgic_hyp_init(); | 
|  | switch (err) { | 
|  | case 0: | 
|  | vgic_present = true; | 
|  | break; | 
|  | case -ENODEV: | 
|  | case -ENXIO: | 
|  | vgic_present = false; | 
|  | err = 0; | 
|  | break; | 
|  | default: | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Init HYP architected timer support | 
|  | */ | 
|  | err = kvm_timer_hyp_init(vgic_present); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | kvm_perf_init(); | 
|  | kvm_coproc_table_init(); | 
|  |  | 
|  | out: | 
|  | on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void teardown_hyp_mode(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | free_hyp_pgds(); | 
|  | for_each_possible_cpu(cpu) | 
|  | free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); | 
|  | hyp_cpu_pm_exit(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Inits Hyp-mode on all online CPUs | 
|  | */ | 
|  | static int init_hyp_mode(void) | 
|  | { | 
|  | int cpu; | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * Allocate Hyp PGD and setup Hyp identity mapping | 
|  | */ | 
|  | err = kvm_mmu_init(); | 
|  | if (err) | 
|  | goto out_err; | 
|  |  | 
|  | /* | 
|  | * Allocate stack pages for Hypervisor-mode | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | unsigned long stack_page; | 
|  |  | 
|  | stack_page = __get_free_page(GFP_KERNEL); | 
|  | if (!stack_page) { | 
|  | err = -ENOMEM; | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map the Hyp-code called directly from the host | 
|  | */ | 
|  | err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), | 
|  | kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); | 
|  | if (err) { | 
|  | kvm_err("Cannot map world-switch code\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), | 
|  | kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); | 
|  | if (err) { | 
|  | kvm_err("Cannot map rodata section\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = create_hyp_mappings(kvm_ksym_ref(__bss_start), | 
|  | kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); | 
|  | if (err) { | 
|  | kvm_err("Cannot map bss section\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = kvm_map_vectors(); | 
|  | if (err) { | 
|  | kvm_err("Cannot map vectors\n"); | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map the Hyp stack pages | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); | 
|  | err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, | 
|  | PAGE_HYP); | 
|  |  | 
|  | if (err) { | 
|  | kvm_err("Cannot map hyp stack\n"); | 
|  | goto out_err; | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | kvm_host_data_t *cpu_data; | 
|  |  | 
|  | cpu_data = per_cpu_ptr(&kvm_host_data, cpu); | 
|  | err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP); | 
|  |  | 
|  | if (err) { | 
|  | kvm_err("Cannot map host CPU state: %d\n", err); | 
|  | goto out_err; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = hyp_map_aux_data(); | 
|  | if (err) | 
|  | kvm_err("Cannot map host auxiliary data: %d\n", err); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_err: | 
|  | teardown_hyp_mode(); | 
|  | kvm_err("error initializing Hyp mode: %d\n", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void check_kvm_target_cpu(void *ret) | 
|  | { | 
|  | *(int *)ret = kvm_target_cpu(); | 
|  | } | 
|  |  | 
|  | struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) | 
|  | { | 
|  | struct kvm_vcpu *vcpu; | 
|  | int i; | 
|  |  | 
|  | mpidr &= MPIDR_HWID_BITMASK; | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) | 
|  | return vcpu; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bool kvm_arch_has_irq_bypass(void) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, | 
|  | struct irq_bypass_producer *prod) | 
|  | { | 
|  | struct kvm_kernel_irqfd *irqfd = | 
|  | container_of(cons, struct kvm_kernel_irqfd, consumer); | 
|  |  | 
|  | return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, | 
|  | &irqfd->irq_entry); | 
|  | } | 
|  | void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, | 
|  | struct irq_bypass_producer *prod) | 
|  | { | 
|  | struct kvm_kernel_irqfd *irqfd = | 
|  | container_of(cons, struct kvm_kernel_irqfd, consumer); | 
|  |  | 
|  | kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, | 
|  | &irqfd->irq_entry); | 
|  | } | 
|  |  | 
|  | void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) | 
|  | { | 
|  | struct kvm_kernel_irqfd *irqfd = | 
|  | container_of(cons, struct kvm_kernel_irqfd, consumer); | 
|  |  | 
|  | kvm_arm_halt_guest(irqfd->kvm); | 
|  | } | 
|  |  | 
|  | void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) | 
|  | { | 
|  | struct kvm_kernel_irqfd *irqfd = | 
|  | container_of(cons, struct kvm_kernel_irqfd, consumer); | 
|  |  | 
|  | kvm_arm_resume_guest(irqfd->kvm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Initialize Hyp-mode and memory mappings on all CPUs. | 
|  | */ | 
|  | int kvm_arch_init(void *opaque) | 
|  | { | 
|  | int err; | 
|  | int ret, cpu; | 
|  | bool in_hyp_mode; | 
|  |  | 
|  | if (!is_hyp_mode_available()) { | 
|  | kvm_info("HYP mode not available\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | in_hyp_mode = is_kernel_in_hyp_mode(); | 
|  |  | 
|  | if (!in_hyp_mode && kvm_arch_requires_vhe()) { | 
|  | kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); | 
|  | if (ret < 0) { | 
|  | kvm_err("Error, CPU %d not supported!\n", cpu); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = init_common_resources(); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = kvm_arm_init_sve(); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!in_hyp_mode) { | 
|  | err = init_hyp_mode(); | 
|  | if (err) | 
|  | goto out_err; | 
|  | } | 
|  |  | 
|  | err = init_subsystems(); | 
|  | if (err) | 
|  | goto out_hyp; | 
|  |  | 
|  | if (in_hyp_mode) | 
|  | kvm_info("VHE mode initialized successfully\n"); | 
|  | else | 
|  | kvm_info("Hyp mode initialized successfully\n"); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_hyp: | 
|  | if (!in_hyp_mode) | 
|  | teardown_hyp_mode(); | 
|  | out_err: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* NOP: Compiling as a module not supported */ | 
|  | void kvm_arch_exit(void) | 
|  | { | 
|  | kvm_perf_teardown(); | 
|  | } | 
|  |  | 
|  | static int arm_init(void) | 
|  | { | 
|  | int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | module_init(arm_init); |