|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* | 
|  | * XArray implementation | 
|  | * Copyright (c) 2017-2018 Microsoft Corporation | 
|  | * Copyright (c) 2018-2020 Oracle | 
|  | * Author: Matthew Wilcox <willy@infradead.org> | 
|  | */ | 
|  |  | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/xarray.h> | 
|  |  | 
|  | /* | 
|  | * Coding conventions in this file: | 
|  | * | 
|  | * @xa is used to refer to the entire xarray. | 
|  | * @xas is the 'xarray operation state'.  It may be either a pointer to | 
|  | * an xa_state, or an xa_state stored on the stack.  This is an unfortunate | 
|  | * ambiguity. | 
|  | * @index is the index of the entry being operated on | 
|  | * @mark is an xa_mark_t; a small number indicating one of the mark bits. | 
|  | * @node refers to an xa_node; usually the primary one being operated on by | 
|  | * this function. | 
|  | * @offset is the index into the slots array inside an xa_node. | 
|  | * @parent refers to the @xa_node closer to the head than @node. | 
|  | * @entry refers to something stored in a slot in the xarray | 
|  | */ | 
|  |  | 
|  | static inline unsigned int xa_lock_type(const struct xarray *xa) | 
|  | { | 
|  | return (__force unsigned int)xa->xa_flags & 3; | 
|  | } | 
|  |  | 
|  | static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) | 
|  | { | 
|  | if (lock_type == XA_LOCK_IRQ) | 
|  | xas_lock_irq(xas); | 
|  | else if (lock_type == XA_LOCK_BH) | 
|  | xas_lock_bh(xas); | 
|  | else | 
|  | xas_lock(xas); | 
|  | } | 
|  |  | 
|  | static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) | 
|  | { | 
|  | if (lock_type == XA_LOCK_IRQ) | 
|  | xas_unlock_irq(xas); | 
|  | else if (lock_type == XA_LOCK_BH) | 
|  | xas_unlock_bh(xas); | 
|  | else | 
|  | xas_unlock(xas); | 
|  | } | 
|  |  | 
|  | static inline bool xa_track_free(const struct xarray *xa) | 
|  | { | 
|  | return xa->xa_flags & XA_FLAGS_TRACK_FREE; | 
|  | } | 
|  |  | 
|  | static inline bool xa_zero_busy(const struct xarray *xa) | 
|  | { | 
|  | return xa->xa_flags & XA_FLAGS_ZERO_BUSY; | 
|  | } | 
|  |  | 
|  | static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) | 
|  | { | 
|  | if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) | 
|  | xa->xa_flags |= XA_FLAGS_MARK(mark); | 
|  | } | 
|  |  | 
|  | static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) | 
|  | { | 
|  | if (xa->xa_flags & XA_FLAGS_MARK(mark)) | 
|  | xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); | 
|  | } | 
|  |  | 
|  | static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) | 
|  | { | 
|  | return node->marks[(__force unsigned)mark]; | 
|  | } | 
|  |  | 
|  | static inline bool node_get_mark(struct xa_node *node, | 
|  | unsigned int offset, xa_mark_t mark) | 
|  | { | 
|  | return test_bit(offset, node_marks(node, mark)); | 
|  | } | 
|  |  | 
|  | /* returns true if the bit was set */ | 
|  | static inline bool node_set_mark(struct xa_node *node, unsigned int offset, | 
|  | xa_mark_t mark) | 
|  | { | 
|  | return __test_and_set_bit(offset, node_marks(node, mark)); | 
|  | } | 
|  |  | 
|  | /* returns true if the bit was set */ | 
|  | static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, | 
|  | xa_mark_t mark) | 
|  | { | 
|  | return __test_and_clear_bit(offset, node_marks(node, mark)); | 
|  | } | 
|  |  | 
|  | static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) | 
|  | { | 
|  | return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); | 
|  | } | 
|  |  | 
|  | static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) | 
|  | { | 
|  | bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); | 
|  | } | 
|  |  | 
|  | #define mark_inc(mark) do { \ | 
|  | mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * xas_squash_marks() - Merge all marks to the first entry | 
|  | * @xas: Array operation state. | 
|  | * | 
|  | * Set a mark on the first entry if any entry has it set.  Clear marks on | 
|  | * all sibling entries. | 
|  | */ | 
|  | static void xas_squash_marks(const struct xa_state *xas) | 
|  | { | 
|  | unsigned int mark = 0; | 
|  | unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; | 
|  |  | 
|  | if (!xas->xa_sibs) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | unsigned long *marks = xas->xa_node->marks[mark]; | 
|  | if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) | 
|  | continue; | 
|  | __set_bit(xas->xa_offset, marks); | 
|  | bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); | 
|  | } while (mark++ != (__force unsigned)XA_MARK_MAX); | 
|  | } | 
|  |  | 
|  | /* extracts the offset within this node from the index */ | 
|  | static unsigned int get_offset(unsigned long index, struct xa_node *node) | 
|  | { | 
|  | return (index >> node->shift) & XA_CHUNK_MASK; | 
|  | } | 
|  |  | 
|  | static void xas_set_offset(struct xa_state *xas) | 
|  | { | 
|  | xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); | 
|  | } | 
|  |  | 
|  | /* move the index either forwards (find) or backwards (sibling slot) */ | 
|  | static void xas_move_index(struct xa_state *xas, unsigned long offset) | 
|  | { | 
|  | unsigned int shift = xas->xa_node->shift; | 
|  | xas->xa_index &= ~XA_CHUNK_MASK << shift; | 
|  | xas->xa_index += offset << shift; | 
|  | } | 
|  |  | 
|  | static void xas_advance(struct xa_state *xas) | 
|  | { | 
|  | xas->xa_offset++; | 
|  | xas_move_index(xas, xas->xa_offset); | 
|  | } | 
|  |  | 
|  | static void *set_bounds(struct xa_state *xas) | 
|  | { | 
|  | xas->xa_node = XAS_BOUNDS; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Starts a walk.  If the @xas is already valid, we assume that it's on | 
|  | * the right path and just return where we've got to.  If we're in an | 
|  | * error state, return NULL.  If the index is outside the current scope | 
|  | * of the xarray, return NULL without changing @xas->xa_node.  Otherwise | 
|  | * set @xas->xa_node to NULL and return the current head of the array. | 
|  | */ | 
|  | static void *xas_start(struct xa_state *xas) | 
|  | { | 
|  | void *entry; | 
|  |  | 
|  | if (xas_valid(xas)) | 
|  | return xas_reload(xas); | 
|  | if (xas_error(xas)) | 
|  | return NULL; | 
|  |  | 
|  | entry = xa_head(xas->xa); | 
|  | if (!xa_is_node(entry)) { | 
|  | if (xas->xa_index) | 
|  | return set_bounds(xas); | 
|  | } else { | 
|  | if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) | 
|  | return set_bounds(xas); | 
|  | } | 
|  |  | 
|  | xas->xa_node = NULL; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static void *xas_descend(struct xa_state *xas, struct xa_node *node) | 
|  | { | 
|  | unsigned int offset = get_offset(xas->xa_index, node); | 
|  | void *entry = xa_entry(xas->xa, node, offset); | 
|  |  | 
|  | xas->xa_node = node; | 
|  | if (xa_is_sibling(entry)) { | 
|  | offset = xa_to_sibling(entry); | 
|  | entry = xa_entry(xas->xa, node, offset); | 
|  | } | 
|  |  | 
|  | xas->xa_offset = offset; | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xas_load() - Load an entry from the XArray (advanced). | 
|  | * @xas: XArray operation state. | 
|  | * | 
|  | * Usually walks the @xas to the appropriate state to load the entry | 
|  | * stored at xa_index.  However, it will do nothing and return %NULL if | 
|  | * @xas is in an error state.  xas_load() will never expand the tree. | 
|  | * | 
|  | * If the xa_state is set up to operate on a multi-index entry, xas_load() | 
|  | * may return %NULL or an internal entry, even if there are entries | 
|  | * present within the range specified by @xas. | 
|  | * | 
|  | * Context: Any context.  The caller should hold the xa_lock or the RCU lock. | 
|  | * Return: Usually an entry in the XArray, but see description for exceptions. | 
|  | */ | 
|  | void *xas_load(struct xa_state *xas) | 
|  | { | 
|  | void *entry = xas_start(xas); | 
|  |  | 
|  | while (xa_is_node(entry)) { | 
|  | struct xa_node *node = xa_to_node(entry); | 
|  |  | 
|  | if (xas->xa_shift > node->shift) | 
|  | break; | 
|  | entry = xas_descend(xas, node); | 
|  | if (node->shift == 0) | 
|  | break; | 
|  | } | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_load); | 
|  |  | 
|  | /* Move the radix tree node cache here */ | 
|  | extern struct kmem_cache *radix_tree_node_cachep; | 
|  | extern void radix_tree_node_rcu_free(struct rcu_head *head); | 
|  |  | 
|  | #define XA_RCU_FREE	((struct xarray *)1) | 
|  |  | 
|  | static void xa_node_free(struct xa_node *node) | 
|  | { | 
|  | XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); | 
|  | node->array = XA_RCU_FREE; | 
|  | call_rcu(&node->rcu_head, radix_tree_node_rcu_free); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xas_destroy() - Free any resources allocated during the XArray operation. | 
|  | * @xas: XArray operation state. | 
|  | * | 
|  | * This function is now internal-only. | 
|  | */ | 
|  | static void xas_destroy(struct xa_state *xas) | 
|  | { | 
|  | struct xa_node *next, *node = xas->xa_alloc; | 
|  |  | 
|  | while (node) { | 
|  | XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); | 
|  | next = rcu_dereference_raw(node->parent); | 
|  | radix_tree_node_rcu_free(&node->rcu_head); | 
