|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * AMD Memory Encryption Support | 
|  | * | 
|  | * Copyright (C) 2016 Advanced Micro Devices, Inc. | 
|  | * | 
|  | * Author: Tom Lendacky <thomas.lendacky@amd.com> | 
|  | */ | 
|  |  | 
|  | #define DISABLE_BRANCH_PROFILING | 
|  |  | 
|  | #include <linux/linkage.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/dma-direct.h> | 
|  | #include <linux/swiotlb.h> | 
|  | #include <linux/mem_encrypt.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/dma-mapping.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/bootparam.h> | 
|  | #include <asm/set_memory.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/processor-flags.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/cmdline.h> | 
|  |  | 
|  | #include "mm_internal.h" | 
|  |  | 
|  | /* | 
|  | * Since SME related variables are set early in the boot process they must | 
|  | * reside in the .data section so as not to be zeroed out when the .bss | 
|  | * section is later cleared. | 
|  | */ | 
|  | u64 sme_me_mask __section(.data) = 0; | 
|  | EXPORT_SYMBOL(sme_me_mask); | 
|  | DEFINE_STATIC_KEY_FALSE(sev_enable_key); | 
|  | EXPORT_SYMBOL_GPL(sev_enable_key); | 
|  |  | 
|  | bool sev_enabled __section(.data); | 
|  |  | 
|  | /* Buffer used for early in-place encryption by BSP, no locking needed */ | 
|  | static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * This routine does not change the underlying encryption setting of the | 
|  | * page(s) that map this memory. It assumes that eventually the memory is | 
|  | * meant to be accessed as either encrypted or decrypted but the contents | 
|  | * are currently not in the desired state. | 
|  | * | 
|  | * This routine follows the steps outlined in the AMD64 Architecture | 
|  | * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. | 
|  | */ | 
|  | static void __init __sme_early_enc_dec(resource_size_t paddr, | 
|  | unsigned long size, bool enc) | 
|  | { | 
|  | void *src, *dst; | 
|  | size_t len; | 
|  |  | 
|  | if (!sme_me_mask) | 
|  | return; | 
|  |  | 
|  | wbinvd(); | 
|  |  | 
|  | /* | 
|  | * There are limited number of early mapping slots, so map (at most) | 
|  | * one page at time. | 
|  | */ | 
|  | while (size) { | 
|  | len = min_t(size_t, sizeof(sme_early_buffer), size); | 
|  |  | 
|  | /* | 
|  | * Create mappings for the current and desired format of | 
|  | * the memory. Use a write-protected mapping for the source. | 
|  | */ | 
|  | src = enc ? early_memremap_decrypted_wp(paddr, len) : | 
|  | early_memremap_encrypted_wp(paddr, len); | 
|  |  | 
|  | dst = enc ? early_memremap_encrypted(paddr, len) : | 
|  | early_memremap_decrypted(paddr, len); | 
|  |  | 
|  | /* | 
|  | * If a mapping can't be obtained to perform the operation, | 
|  | * then eventual access of that area in the desired mode | 
|  | * will cause a crash. | 
|  | */ | 
|  | BUG_ON(!src || !dst); | 
|  |  | 
|  | /* | 
|  | * Use a temporary buffer, of cache-line multiple size, to | 
|  | * avoid data corruption as documented in the APM. | 
|  | */ | 
|  | memcpy(sme_early_buffer, src, len); | 
|  | memcpy(dst, sme_early_buffer, len); | 
|  |  | 
|  | early_memunmap(dst, len); | 
|  | early_memunmap(src, len); | 
|  |  | 
|  | paddr += len; | 
|  | size -= len; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) | 
|  | { | 
|  | __sme_early_enc_dec(paddr, size, true); | 
|  | } | 
|  |  | 
|  | void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) | 
|  | { | 
|  | __sme_early_enc_dec(paddr, size, false); | 
|  | } | 
|  |  | 