|  | xas->xa_alloc = node = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xas_nomem() - Allocate memory if needed. | 
|  | * @xas: XArray operation state. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * If we need to add new nodes to the XArray, we try to allocate memory | 
|  | * with GFP_NOWAIT while holding the lock, which will usually succeed. | 
|  | * If it fails, @xas is flagged as needing memory to continue.  The caller | 
|  | * should drop the lock and call xas_nomem().  If xas_nomem() succeeds, | 
|  | * the caller should retry the operation. | 
|  | * | 
|  | * Forward progress is guaranteed as one node is allocated here and | 
|  | * stored in the xa_state where it will be found by xas_alloc().  More | 
|  | * nodes will likely be found in the slab allocator, but we do not tie | 
|  | * them up here. | 
|  | * | 
|  | * Return: true if memory was needed, and was successfully allocated. | 
|  | */ | 
|  | bool xas_nomem(struct xa_state *xas, gfp_t gfp) | 
|  | { | 
|  | if (xas->xa_node != XA_ERROR(-ENOMEM)) { | 
|  | xas_destroy(xas); | 
|  | return false; | 
|  | } | 
|  | if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) | 
|  | gfp |= __GFP_ACCOUNT; | 
|  | xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); | 
|  | if (!xas->xa_alloc) | 
|  | return false; | 
|  | xas->xa_alloc->parent = NULL; | 
|  | XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); | 
|  | xas->xa_node = XAS_RESTART; | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_nomem); | 
|  |  | 
|  | /* | 
|  | * __xas_nomem() - Drop locks and allocate memory if needed. | 
|  | * @xas: XArray operation state. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * Internal variant of xas_nomem(). | 
|  | * | 
|  | * Return: true if memory was needed, and was successfully allocated. | 
|  | */ | 
|  | static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) | 
|  | __must_hold(xas->xa->xa_lock) | 
|  | { | 
|  | unsigned int lock_type = xa_lock_type(xas->xa); | 
|  |  | 
|  | if (xas->xa_node != XA_ERROR(-ENOMEM)) { | 
|  | xas_destroy(xas); | 
|  | return false; | 
|  | } | 
|  | if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) | 
|  | gfp |= __GFP_ACCOUNT; | 
|  | if (gfpflags_allow_blocking(gfp)) { | 
|  | xas_unlock_type(xas, lock_type); | 
|  | xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); | 
|  | xas_lock_type(xas, lock_type); | 
|  | } else { | 
|  | xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); | 
|  | } | 
|  | if (!xas->xa_alloc) | 
|  | return false; | 
|  | xas->xa_alloc->parent = NULL; | 
|  | XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); | 
|  | xas->xa_node = XAS_RESTART; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void xas_update(struct xa_state *xas, struct xa_node *node) | 
|  | { | 
|  | if (xas->xa_update) | 
|  | xas->xa_update(node); | 
|  | else | 
|  | XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); | 
|  | } | 
|  |  | 
|  | static void *xas_alloc(struct xa_state *xas, unsigned int shift) | 
|  | { | 
|  | struct xa_node *parent = xas->xa_node; | 
|  | struct xa_node *node = xas->xa_alloc; | 
|  |  | 
|  | if (xas_invalid(xas)) | 
|  | return NULL; | 
|  |  | 
|  | if (node) { | 
|  | xas->xa_alloc = NULL; | 
|  | } else { | 
|  | gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; | 
|  |  | 
|  | if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) | 
|  | gfp |= __GFP_ACCOUNT; | 
|  |  | 
|  | node = kmem_cache_alloc(radix_tree_node_cachep, gfp); | 
|  | if (!node) { | 
|  | xas_set_err(xas, -ENOMEM); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (parent) { | 
|  | node->offset = xas->xa_offset; | 
|  | parent->count++; | 
|  | XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); | 
|  | xas_update(xas, parent); | 
|  | } | 
|  | XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); | 
|  | XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); | 
|  | node->shift = shift; | 
|  | node->count = 0; | 
|  | node->nr_values = 0; | 
|  | RCU_INIT_POINTER(node->parent, xas->xa_node); | 
|  | node->array = xas->xa; | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_XARRAY_MULTI | 
|  | /* Returns the number of indices covered by a given xa_state */ | 
|  | static unsigned long xas_size(const struct xa_state *xas) | 
|  | { | 
|  | return (xas->xa_sibs + 1UL) << xas->xa_shift; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Use this to calculate the maximum index that will need to be created | 
|  | * in order to add the entry described by @xas.  Because we cannot store a | 
|  | * multi-index entry at index 0, the calculation is a little more complex | 
|  | * than you might expect. | 
|  | */ | 
|  | static unsigned long xas_max(struct xa_state *xas) | 
|  | { | 
|  | unsigned long max = xas->xa_index; | 
|  |  | 
|  | #ifdef CONFIG_XARRAY_MULTI | 
|  | if (xas->xa_shift || xas->xa_sibs) { | 
|  | unsigned long mask = xas_size(xas) - 1; | 
|  | max |= mask; | 
|  | if (mask == max) | 
|  | max++; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return max; | 
|  | } | 
|  |  | 
|  | /* The maximum index that can be contained in the array without expanding it */ | 
|  | static unsigned long max_index(void *entry) | 
|  | { | 
|  | if (!xa_is_node(entry)) | 
|  | return 0; | 
|  | return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; | 
|  | } | 
|  |  | 
|  | static void xas_shrink(struct xa_state *xas) | 
|  | { | 
|  | struct xarray *xa = xas->xa; | 
|  | struct xa_node *node = xas->xa_node; | 
|  |  | 
|  | for (;;) { | 
|  | void *entry; | 
|  |  | 
|  | XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); | 
|  | if (node->count != 1) | 
|  | break; | 
|  | entry = xa_entry_locked(xa, node, 0); | 
|  | if (!entry) | 
|  | break; | 
|  | if (!xa_is_node(entry) && node->shift) | 
|  | break; | 
|  | if (xa_is_zero(entry) && xa_zero_busy(xa)) | 
|  | entry = NULL; | 
|  | xas->xa_node = XAS_BOUNDS; | 
|  |  | 
|  | RCU_INIT_POINTER(xa->xa_head, entry); | 
|  | if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) | 
|  | xa_mark_clear(xa, XA_FREE_MARK); | 
|  |  | 
|  | node->count = 0; | 
|  | node->nr_values = 0; | 
|  | if (!xa_is_node(entry)) | 
|  | RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); | 
|  | xas_update(xas, node); | 
|  | xa_node_free(node); | 
|  | if (!xa_is_node(entry)) | 
|  | break; | 
|  | node = xa_to_node(entry); | 
|  | node->parent = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xas_delete_node() - Attempt to delete an xa_node | 
|  | * @xas: Array operation state. | 
|  | * | 
|  | * Attempts to delete the @xas->xa_node.  This will fail if xa->node has | 
|  | * a non-zero reference count. | 
|  | */ | 
|  | static void xas_delete_node(struct xa_state *xas) | 
|  | { | 
|  | struct xa_node *node = xas->xa_node; | 
|  |  | 
|  | for (;;) { | 
|  | struct xa_node *parent; | 
|  |  | 
|  | XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); | 
|  | if (node->count) | 
|  | break; | 
|  |  | 
|  | parent = xa_parent_locked(xas->xa, node); | 
|  | xas->xa_node = parent; | 
|  | xas->xa_offset = node->offset; | 
|  | xa_node_free(node); | 
|  |  | 
|  | if (!parent) { | 
|  | xas->xa->xa_head = NULL; | 
|  | xas->xa_node = XAS_BOUNDS; | 
|  | return; | 
|  | } | 
|  |  | 
|  | parent->slots[xas->xa_offset] = NULL; | 
|  | parent->count--; | 
|  | XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); | 
|  | node = parent; | 
|  | xas_update(xas, node); | 
|  | } | 
|  |  | 
|  | if (!node->parent) | 
|  | xas_shrink(xas); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xas_free_nodes() - Free this node and all nodes that it references | 
|  | * @xas: Array operation state. | 
|  | * @top: Node to free | 
|  | * | 
|  | * This node has been removed from the tree.  We must now free it and all | 
|  | * of its subnodes.  There may be RCU walkers with references into the tree, | 
|  | * so we must replace all entries with retry markers. | 
|  | */ | 
|  | static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) | 
|  | { | 
|  | unsigned int offset = 0; | 
|  | struct xa_node *node = top; | 
|  |  | 
|  | for (;;) { | 
|  | void *entry = xa_entry_locked(xas->xa, node, offset); | 
|  |  | 
|  | if (node->shift && xa_is_node(entry)) { | 
|  | node = xa_to_node(entry); | 
|  | offset = 0; | 
|  | continue; | 
|  | } | 
|  | if (entry) | 
|  | RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); | 
|  | offset++; | 
|  | while (offset == XA_CHUNK_SIZE) { | 
|  | struct xa_node *parent; | 
|  |  | 
|  | parent = xa_parent_locked(xas->xa, node); | 
|  | offset = node->offset + 1; | 
|  | node->count = 0; | 
|  | node->nr_values = 0; | 
|  | xas_update(xas, node); | 
|  | xa_node_free(node); | 
|  | if (node == top) | 
|  | return; | 
|  | node = parent; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xas_expand adds nodes to the head of the tree until it has reached | 
|  | * sufficient height to be able to contain @xas->xa_index | 
|  | */ | 
|  | static int xas_expand(struct xa_state *xas, void *head) | 
|  | { | 
|  | struct xarray *xa = xas->xa; | 
|  | struct xa_node *node = NULL; | 
|  | unsigned int shift = 0; | 
|  | unsigned long max = xas_max(xas); | 
|  |  | 
|  | if (!head) { | 
|  | if (max == 0) | 
|  | return 0; | 
|  | while ((max >> shift) >= XA_CHUNK_SIZE) | 
|  | shift += XA_CHUNK_SHIFT; | 
|  | return shift + XA_CHUNK_SHIFT; | 
|  | } else if (xa_is_node(head)) { | 
|  | node = xa_to_node(head); | 
|  | shift = node->shift + XA_CHUNK_SHIFT; | 
|  | } | 
|  | xas->xa_node = NULL; | 
|  |  | 
|  | while (max > max_index(head)) { | 
|  | xa_mark_t mark = 0; | 
|  |  | 
|  | XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); | 
|  | node = xas_alloc(xas, shift); | 
|  | if (!node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | node->count = 1; | 
|  | if (xa_is_value(head)) | 
|  | node->nr_values = 1; | 
|  | RCU_INIT_POINTER(node->slots[0], head); | 
|  |  | 
|  | /* Propagate the aggregated mark info to the new child */ | 
|  | for (;;) { | 
|  | if (xa_track_free(xa) && mark == XA_FREE_MARK) { | 
|  | node_mark_all(node, XA_FREE_MARK); | 
|  | if (!xa_marked(xa, XA_FREE_MARK)) { | 
|  | node_clear_mark(node, 0, XA_FREE_MARK); | 
|  | xa_mark_set(xa, XA_FREE_MARK); | 
|  | } | 
|  | } else if (xa_marked(xa, mark)) { | 
|  | node_set_mark(node, 0, mark); | 
|  | } | 
|  | if (mark == XA_MARK_MAX) | 
|  | break; | 
|  | mark_inc(mark); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that the new node is fully initialised, we can add | 
|  | * it to the tree | 
|  | */ | 
|  | if (xa_is_node(head)) { | 
|  | xa_to_node(head)->offset = 0; | 
|  | rcu_assign_pointer(xa_to_node(head)->parent, node); | 
|  | } | 
|  | head = xa_mk_node(node); | 
|  | rcu_assign_pointer(xa->xa_head, head); | 
|  | xas_update(xas, node); | 
|  |  | 
|  | shift += XA_CHUNK_SHIFT; | 
|  | } | 
|  |  | 
|  | xas->xa_node = node; | 
|  | return shift; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xas_create() - Create a slot to store an entry in. | 
|  | * @xas: XArray operation state. | 
|  | * @allow_root: %true if we can store the entry in the root directly | 
|  | * | 
|  | * Most users will not need to call this function directly, as it is called | 
|  | * by xas_store().  It is useful for doing conditional store operations | 
|  | * (see the xa_cmpxchg() implementation for an example). | 
|  | * | 
|  | * Return: If the slot already existed, returns the contents of this slot. | 
|  | * If the slot was newly created, returns %NULL.  If it failed to create the | 
|  | * slot, returns %NULL and indicates the error in @xas. | 
|  | */ | 
|  | static void *xas_create(struct xa_state *xas, bool allow_root) | 
|  | { | 
|  | struct xarray *xa = xas->xa; | 
|  | void *entry; | 
|  | void __rcu **slot; | 
|  | struct xa_node *node = xas->xa_node; | 
|  | int shift; | 
|  | unsigned int order = xas->xa_shift; | 
|  |  | 
|  | if (xas_top(node)) { | 
|  | entry = xa_head_locked(xa); | 
|  | xas->xa_node = NULL; | 
|  | if (!entry && xa_zero_busy(xa)) | 
|  | entry = XA_ZERO_ENTRY; | 
|  | shift = xas_expand(xas, entry); | 
|  | if (shift < 0) | 
|  | return NULL; | 
|  | if (!shift && !allow_root) | 
|  | shift = XA_CHUNK_SHIFT; | 
|  | entry = xa_head_locked(xa); | 
|  | slot = &xa->xa_head; | 
|  | } else if (xas_error(xas)) { | 
|  | return NULL; | 
|  | } else if (node) { | 
|  | unsigned int offset = xas->xa_offset; | 
|  |  | 
|  | shift = node->shift; | 
|  | entry = xa_entry_locked(xa, node, offset); | 
|  | slot = &node->slots[offset]; | 
|  | } else { | 
|  | shift = 0; | 
|  | entry = xa_head_locked(xa); | 
|  | slot = &xa->xa_head; | 
|  | } | 
|  |  | 
|  | while (shift > order) { | 
|  | shift -= XA_CHUNK_SHIFT; | 
|  | if (!entry) { | 
|  | node = xas_alloc(xas, shift); | 
|  | if (!node) | 
|  | break; | 
|  | if (xa_track_free(xa)) | 
|  | node_mark_all(node, XA_FREE_MARK); | 
|  | rcu_assign_pointer(*slot, xa_mk_node(node)); | 
|  | } else if (xa_is_node(entry)) { | 
|  | node = xa_to_node(entry); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | entry = xas_descend(xas, node); | 
|  | slot = &node->slots[xas->xa_offset]; | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xas_create_range() - Ensure that stores to this range will succeed | 
|  | * @xas: XArray operation state. | 
|  | * | 
|  | * Creates all of the slots in the range covered by @xas.  Sets @xas to | 
|  | * create single-index entries and positions it at the beginning of the | 
|  | * range.  This is for the benefit of users which have not yet been | 
|  | * converted to use multi-index entries. | 
|  | */ | 
|  | void xas_create_range(struct xa_state *xas) | 
|  | { | 
|  | unsigned long index = xas->xa_index; | 
|  | unsigned char shift = xas->xa_shift; | 
|  | unsigned char sibs = xas->xa_sibs; | 
|  |  | 
|  | xas->xa_index |= ((sibs + 1) << shift) - 1; | 
|  | if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) | 
|  | xas->xa_offset |= sibs; | 
|  | xas->xa_shift = 0; | 
|  | xas->xa_sibs = 0; | 
|  |  | 
|  | for (;;) { | 
|  | xas_create(xas, true); | 
|  | if (xas_error(xas)) | 
|  | goto restore; | 
|  | if (xas->xa_index <= (index | XA_CHUNK_MASK)) | 
|  | goto success; | 
|  | xas->xa_index -= XA_CHUNK_SIZE; | 
|  |  | 
|  | for (;;) { | 
|  | struct xa_node *node = xas->xa_node; | 
|  | xas->xa_node = xa_parent_locked(xas->xa, node); | 
|  | xas->xa_offset = node->offset - 1; | 
|  | if (node->offset != 0) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | restore: | 
|  | xas->xa_shift = shift; | 
|  | xas->xa_sibs = sibs; | 
|  | xas->xa_index = index; | 
|  | return; | 
|  | success: | 
|  | xas->xa_index = index; | 
|  | if (xas->xa_node) | 
|  | xas_set_offset(xas); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_create_range); | 
|  |  | 
|  | static void update_node(struct xa_state *xas, struct xa_node *node, | 
|  | int count, int values) | 
|  | { | 
|  | if (!node || (!count && !values)) | 
|  | return; | 
|  |  | 
|  | node->count += count; | 
|  | node->nr_values += values; | 
|  | XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); | 
|  | XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); | 
|  | xas_update(xas, node); | 
|  | if (count < 0) | 
|  | xas_delete_node(xas); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xas_store() - Store this entry in the XArray. | 
|  | * @xas: XArray operation state. | 
|  | * @entry: New entry. | 
|  | * | 
|  | * If @xas is operating on a multi-index entry, the entry returned by this | 
|  | * function is essentially meaningless (it may be an internal entry or it | 
|  | * may be %NULL, even if there are non-NULL entries at some of the indices | 
|  | * covered by the range).  This is not a problem for any current users, | 
|  | * and can be changed if needed. | 
|  | * | 
|  | * Return: The old entry at this index. | 
|  | */ | 
|  | void *xas_store(struct xa_state *xas, void *entry) | 
|  | { | 
|  | struct xa_node *node; | 
|  | void __rcu **slot = &xas->xa->xa_head; | 
|  | unsigned int offset, max; | 
|  | int count = 0; | 
|  | int values = 0; | 
|  | void *first, *next; | 
|  | bool value = xa_is_value(entry); | 
|  |  | 
|  | if (entry) { | 
|  | bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); | 
|  | first = xas_create(xas, allow_root); | 
|  | } else { | 
|  | first = xas_load(xas); | 
|  | } | 
|  |  | 
|  | if (xas_invalid(xas)) | 
|  | return first; | 
|  | node = xas->xa_node; | 
|  | if (node && (xas->xa_shift < node->shift)) | 
|  | xas->xa_sibs = 0; | 
|  | if ((first == entry) && !xas->xa_sibs) | 
|  | return first; | 
|  |  | 
|  | next = first; | 
|  | offset = xas->xa_offset; | 
|  | max = xas->xa_offset + xas->xa_sibs; | 
|  | if (node) { | 
|  | slot = &node->slots[offset]; | 
|  | if (xas->xa_sibs) | 
|  | xas_squash_marks(xas); | 
|  | } | 
|  | if (!entry) | 
|  | xas_init_marks(xas); | 
|  |  | 
|  | for (;;) { | 
|  | /* | 
|  | * Must clear the marks before setting the entry to NULL, | 
|  | * otherwise xas_for_each_marked may find a NULL entry and | 
|  | * stop early.  rcu_assign_pointer contains a release barrier | 
|  | * so the mark clearing will appear to happen before the | 
|  | * entry is set to NULL. | 
|  | */ | 
|  | rcu_assign_pointer(*slot, entry); | 
|  | if (xa_is_node(next) && (!node || node->shift)) | 
|  | xas_free_nodes(xas, xa_to_node(next)); | 
|  | if (!node) | 
|  | break; | 
|  | count += !next - !entry; | 
|  | values += !xa_is_value(first) - !value; | 
|  | if (entry) { | 
|  | if (offset == max) | 
|  | break; | 
|  | if (!xa_is_sibling(entry)) | 
|  | entry = xa_mk_sibling(xas->xa_offset); | 
|  | } else { | 
|  | if (offset == XA_CHUNK_MASK) | 
|  | break; | 
|  | } | 
|  | next = xa_entry_locked(xas->xa, node, ++offset); | 
|  | if (!xa_is_sibling(next)) { | 
|  | if (!entry && (offset > max)) | 
|  | break; | 
|  | first = next; | 
|  | } | 
|  | slot++; | 
|  | } | 
|  |  | 
|  | update_node(xas, node, count, values); | 
|  | return first; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_store); | 
|  |  | 
|  | /** | 
|  | * xas_get_mark() - Returns the state of this mark. | 
|  | * @xas: XArray operation state. | 
|  | * @mark: Mark number. | 
|  | * | 
|  | * Return: true if the mark is set, false if the mark is clear or @xas | 
|  | * is in an error state. | 
|  | */ | 
|  | bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) | 
|  | { | 
|  | if (xas_invalid(xas)) | 
|  | return false; | 
|  | if (!xas->xa_node) | 
|  | return xa_marked(xas->xa, mark); | 
|  | return node_get_mark(xas->xa_node, xas->xa_offset, mark); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_get_mark); | 
|  |  | 
|  | /** | 
|  | * xas_set_mark() - Sets the mark on this entry and its parents. | 
|  | * @xas: XArray operation state. | 
|  | * @mark: Mark number. | 
|  | * | 
|  | * Sets the specified mark on this entry, and walks up the tree setting it | 
|  | * on all the ancestor entries.  Does nothing if @xas has not been walked to | 
|  | * an entry, or is in an error state. | 
|  | */ | 
|  | void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) | 
|  | { | 
|  | struct xa_node *node = xas->xa_node; | 
|  | unsigned int offset = xas->xa_offset; | 
|  |  | 
|  | if (xas_invalid(xas)) | 
|  | return; | 
|  |  | 
|  | while (node) { | 
|  | if (node_set_mark(node, offset, mark)) | 
|  | return; | 
|  | offset = node->offset; | 
|  | node = xa_parent_locked(xas->xa, node); | 
|  | } | 
|  |  | 
|  | if (!xa_marked(xas->xa, mark)) | 
|  | xa_mark_set(xas->xa, mark); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_set_mark); | 
|  |  | 
|  | /** | 
|  | * xas_clear_mark() - Clears the mark on this entry and its parents. | 
|  | * @xas: XArray operation state. | 
|  | * @mark: Mark number. | 
|  | * | 
|  | * Clears the specified mark on this entry, and walks back to the head | 
|  | * attempting to clear it on all the ancestor entries.  Does nothing if | 
|  | * @xas has not been walked to an entry, or is in an error state. | 
|  | */ | 
|  | void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) | 
|  | { | 
|  | struct xa_node *node = xas->xa_node; | 
|  | unsigned int offset = xas->xa_offset; | 
|  |  | 
|  | if (xas_invalid(xas)) | 
|  | return; | 
|  |  | 
|  | while (node) { | 
|  | if (!node_clear_mark(node, offset, mark)) | 
|  | return; | 
|  | if (node_any_mark(node, mark)) | 
|  | return; | 
|  |  | 
|  | offset = node->offset; | 
|  | node = xa_parent_locked(xas->xa, node); | 
|  | } | 
|  |  | 
|  | if (xa_marked(xas->xa, mark)) | 
|  | xa_mark_clear(xas->xa, mark); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_clear_mark); | 
|  |  | 
|  | /** | 
|  | * xas_init_marks() - Initialise all marks for the entry | 
|  | * @xas: Array operations state. | 
|  | * | 
|  | * Initialise all marks for the entry specified by @xas.  If we're tracking | 
|  | * free entries with a mark, we need to set it on all entries.  All other | 
|  | * marks are cleared. | 
|  | * | 
|  | * This implementation is not as efficient as it could be; we may walk | 
|  | * up the tree multiple times. | 
|  | */ | 
|  | void xas_init_marks(const struct xa_state *xas) | 
|  | { | 
|  | xa_mark_t mark = 0; | 
|  |  | 
|  | for (;;) { | 
|  | if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) | 
|  | xas_set_mark(xas, mark); | 
|  | else | 
|  | xas_clear_mark(xas, mark); | 
|  | if (mark == XA_MARK_MAX) | 
|  | break; | 
|  | mark_inc(mark); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_init_marks); | 
|  |  | 
|  | #ifdef CONFIG_XARRAY_MULTI | 
|  | static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) | 
|  | { | 
|  | unsigned int marks = 0; | 
|  | xa_mark_t mark = XA_MARK_0; | 
|  |  | 
|  | for (;;) { | 
|  | if (node_get_mark(node, offset, mark)) | 
|  | marks |= 1 << (__force unsigned int)mark; | 
|  | if (mark == XA_MARK_MAX) | 
|  | break; | 
|  | mark_inc(mark); | 
|  | } | 
|  |  | 
|  | return marks; | 
|  | } | 
|  |  | 
|  | static void node_set_marks(struct xa_node *node, unsigned int offset, | 
|  | struct xa_node *child, unsigned int marks) | 
|  | { | 
|  | xa_mark_t mark = XA_MARK_0; | 
|  |  | 
|  | for (;;) { | 
|  | if (marks & (1 << (__force unsigned int)mark)) { | 
|  | node_set_mark(node, offset, mark); | 
|  | if (child) | 
|  | node_mark_all(child, mark); | 
|  | } | 
|  | if (mark == XA_MARK_MAX) | 
|  | break; | 
|  | mark_inc(mark); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xas_split_alloc() - Allocate memory for splitting an entry. | 
|  | * @xas: XArray operation state. | 
|  | * @entry: New entry which will be stored in the array. | 
|  | * @order: New entry order. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * This function should be called before calling xas_split(). | 
|  | * If necessary, it will allocate new nodes (and fill them with @entry) | 
|  | * to prepare for the upcoming split of an entry of @order size into | 
|  | * entries of the order stored in the @xas. | 
|  | * | 
|  | * Context: May sleep if @gfp flags permit. | 
|  | */ | 
|  | void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, | 
|  | gfp_t gfp) | 
|  | { | 
|  | unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; | 
|  | unsigned int mask = xas->xa_sibs; | 
|  |  | 
|  | /* XXX: no support for splitting really large entries yet */ | 
|  | if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order)) | 
|  | goto nomem; | 
|  | if (xas->xa_shift + XA_CHUNK_SHIFT > order) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | unsigned int i; | 
|  | void *sibling; | 
|  | struct xa_node *node; | 
|  |  | 
|  | node = kmem_cache_alloc(radix_tree_node_cachep, gfp); | 
|  | if (!node) | 
|  | goto nomem; | 
|  | node->array = xas->xa; | 
|  | for (i = 0; i < XA_CHUNK_SIZE; i++) { | 
|  | if ((i & mask) == 0) { | 
|  | RCU_INIT_POINTER(node->slots[i], entry); | 
|  | sibling = xa_mk_sibling(0); | 
|  | } else { | 
|  | RCU_INIT_POINTER(node->slots[i], sibling); | 
|  | } | 
|  | } | 
|  | RCU_INIT_POINTER(node->parent, xas->xa_alloc); | 
|  | xas->xa_alloc = node; | 
|  | } while (sibs-- > 0); | 
|  |  | 
|  | return; | 
|  | nomem: | 
|  | xas_destroy(xas); | 
|  | xas_set_err(xas, -ENOMEM); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_split_alloc); | 
|  |  | 
|  | /** | 
|  | * xas_split() - Split a multi-index entry into smaller entries. | 
|  | * @xas: XArray operation state. | 
|  | * @entry: New entry to store in the array. | 
|  | * @order: New entry order. | 
|  | * | 
|  | * The value in the entry is copied to all the replacement entries. | 
|  | * | 
|  | * Context: Any context.  The caller should hold the xa_lock. | 
|  | */ | 
|  | void xas_split(struct xa_state *xas, void *entry, unsigned int order) | 
|  | { | 
|  | unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; | 
|  | unsigned int offset, marks; | 
|  | struct xa_node *node; | 
|  | void *curr = xas_load(xas); | 
|  | int values = 0; | 
|  |  | 
|  | node = xas->xa_node; | 
|  | if (xas_top(node)) | 
|  | return; | 
|  |  | 
|  | marks = node_get_marks(node, xas->xa_offset); | 
|  |  | 
|  | offset = xas->xa_offset + sibs; | 
|  | do { | 
|  | if (xas->xa_shift < node->shift) { | 
|  | struct xa_node *child = xas->xa_alloc; | 
|  |  | 
|  | xas->xa_alloc = rcu_dereference_raw(child->parent); | 
|  | child->shift = node->shift - XA_CHUNK_SHIFT; | 
|  | child->offset = offset; | 
|  | child->count = XA_CHUNK_SIZE; | 
|  | child->nr_values = xa_is_value(entry) ? | 
|  | XA_CHUNK_SIZE : 0; | 
|  | RCU_INIT_POINTER(child->parent, node); | 
|  | node_set_marks(node, offset, child, marks); | 
|  | rcu_assign_pointer(node->slots[offset], | 
|  | xa_mk_node(child)); | 
|  | if (xa_is_value(curr)) | 
|  | values--; | 
|  | } else { | 
|  | unsigned int canon = offset - xas->xa_sibs; | 
|  |  | 
|  | node_set_marks(node, canon, NULL, marks); | 
|  | rcu_assign_pointer(node->slots[canon], entry); | 
|  | while (offset > canon) | 
|  | rcu_assign_pointer(node->slots[offset--], | 
|  | xa_mk_sibling(canon)); | 
|  | values += (xa_is_value(entry) - xa_is_value(curr)) * | 
|  | (xas->xa_sibs + 1); | 
|  | } | 
|  | } while (offset-- > xas->xa_offset); | 
|  |  | 
|  | node->nr_values += values; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_split); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * xas_pause() - Pause a walk to drop a lock. | 
|  | * @xas: XArray operation state. | 
|  | * | 
|  | * Some users need to pause a walk and drop the lock they're holding in | 
|  | * order to yield to a higher priority thread or carry out an operation | 
|  | * on an entry.  Those users should call this function before they drop | 
|  | * the lock.  It resets the @xas to be suitable for the next iteration | 
|  | * of the loop after the user has reacquired the lock.  If most entries | 
|  | * found during a walk require you to call xas_pause(), the xa_for_each() | 
|  | * iterator may be more appropriate. | 
|  | * | 
|  | * Note that xas_pause() only works for forward iteration.  If a user needs | 
|  | * to pause a reverse iteration, we will need a xas_pause_rev(). | 
|  | */ | 
|  | void xas_pause(struct xa_state *xas) | 
|  | { | 
|  | struct xa_node *node = xas->xa_node; | 
|  |  | 
|  | if (xas_invalid(xas)) | 
|  | return; | 
|  |  | 
|  | xas->xa_node = XAS_RESTART; | 
|  | if (node) { | 
|  | unsigned long offset = xas->xa_offset; | 
|  | while (++offset < XA_CHUNK_SIZE) { | 
|  | if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) | 
|  | break; | 
|  | } | 
|  | xas->xa_index += (offset - xas->xa_offset) << node->shift; | 
|  | if (xas->xa_index == 0) | 
|  | xas->xa_node = XAS_BOUNDS; | 
|  | } else { | 
|  | xas->xa_index++; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_pause); | 
|  |  | 
|  | /* | 
|  | * __xas_prev() - Find the previous entry in the XArray. | 
|  | * @xas: XArray operation state. | 
|  | * | 
|  | * Helper function for xas_prev() which handles all the complex cases | 
|  | * out of line. | 
|  | */ | 
|  | void *__xas_prev(struct xa_state *xas) | 
|  | { | 
|  | void *entry; | 
|  |  | 
|  | if (!xas_frozen(xas->xa_node)) | 
|  | xas->xa_index--; | 
|  | if (!xas->xa_node) | 
|  | return set_bounds(xas); | 
|  | if (xas_not_node(xas->xa_node)) | 
|  | return xas_load(xas); | 
|  |  | 
|  | if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) | 
|  | xas->xa_offset--; | 
|  |  | 
|  | while (xas->xa_offset == 255) { | 
|  | xas->xa_offset = xas->xa_node->offset - 1; | 
|  | xas->xa_node = xa_parent(xas->xa, xas->xa_node); | 
|  | if (!xas->xa_node) | 
|  | return set_bounds(xas); | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); | 
|  | if (!xa_is_node(entry)) | 
|  | return entry; | 
|  |  | 
|  | xas->xa_node = xa_to_node(entry); | 
|  | xas_set_offset(xas); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__xas_prev); | 
|  |  | 
|  | /* | 
|  | * __xas_next() - Find the next entry in the XArray. | 
|  | * @xas: XArray operation state. | 
|  | * | 
|  | * Helper function for xas_next() which handles all the complex cases | 
|  | * out of line. | 
|  | */ | 
|  | void *__xas_next(struct xa_state *xas) | 
|  | { | 
|  | void *entry; | 
|  |  | 
|  | if (!xas_frozen(xas->xa_node)) | 
|  | xas->xa_index++; | 
|  | if (!xas->xa_node) | 
|  | return set_bounds(xas); | 
|  | if (xas_not_node(xas->xa_node)) | 
|  | return xas_load(xas); | 
|  |  | 
|  | if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) | 
|  | xas->xa_offset++; | 
|  |  | 
|  | while (xas->xa_offset == XA_CHUNK_SIZE) { | 
|  | xas->xa_offset = xas->xa_node->offset + 1; | 
|  | xas->xa_node = xa_parent(xas->xa, xas->xa_node); | 
|  | if (!xas->xa_node) | 
|  | return set_bounds(xas); | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); | 
|  | if (!xa_is_node(entry)) | 
|  | return entry; | 
|  |  | 
|  | xas->xa_node = xa_to_node(entry); | 
|  | xas_set_offset(xas); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__xas_next); | 
|  |  | 
|  | /** | 
|  | * xas_find() - Find the next present entry in the XArray. | 
|  | * @xas: XArray operation state. | 
|  | * @max: Highest index to return. | 
|  | * | 
|  | * If the @xas has not yet been walked to an entry, return the entry | 
|  | * which has an index >= xas.xa_index.  If it has been walked, the entry | 
|  | * currently being pointed at has been processed, and so we move to the | 
|  | * next entry. | 
|  | * | 
|  | * If no entry is found and the array is smaller than @max, the iterator | 
|  | * is set to the smallest index not yet in the array.  This allows @xas | 
|  | * to be immediately passed to xas_store(). | 
|  | * | 
|  | * Return: The entry, if found, otherwise %NULL. | 
|  | */ | 
|  | void *xas_find(struct xa_state *xas, unsigned long max) | 
|  | { | 
|  | void *entry; | 
|  |  | 
|  | if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) | 
|  | return NULL; | 
|  | if (xas->xa_index > max) | 
|  | return set_bounds(xas); | 
|  |  | 
|  | if (!xas->xa_node) { | 
|  | xas->xa_index = 1; | 
|  | return set_bounds(xas); | 
|  | } else if (xas->xa_node == XAS_RESTART) { | 
|  | entry = xas_load(xas); | 
|  | if (entry || xas_not_node(xas->xa_node)) | 
|  | return entry; | 
|  | } else if (!xas->xa_node->shift && | 
|  | xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { | 
|  | xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; | 
|  | } | 
|  |  | 
|  | xas_advance(xas); | 
|  |  | 
|  | while (xas->xa_node && (xas->xa_index <= max)) { | 
|  | if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { | 
|  | xas->xa_offset = xas->xa_node->offset + 1; | 
|  | xas->xa_node = xa_parent(xas->xa, xas->xa_node); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); | 
|  | if (xa_is_node(entry)) { | 
|  | xas->xa_node = xa_to_node(entry); | 
|  | xas->xa_offset = 0; | 
|  | continue; | 
|  | } | 
|  | if (entry && !xa_is_sibling(entry)) | 
|  | return entry; | 
|  |  | 
|  | xas_advance(xas); | 
|  | } | 
|  |  | 
|  | if (!xas->xa_node) | 
|  | xas->xa_node = XAS_BOUNDS; | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_find); | 
|  |  | 
|  | /** | 
|  | * xas_find_marked() - Find the next marked entry in the XArray. | 
|  | * @xas: XArray operation state. | 
|  | * @max: Highest index to return. | 
|  | * @mark: Mark number to search for. | 
|  | * | 
|  | * If the @xas has not yet been walked to an entry, return the marked entry | 
|  | * which has an index >= xas.xa_index.  If it has been walked, the entry | 
|  | * currently being pointed at has been processed, and so we return the | 
|  | * first marked entry with an index > xas.xa_index. | 
|  | * | 
|  | * If no marked entry is found and the array is smaller than @max, @xas is | 
|  | * set to the bounds state and xas->xa_index is set to the smallest index | 
|  | * not yet in the array.  This allows @xas to be immediately passed to | 
|  | * xas_store(). | 
|  | * | 
|  | * If no entry is found before @max is reached, @xas is set to the restart | 
|  | * state. | 
|  | * | 
|  | * Return: The entry, if found, otherwise %NULL. | 
|  | */ | 
|  | void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) | 
|  | { | 
|  | bool advance = true; | 
|  | unsigned int offset; | 
|  | void *entry; | 
|  |  | 
|  | if (xas_error(xas)) | 
|  | return NULL; | 
|  | if (xas->xa_index > max) | 
|  | goto max; | 
|  |  | 
|  | if (!xas->xa_node) { | 
|  | xas->xa_index = 1; | 
|  | goto out; | 
|  | } else if (xas_top(xas->xa_node)) { | 
|  | advance = false; | 
|  | entry = xa_head(xas->xa); | 
|  | xas->xa_node = NULL; | 
|  | if (xas->xa_index > max_index(entry)) | 
|  | goto out; | 
|  | if (!xa_is_node(entry)) { | 
|  | if (xa_marked(xas->xa, mark)) | 
|  | return entry; | 
|  | xas->xa_index = 1; | 
|  | goto out; | 
|  | } | 
|  | xas->xa_node = xa_to_node(entry); | 
|  | xas->xa_offset = xas->xa_index >> xas->xa_node->shift; | 
|  | } | 
|  |  | 
|  | while (xas->xa_index <= max) { | 
|  | if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { | 
|  | xas->xa_offset = xas->xa_node->offset + 1; | 
|  | xas->xa_node = xa_parent(xas->xa, xas->xa_node); | 
|  | if (!xas->xa_node) | 
|  | break; | 
|  | advance = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!advance) { | 
|  | entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); | 
|  | if (xa_is_sibling(entry)) { | 
|  | xas->xa_offset = xa_to_sibling(entry); | 
|  | xas_move_index(xas, xas->xa_offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | offset = xas_find_chunk(xas, advance, mark); | 
|  | if (offset > xas->xa_offset) { | 
|  | advance = false; | 
|  | xas_move_index(xas, offset); | 
|  | /* Mind the wrap */ | 
|  | if ((xas->xa_index - 1) >= max) | 
|  | goto max; | 
|  | xas->xa_offset = offset; | 
|  | if (offset == XA_CHUNK_SIZE) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); | 
|  | if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) | 
|  | continue; | 
|  | if (!xa_is_node(entry)) | 
|  | return entry; | 
|  | xas->xa_node = xa_to_node(entry); | 
|  | xas_set_offset(xas); | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (xas->xa_index > max) | 
|  | goto max; | 
|  | return set_bounds(xas); | 
|  | max: | 
|  | xas->xa_node = XAS_RESTART; | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_find_marked); | 
|  |  | 
|  | /** | 
|  | * xas_find_conflict() - Find the next present entry in a range. | 
|  | * @xas: XArray operation state. | 
|  | * | 
|  | * The @xas describes both a range and a position within that range. | 
|  | * | 
|  | * Context: Any context.  Expects xa_lock to be held. | 
|  | * Return: The next entry in the range covered by @xas or %NULL. | 
|  | */ | 
|  | void *xas_find_conflict(struct xa_state *xas) | 
|  | { | 
|  | void *curr; | 
|  |  | 
|  | if (xas_error(xas)) | 
|  | return NULL; | 
|  |  | 
|  | if (!xas->xa_node) | 
|  | return NULL; | 
|  |  | 
|  | if (xas_top(xas->xa_node)) { | 
|  | curr = xas_start(xas); | 
|  | if (!curr) | 
|  | return NULL; | 
|  | while (xa_is_node(curr)) { | 
|  | struct xa_node *node = xa_to_node(curr); | 
|  | curr = xas_descend(xas, node); | 
|  | } | 
|  | if (curr) | 
|  | return curr; | 
|  | } | 
|  |  | 
|  | if (xas->xa_node->shift > xas->xa_shift) | 
|  | return NULL; | 
|  |  | 
|  | for (;;) { | 
|  | if (xas->xa_node->shift == xas->xa_shift) { | 
|  | if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) | 
|  | break; | 
|  | } else if (xas->xa_offset == XA_CHUNK_MASK) { | 
|  | xas->xa_offset = xas->xa_node->offset; | 
|  | xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); | 
|  | if (!xas->xa_node) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  | curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); | 
|  | if (xa_is_sibling(curr)) | 
|  | continue; | 
|  | while (xa_is_node(curr)) { | 
|  | xas->xa_node = xa_to_node(curr); | 
|  | xas->xa_offset = 0; | 
|  | curr = xa_entry_locked(xas->xa, xas->xa_node, 0); | 
|  | } | 
|  | if (curr) | 
|  | return curr; | 
|  | } | 
|  | xas->xa_offset -= xas->xa_sibs; | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(xas_find_conflict); | 
|  |  | 
|  | /** | 
|  | * xa_load() - Load an entry from an XArray. | 
|  | * @xa: XArray. | 
|  | * @index: index into array. | 
|  | * | 
|  | * Context: Any context.  Takes and releases the RCU lock. | 
|  | * Return: The entry at @index in @xa. | 
|  | */ | 
|  | void *xa_load(struct xarray *xa, unsigned long index) | 
|  | { | 
|  | XA_STATE(xas, xa, index); | 
|  | void *entry; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | entry = xas_load(&xas); | 
|  | if (xa_is_zero(entry)) | 
|  | entry = NULL; | 
|  | } while (xas_retry(&xas, entry)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(xa_load); | 
|  |  | 
|  | static void *xas_result(struct xa_state *xas, void *curr) | 
|  | { | 
|  | if (xa_is_zero(curr)) | 
|  | return NULL; | 
|  | if (xas_error(xas)) | 
|  | curr = xas->xa_node; | 
|  | return curr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __xa_erase() - Erase this entry from the XArray while locked. | 
|  | * @xa: XArray. | 
|  | * @index: Index into array. | 
|  | * | 
|  | * After this function returns, loading from @index will return %NULL. | 
|  | * If the index is part of a multi-index entry, all indices will be erased | 
|  | * and none of the entries will be part of a multi-index entry. | 
|  | * | 
|  | * Context: Any context.  Expects xa_lock to be held on entry. | 
|  | * Return: The entry which used to be at this index. | 
|  | */ | 
|  | void *__xa_erase(struct xarray *xa, unsigned long index) | 
|  | { | 
|  | XA_STATE(xas, xa, index); | 
|  | return xas_result(&xas, xas_store(&xas, NULL)); | 
|  | } | 
|  | EXPORT_SYMBOL(__xa_erase); | 
|  |  | 
|  | /** | 
|  | * xa_erase() - Erase this entry from the XArray. | 
|  | * @xa: XArray. | 
|  | * @index: Index of entry. | 
|  | * | 
|  | * After this function returns, loading from @index will return %NULL. | 
|  | * If the index is part of a multi-index entry, all indices will be erased | 
|  | * and none of the entries will be part of a multi-index entry. | 
|  | * | 
|  | * Context: Any context.  Takes and releases the xa_lock. | 
|  | * Return: The entry which used to be at this index. | 
|  | */ | 
|  | void *xa_erase(struct xarray *xa, unsigned long index) | 
|  | { | 
|  | void *entry; | 
|  |  | 
|  | xa_lock(xa); | 
|  | entry = __xa_erase(xa, index); | 
|  | xa_unlock(xa); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(xa_erase); | 
|  |  | 
|  | /** | 
|  | * __xa_store() - Store this entry in the XArray. | 
|  | * @xa: XArray. | 
|  | * @index: Index into array. | 
|  | * @entry: New entry. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * You must already be holding the xa_lock when calling this function. | 
|  | * It will drop the lock if needed to allocate memory, and then reacquire | 
|  | * it afterwards. | 
|  | * | 
|  | * Context: Any context.  Expects xa_lock to be held on entry.  May | 
|  | * release and reacquire xa_lock if @gfp flags permit. | 
|  | * Return: The old entry at this index or xa_err() if an error happened. | 
|  | */ | 
|  | void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) | 
|  | { | 
|  | XA_STATE(xas, xa, index); | 
|  | void *curr; | 
|  |  | 
|  | if (WARN_ON_ONCE(xa_is_advanced(entry))) | 
|  | return XA_ERROR(-EINVAL); | 
|  | if (xa_track_free(xa) && !entry) | 
|  | entry = XA_ZERO_ENTRY; | 
|  |  | 
|  | do { | 
|  | curr = xas_store(&xas, entry); | 
|  | if (xa_track_free(xa)) | 
|  | xas_clear_mark(&xas, XA_FREE_MARK); | 
|  | } while (__xas_nomem(&xas, gfp)); | 
|  |  | 
|  | return xas_result(&xas, curr); | 
|  | } | 
|  | EXPORT_SYMBOL(__xa_store); | 
|  |  | 
|  | /** | 
|  | * xa_store() - Store this entry in the XArray. | 
|  | * @xa: XArray. | 
|  | * @index: Index into array. | 
|  | * @entry: New entry. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * After this function returns, loads from this index will return @entry. | 
|  | * Storing into an existing multi-index entry updates the entry of every index. | 
|  | * The marks associated with @index are unaffected unless @entry is %NULL. | 
|  | * | 
|  | * Context: Any context.  Takes and releases the xa_lock. | 
|  | * May sleep if the @gfp flags permit. | 
|  | * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry | 
|  | * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation | 
|  | * failed. | 
|  | */ | 
|  | void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) | 
|  | { | 
|  | void *curr; | 
|  |  | 
|  | xa_lock(xa); | 
|  | curr = __xa_store(xa, index, entry, gfp); | 
|  | xa_unlock(xa); | 
|  |  | 
|  | return curr; | 
|  | } | 
|  | EXPORT_SYMBOL(xa_store); | 
|  |  | 
|  | /** | 
|  | * __xa_cmpxchg() - Store this entry in the XArray. | 
|  | * @xa: XArray. | 
|  | * @index: Index into array. | 
|  | * @old: Old value to test against. | 
|  | * @entry: New entry. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * You must already be holding the xa_lock when calling this function. | 
|  | * It will drop the lock if needed to allocate memory, and then reacquire | 
|  | * it afterwards. | 
|  | * | 
|  | * Context: Any context.  Expects xa_lock to be held on entry.  May | 
|  | * release and reacquire xa_lock if @gfp flags permit. | 
|  | * Return: The old entry at this index or xa_err() if an error happened. | 
|  | */ | 
|  | void *__xa_cmpxchg(struct xarray *xa, unsigned long index, | 
|  | void *old, void *entry, gfp_t gfp) | 
|  | { | 
|  | XA_STATE(xas, xa, index); | 
|  | void *curr; | 
|  |  | 
|  | if (WARN_ON_ONCE(xa_is_advanced(entry))) | 
|  | return XA_ERROR(-EINVAL); | 
|  |  | 
|  | do { | 
|  | curr = xas_load(&xas); | 
|  | if (curr == old) { | 
|  | xas_store(&xas, entry); | 
|  | if (xa_track_free(xa) && entry && !curr) | 
|  | xas_clear_mark(&xas, XA_FREE_MARK); | 
|  | } | 
|  | } while (__xas_nomem(&xas, gfp)); | 
|  |  | 
|  | return xas_result(&xas, curr); | 
|  | } | 
|  | EXPORT_SYMBOL(__xa_cmpxchg); | 
|  |  | 
|  | /** | 
|  | * __xa_insert() - Store this entry in the XArray if no entry is present. | 
|  | * @xa: XArray. | 
|  | * @index: Index into array. | 
|  | * @entry: New entry. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * Inserting a NULL entry will store a reserved entry (like xa_reserve()) | 
|  | * if no entry is present.  Inserting will fail if a reserved entry is | 
|  | * present, even though loading from this index will return NULL. | 
|  | * | 
|  | * Context: Any context.  Expects xa_lock to be held on entry.  May | 
|  | * release and reacquire xa_lock if @gfp flags permit. | 
|  | * Return: 0 if the store succeeded.  -EBUSY if another entry was present. | 
|  | * -ENOMEM if memory could not be allocated. | 
|  | */ | 
|  | int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) | 
|  | { | 
|  | XA_STATE(xas, xa, index); | 
|  | void *curr; | 
|  |  | 
|  | if (WARN_ON_ONCE(xa_is_advanced(entry))) | 
|  | return -EINVAL; | 
|  | if (!entry) | 
|  | entry = XA_ZERO_ENTRY; | 
|  |  | 
|  | do { | 
|  | curr = xas_load(&xas); | 
|  | if (!curr) { | 
|  | xas_store(&xas, entry); | 
|  | if (xa_track_free(xa)) | 
|  | xas_clear_mark(&xas, XA_FREE_MARK); | 
|  | } else { | 
|  | xas_set_err(&xas, -EBUSY); | 
|  | } | 
|  | } while (__xas_nomem(&xas, gfp)); | 
|  |  | 
|  | return xas_error(&xas); | 
|  | } | 
|  | EXPORT_SYMBOL(__xa_insert); | 
|  |  | 
|  | #ifdef CONFIG_XARRAY_MULTI | 
|  | static void xas_set_range(struct xa_state *xas, unsigned long first, | 
|  | unsigned long last) | 
|  | { | 
|  | unsigned int shift = 0; | 
|  | unsigned long sibs = last - first; | 
|  | unsigned int offset = XA_CHUNK_MASK; | 
|  |  | 
|  | xas_set(xas, first); | 
|  |  | 
|  | while ((first & XA_CHUNK_MASK) == 0) { | 
|  | if (sibs < XA_CHUNK_MASK) | 
|  | break; | 
|  | if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) | 
|  | break; | 
|  | shift += XA_CHUNK_SHIFT; | 
|  | if (offset == XA_CHUNK_MASK) | 
|  | offset = sibs & XA_CHUNK_MASK; | 
|  | sibs >>= XA_CHUNK_SHIFT; | 
|  | first >>= XA_CHUNK_SHIFT; | 
|  | } | 
|  |  | 
|  | offset = first & XA_CHUNK_MASK; | 
|  | if (offset + sibs > XA_CHUNK_MASK) | 
|  | sibs = XA_CHUNK_MASK - offset; | 
|  | if ((((first + sibs + 1) << shift) - 1) > last) | 
|  | sibs -= 1; | 
|  |  | 
|  | xas->xa_shift = shift; | 
|  | xas->xa_sibs = sibs; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xa_store_range() - Store this entry at a range of indices in the XArray. | 
|  | * @xa: XArray. | 
|  | * @first: First index to affect. | 
|  | * @last: Last index to affect. | 
|  | * @entry: New entry. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * After this function returns, loads from any index between @first and @last, | 
|  | * inclusive will return @entry. | 
|  | * Storing into an existing multi-index entry updates the entry of every index. | 
|  | * The marks associated with @index are unaffected unless @entry is %NULL. | 
|  | * | 
|  | * Context: Process context.  Takes and releases the xa_lock.  May sleep | 
|  | * if the @gfp flags permit. | 
|  | * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in | 
|  | * an XArray, or xa_err(-ENOMEM) if memory allocation failed. | 
|  | */ | 
|  | void *xa_store_range(struct xarray *xa, unsigned long first, | 
|  | unsigned long last, void *entry, gfp_t gfp) | 
|  | { | 
|  | XA_STATE(xas, xa, 0); | 
|  |  | 
|  | if (WARN_ON_ONCE(xa_is_internal(entry))) | 
|  | return XA_ERROR(-EINVAL); | 
|  | if (last < first) | 
|  | return XA_ERROR(-EINVAL); | 
|  |  | 
|  | do { | 
|  | xas_lock(&xas); | 
|  | if (entry) { | 
|  | unsigned int order = BITS_PER_LONG; | 
|  | if (last + 1) | 
|  | order = __ffs(last + 1); | 
|  | xas_set_order(&xas, last, order); | 
|  | xas_create(&xas, true); | 
|  | if (xas_error(&xas)) | 
|  | goto unlock; | 
|  | } | 
|  | do { | 
|  | xas_set_range(&xas, first, last); | 
|  | xas_store(&xas, entry); | 
|  | if (xas_error(&xas)) | 
|  | goto unlock; | 
|  | first += xas_size(&xas); | 
|  | } while (first <= last); | 
|  | unlock: | 
|  | xas_unlock(&xas); | 
|  | } while (xas_nomem(&xas, gfp)); | 
|  |  | 
|  | return xas_result(&xas, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(xa_store_range); | 
|  |  | 
|  | /** | 
|  | * xa_get_order() - Get the order of an entry. | 
|  | * @xa: XArray. | 
|  | * @index: Index of the entry. | 
|  | * | 
|  | * Return: A number between 0 and 63 indicating the order of the entry. | 
|  | */ | 
|  | int xa_get_order(struct xarray *xa, unsigned long index) | 
|  | { | 
|  | XA_STATE(xas, xa, index); | 
|  | void *entry; | 
|  | int order = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | entry = xas_load(&xas); | 
|  |  | 
|  | if (!entry) | 
|  | goto unlock; | 
|  |  | 
|  | if (!xas.xa_node) | 
|  | goto unlock; | 
|  |  | 
|  | for (;;) { | 
|  | unsigned int slot = xas.xa_offset + (1 << order); | 
|  |  | 
|  | if (slot >= XA_CHUNK_SIZE) | 
|  | break; | 
|  | if (!xa_is_sibling(xas.xa_node->slots[slot])) | 
|  | break; | 
|  | order++; | 
|  | } | 
|  |  | 
|  | order += xas.xa_node->shift; | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return order; | 
|  | } | 
|  | EXPORT_SYMBOL(xa_get_order); | 
|  | #endif /* CONFIG_XARRAY_MULTI */ | 
|  |  | 
|  | /** | 
|  | * __xa_alloc() - Find somewhere to store this entry in the XArray. | 
|  | * @xa: XArray. | 
|  | * @id: Pointer to ID. | 
|  | * @limit: Range for allocated ID. | 
|  | * @entry: New entry. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * Finds an empty entry in @xa between @limit.min and @limit.max, | 
|  | * stores the index into the @id pointer, then stores the entry at | 
|  | * that index.  A concurrent lookup will not see an uninitialised @id. | 
|  | * | 
|  | * Context: Any context.  Expects xa_lock to be held on entry.  May | 
|  | * release and reacquire xa_lock if @gfp flags permit. | 
|  | * Return: 0 on success, -ENOMEM if memory could not be allocated or | 
|  | * -EBUSY if there are no free entries in @limit. | 
|  | */ | 
|  | int __xa_alloc(struct xarray *xa, u32 *id, void *entry, | 
|  | struct xa_limit limit, gfp_t gfp) | 
|  | { | 
|  | XA_STATE(xas, xa, 0); | 
|  |  | 
|  | if (WARN_ON_ONCE(xa_is_advanced(entry))) | 
|  | return -EINVAL; | 
|  | if (WARN_ON_ONCE(!xa_track_free(xa))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!entry) | 
|  | entry = XA_ZERO_ENTRY; | 
|  |  | 
|  | do { | 
|  | xas.xa_index = limit.min; | 
|  | xas_find_marked(&xas, limit.max, XA_FREE_MARK); | 
|  | if (xas.xa_node == XAS_RESTART) | 
|  | xas_set_err(&xas, -EBUSY); | 
|  | else | 
|  | *id = xas.xa_index; | 
|  | xas_store(&xas, entry); | 
|  | xas_clear_mark(&xas, XA_FREE_MARK); | 
|  | } while (__xas_nomem(&xas, gfp)); | 
|  |  | 
|  | return xas_error(&xas); | 
|  | } | 
|  | EXPORT_SYMBOL(__xa_alloc); | 
|  |  | 
|  | /** | 
|  | * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. | 
|  | * @xa: XArray. | 
|  | * @id: Pointer to ID. | 
|  | * @entry: New entry. | 
|  | * @limit: Range of allocated ID. | 
|  | * @next: Pointer to next ID to allocate. | 
|  | * @gfp: Memory allocation flags. | 
|  | * | 
|  | * Finds an empty entry in @xa between @limit.min and @limit.max, | 
|  | * stores the index into the @id pointer, then stores the entry at | 
|  | * that index.  A concurrent lookup will not see an uninitialised @id. | 
|  | * The search for an empty entry will start at @next and will wrap | 
|  | * around if necessary. | 
|  | * | 
|  | * Context: Any context.  Expects xa_lock to be held on entry.  May | 
|  | * release and reacquire xa_lock if @gfp flags permit. | 
|  | * Return: 0 if the allocation succeeded without wrapping.  1 if the | 
|  | * allocation succeeded after wrapping, -ENOMEM if memory could not be | 
|  | * allocated or -EBUSY if there are no free entries in @limit. | 
|  | */ | 
|  | int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, | 
|  | struct xa_limit limit, u32 *next, gfp_t gfp) | 
|  | { | 
|  | u32 min = limit.min; | 
|  | int ret; | 
|  |  | 
|  | limit.min = max(min, *next); | 
|  | ret = __xa_alloc(xa, id, entry, limit, gfp); | 
|  | if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { | 
|  | xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (ret < 0 && limit.min > min) { | 
|  | limit.min = min; | 
|  | ret = __xa_alloc(xa, id, entry, limit, gfp); | 
|  | if (ret == 0) | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (ret >= 0) { | 
|  | *next = *id + 1; | 
|  | if (*next == 0) | 
|  | xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__xa_alloc_cyclic); | 
|  |  | 
|  | /** | 
|  | * __xa_set_mark() - Set this mark on this entry while locked. | 
|  | * @xa: XArray. | 
|  | * @index: Index of entry. | 
|  | * @mark: Mark number. | 
|  | * | 
|  | * Attempting to set a mark on a %NULL entry does not succeed. | 
|  | * | 
|  | * Context: Any context.  Expects xa_lock to be held on entry. | 
|  | */ | 
|  | void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) | 
|  | { | 
|  | XA_STATE(xas, xa, index); | 
|  | void *entry = xas_load(&xas); | 
|  |  | 
|  | if (entry) | 
|  | xas_set_mark(&xas, mark); | 
|  | } | 
|  | EXPORT_SYMBOL(__xa_set_mark); | 
|  |  | 
|  | /** | 
|  | * __xa_clear_mark() - Clear this mark on this entry while locked. | 
|  | * @xa: XArray. | 
|  | * @index: Index of entry. | 
|  | * @mark: Mark number. | 
|  | * | 
|  | * Context: Any context.  Expects xa_lock to be held on entry. | 
|  | */ | 
|  | void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) | 
|  | { | 
|  | XA_STATE(xas, xa, index); | 
|  | void *entry = xas_load(&xas); | 
|  |  | 
|  | if (entry) | 
|  | xas_clear_mark(&xas, mark); | 
|  | } | 
|  | EXPORT_SYMBOL(__xa_clear_mark); | 
|  |  | 
|  | /** | 
|  | * xa_get_mark() - Inquire whether this mark is set on this entry. | 
|  | * @xa: XArray. | 
|  | * @index: Index of entry. | 
|  | * @mark: Mark number. | 
|  | * | 
|  | * This function uses the RCU read lock, so the result may be out of date | 
|  | * by the time it returns.  If you need the result to be stable, use a lock. | 
|  | * | 
|  | * Context: Any context.  Takes and releases the RCU lock. | 
|  | * Return: True if the entry at @index has this mark set, false if it doesn't. | 
|  | */ | 
|  | bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) | 
|  | { | 
|  | XA_STATE(xas, xa, index); | 
|  | void *entry; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | entry = xas_start(&xas); | 
|  | while (xas_get_mark(&xas, mark)) { | 
|  | if (!xa_is_node(entry)) | 
|  | goto found; | 
|  | entry = xas_descend(&xas, xa_to_node(entry)); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return false; | 
|  | found: | 
|  | rcu_read_unlock(); | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL(xa_get_mark); | 
|  |  | 
|  | /** | 
|  | * xa_set_mark() - Set this mark on this entry. | 
|  | * @xa: XArray. | 
|  | * @index: Index of entry. | 
|  | * @mark: Mark number. | 
|  | * | 
|  | * Attempting to set a mark on a %NULL entry does not succeed. | 
|  | * | 
|  | * Context: Process context.  Takes and releases the xa_lock. | 
|  | */ | 
|  | void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) | 
|  | { | 
|  | xa_lock(xa); | 
|  | __xa_set_mark(xa, index, mark); | 
|  | xa_unlock(xa); | 
|  | } | 
|  | EXPORT_SYMBOL(xa_set_mark); | 
|  |  | 
|  | /** | 
|  | * xa_clear_mark() - Clear this mark on this entry. | 
|  | * @xa: XArray. | 
|  | * @index: Index of entry. | 
|  | * @mark: Mark number. | 
|  | * | 
|  | * Clearing a mark always succeeds. | 
|  | * | 
|  | * Context: Process context.  Takes and releases the xa_lock. | 
|  | */ | 
|  | void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) | 
|  | { | 
|  | xa_lock(xa); | 
|  | __xa_clear_mark(xa, index, mark); | 
|  | xa_unlock(xa); | 
|  | } | 
|  | EXPORT_SYMBOL(xa_clear_mark); | 
|  |  | 
|  | /** | 
|  | * xa_find() - Search the XArray for an entry. | 
|  | * @xa: XArray. | 
|  | * @indexp: Pointer to an index. | 
|  | * @max: Maximum index to search to. | 
|  | * @filter: Selection criterion. | 
|  | * | 
|  | * Finds the entry in @xa which matches the @filter, and has the lowest | 
|  | * index that is at least @indexp and no more than @max. | 
|  | * If an entry is found, @indexp is updated to be the index of the entry. | 
|  | * This function is protected by the RCU read lock, so it may not find | 
|  | * entries which are being simultaneously added.  It will not return an | 
|  | * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). | 
|  | * | 
|  | * Context: Any context.  Takes and releases the RCU lock. | 
|  | * Return: The entry, if found, otherwise %NULL. | 
|  | */ | 
|  | void *xa_find(struct xarray *xa, unsigned long *indexp, | 
|  | unsigned long max, xa_mark_t filter) | 
|  | { | 
|  | XA_STATE(xas, xa, *indexp); | 
|  | void *entry; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | if ((__force unsigned int)filter < XA_MAX_MARKS) | 
|  | entry = xas_find_marked(&xas, max, filter); | 
|  | else | 
|  | entry = xas_find(&xas, max); | 
|  | } while (xas_retry(&xas, entry)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (entry) | 
|  | *indexp = xas.xa_index; | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(xa_find); | 
|  |  | 
|  | static bool xas_sibling(struct xa_state *xas) | 
|  | { | 
|  | struct xa_node *node = xas->xa_node; | 
|  | unsigned long mask; | 
|  |  | 
|  | if (!node) | 
|  | return false; | 
|  | mask = (XA_CHUNK_SIZE << node->shift) - 1; | 
|  | return (xas->xa_index & mask) > | 
|  | ((unsigned long)xas->xa_offset << node->shift); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xa_find_after() - Search the XArray for a present entry. | 
|  | * @xa: XArray. | 
|  | * @indexp: Pointer to an index. | 
|  | * @max: Maximum index to search to. | 
|  | * @filter: Selection criterion. | 
|  | * | 
|  | * Finds the entry in @xa which matches the @filter and has the lowest | 
|  | * index that is above @indexp and no more than @max. | 
|  | * If an entry is found, @indexp is updated to be the index of the entry. | 
|  | * This function is protected by the RCU read lock, so it may miss entries | 
|  | * which are being simultaneously added.  It will not return an | 
|  | * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). | 
|  | * | 
|  | * Context: Any context.  Takes and releases the RCU lock. | 
|  | * Return: The pointer, if found, otherwise %NULL. | 
|  | */ | 
|  | void *xa_find_after(struct xarray *xa, unsigned long *indexp, | 
|  | unsigned long max, xa_mark_t filter) | 
|  | { | 
|  | XA_STATE(xas, xa, *indexp + 1); | 
|  | void *entry; | 
|  |  | 
|  | if (xas.xa_index == 0) | 
|  | return NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (;;) { | 
|  | if ((__force unsigned int)filter < XA_MAX_MARKS) | 
|  | entry = xas_find_marked(&xas, max, filter); | 
|  | else | 
|  | entry = xas_find(&xas, max); | 
|  |  | 
|  | if (xas_invalid(&xas)) | 
|  | break; | 
|  | if (xas_sibling(&xas)) | 
|  | continue; | 
|  | if (!xas_retry(&xas, entry)) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (entry) | 
|  | *indexp = xas.xa_index; | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(xa_find_after); | 
|  |  | 
|  | static unsigned int xas_extract_present(struct xa_state *xas, void **dst, | 
|  | unsigned long max, unsigned int n) | 
|  | { | 
|  | void *entry; | 
|  | unsigned int i = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | xas_for_each(xas, entry, max) { | 
|  | if (xas_retry(xas, entry)) | 
|  | continue; | 
|  | dst[i++] = entry; | 
|  | if (i == n) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, | 
|  | unsigned long max, unsigned int n, xa_mark_t mark) | 
|  | { | 
|  | void *entry; | 
|  | unsigned int i = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | xas_for_each_marked(xas, entry, max, mark) { | 
|  | if (xas_retry(xas, entry)) | 
|  | continue; | 
|  | dst[i++] = entry; | 
|  | if (i == n) | 
|  | break; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * xa_extract() - Copy selected entries from the XArray into a normal array. | 
|  | * @xa: The source XArray to copy from. | 
|  | * @dst: The buffer to copy entries into. | 
|  | * @start: The first index in the XArray eligible to be selected. | 
|  | * @max: The last index in the XArray eligible to be selected. | 
|  | * @n: The maximum number of entries to copy. | 
|  | * @filter: Selection criterion. | 
|  | * | 
|  | * Copies up to @n entries that match @filter from the XArray.  The | 
|  | * copied entries will have indices between @start and @max, inclusive. | 
|  | * | 
|  | * The @filter may be an XArray mark value, in which case entries which are | 
|  | * marked with that mark will be copied.  It may also be %XA_PRESENT, in | 
|  | * which case all entries which are not %NULL will be copied. | 
|  | * | 
|  | * The entries returned may not represent a snapshot of the XArray at a | 
|  | * moment in time.  For example, if another thread stores to index 5, then | 
|  | * index 10, calling xa_extract() may return the old contents of index 5 | 
|  | * and the new contents of index 10.  Indices not modified while this | 
|  | * function is running will not be skipped. | 
|  | * | 
|  | * If you need stronger guarantees, holding the xa_lock across calls to this | 
|  | * function will prevent concurrent modification. | 
|  | * | 
|  | * Context: Any context.  Takes and releases the RCU lock. | 
|  | * Return: The number of entries copied. | 
|  | */ | 
|  | unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, | 
|  | unsigned long max, unsigned int n, xa_mark_t filter) | 
|  | { | 
|  | XA_STATE(xas, xa, start); | 
|  |  | 
|  | if (!n) | 
|  | return 0; | 
|  |  | 
|  | if ((__force unsigned int)filter < XA_MAX_MARKS) | 
|  | return xas_extract_marked(&xas, dst, max, n, filter); | 
|  | return xas_extract_present(&xas, dst, max, n); | 
|  | } | 
|  | EXPORT_SYMBOL(xa_extract); | 
|  |  | 
|  | /** | 
|  | * xa_destroy() - Free all internal data structures. | 
|  | * @xa: XArray. | 
|  | * | 
|  | * After calling this function, the XArray is empty and has freed all memory | 
|  | * allocated for its internal data structures.  You are responsible for | 
|  | * freeing the objects referenced by the XArray. | 
|  | * | 
|  | * Context: Any context.  Takes and releases the xa_lock, interrupt-safe. | 
|  | */ | 
|  | void xa_destroy(struct xarray *xa) | 
|  | { | 
|  | XA_STATE(xas, xa, 0); | 
|  | unsigned long flags; | 
|  | void *entry; | 
|  |  | 
|  | xas.xa_node = NULL; | 
|  | xas_lock_irqsave(&xas, flags); | 
|  | entry = xa_head_locked(xa); | 
|  | RCU_INIT_POINTER(xa->xa_head, NULL); | 
|  | xas_init_marks(&xas); | 
|  | if (xa_zero_busy(xa)) | 
|  | xa_mark_clear(xa, XA_FREE_MARK); | 
|  | /* lockdep checks we're still holding the lock in xas_free_nodes() */ | 
|  | if (xa_is_node(entry)) | 
|  | xas_free_nodes(&xas, xa_to_node(entry)); | 
|  | xas_unlock_irqrestore(&xas, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(xa_destroy); | 
|  |  | 
|  | #ifdef XA_DEBUG | 
|  | void xa_dump_node(const struct xa_node *node) | 
|  | { | 
|  | unsigned i, j; | 
|  |  | 
|  | if (!node) | 
|  | return; | 
|  | if ((unsigned long)node & 3) { | 
|  | pr_cont("node %px\n", node); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pr_cont("node %px %s %d parent %px shift %d count %d values %d " | 
|  | "array %px list %px %px marks", | 
|  | node, node->parent ? "offset" : "max", node->offset, | 
|  | node->parent, node->shift, node->count, node->nr_values, | 
|  | node->array, node->private_list.prev, node->private_list.next); | 
|  | for (i = 0; i < XA_MAX_MARKS; i++) | 
|  | for (j = 0; j < XA_MARK_LONGS; j++) | 
|  | pr_cont(" %lx", node->marks[i][j]); | 
|  | pr_cont("\n"); | 
|  | } | 
|  |  | 
|  | void xa_dump_index(unsigned long index, unsigned int shift) | 
|  | { | 
|  | if (!shift) | 
|  | pr_info("%lu: ", index); | 
|  | else if (shift >= BITS_PER_LONG) | 
|  | pr_info("0-%lu: ", ~0UL); | 
|  | else | 
|  | pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); | 
|  | } | 
|  |  | 
|  | void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) | 
|  | { | 
|  | if (!entry) | 
|  | return; | 
|  |  | 
|  | xa_dump_index(index, shift); | 
|  |  | 
|  | if (xa_is_node(entry)) { | 
|  | if (shift == 0) { | 
|  | pr_cont("%px\n", entry); | 
|  | } else { | 
|  | unsigned long i; | 
|  | struct xa_node *node = xa_to_node(entry); | 
|  | xa_dump_node(node); | 
|  | for (i = 0; i < XA_CHUNK_SIZE; i++) | 
|  | xa_dump_entry(node->slots[i], | 
|  | index + (i << node->shift), node->shift); | 
|  | } | 
|  | } else if (xa_is_value(entry)) | 
|  | pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), | 
|  | xa_to_value(entry), entry); | 
|  | else if (!xa_is_internal(entry)) | 
|  | pr_cont("%px\n", entry); | 
|  | else if (xa_is_retry(entry)) | 
|  | pr_cont("retry (%ld)\n", xa_to_internal(entry)); | 
|  | else if (xa_is_sibling(entry)) | 
|  | pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); | 
|  | else if (xa_is_zero(entry)) | 
|  | pr_cont("zero (%ld)\n", xa_to_internal(entry)); | 
|  | else | 
|  | pr_cont("UNKNOWN ENTRY (%px)\n", entry); | 
|  | } | 
|  |  | 
|  | void xa_dump(const struct xarray *xa) | 
|  | { | 
|  | void *entry = xa->xa_head; | 
|  | unsigned int shift = 0; | 
|  |  | 
|  | pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, | 
|  | xa->xa_flags, xa_marked(xa, XA_MARK_0), | 
|  | xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); | 
|  | if (xa_is_node(entry)) | 
|  | shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; | 
|  | xa_dump_entry(entry, 0, shift); | 
|  | } | 
|  | #endif |