|  | static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, | 
|  | bool map) | 
|  | { | 
|  | unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; | 
|  | pmdval_t pmd_flags, pmd; | 
|  |  | 
|  | /* Use early_pmd_flags but remove the encryption mask */ | 
|  | pmd_flags = __sme_clr(early_pmd_flags); | 
|  |  | 
|  | do { | 
|  | pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; | 
|  | __early_make_pgtable((unsigned long)vaddr, pmd); | 
|  |  | 
|  | vaddr += PMD_SIZE; | 
|  | paddr += PMD_SIZE; | 
|  | size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; | 
|  | } while (size); | 
|  |  | 
|  | flush_tlb_local(); | 
|  | } | 
|  |  | 
|  | void __init sme_unmap_bootdata(char *real_mode_data) | 
|  | { | 
|  | struct boot_params *boot_data; | 
|  | unsigned long cmdline_paddr; | 
|  |  | 
|  | if (!sme_active()) | 
|  | return; | 
|  |  | 
|  | /* Get the command line address before unmapping the real_mode_data */ | 
|  | boot_data = (struct boot_params *)real_mode_data; | 
|  | cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); | 
|  |  | 
|  | __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); | 
|  |  | 
|  | if (!cmdline_paddr) | 
|  | return; | 
|  |  | 
|  | __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); | 
|  | } | 
|  |  | 
|  | void __init sme_map_bootdata(char *real_mode_data) | 
|  | { | 
|  | struct boot_params *boot_data; | 
|  | unsigned long cmdline_paddr; | 
|  |  | 
|  | if (!sme_active()) | 
|  | return; | 
|  |  | 
|  | __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); | 
|  |  | 
|  | /* Get the command line address after mapping the real_mode_data */ | 
|  | boot_data = (struct boot_params *)real_mode_data; | 
|  | cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); | 
|  |  | 
|  | if (!cmdline_paddr) | 
|  | return; | 
|  |  | 
|  | __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); | 
|  | } | 
|  |  | 
|  | void __init sme_early_init(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | if (!sme_me_mask) | 
|  | return; | 
|  |  | 
|  | early_pmd_flags = __sme_set(early_pmd_flags); | 
|  |  | 
|  | __supported_pte_mask = __sme_set(__supported_pte_mask); | 
|  |  | 
|  | /* Update the protection map with memory encryption mask */ | 
|  | for (i = 0; i < ARRAY_SIZE(protection_map); i++) | 
|  | protection_map[i] = pgprot_encrypted(protection_map[i]); | 
|  |  | 
|  | if (sev_active()) | 
|  | swiotlb_force = SWIOTLB_FORCE; | 
|  | } | 
|  |  | 
|  | static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) | 
|  | { | 
|  | pgprot_t old_prot, new_prot; | 
|  | unsigned long pfn, pa, size; | 
|  | pte_t new_pte; | 
|  |  | 
|  | switch (level) { | 
|  | case PG_LEVEL_4K: | 
|  | pfn = pte_pfn(*kpte); | 
|  | old_prot = pte_pgprot(*kpte); | 
|  | break; | 
|  | case PG_LEVEL_2M: | 
|  | pfn = pmd_pfn(*(pmd_t *)kpte); | 
|  | old_prot = pmd_pgprot(*(pmd_t *)kpte); | 
|  | break; | 
|  | case PG_LEVEL_1G: | 
|  | pfn = pud_pfn(*(pud_t *)kpte); | 
|  | old_prot = pud_pgprot(*(pud_t *)kpte); | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | new_prot = old_prot; | 
|  | if (enc) | 
|  | pgprot_val(new_prot) |= _PAGE_ENC; | 
|  | else | 
|  | pgprot_val(new_prot) &= ~_PAGE_ENC; | 
|  |  | 
|  | /* If prot is same then do nothing. */ | 
|  | if (pgprot_val(old_prot) == pgprot_val(new_prot)) | 
|  | return; | 
|  |  | 
|  | pa = pfn << page_level_shift(level); | 
|  | size = page_level_size(level); | 
|  |  | 
|  | /* | 
|  | * We are going to perform in-place en-/decryption and change the | 
|  | * physical page attribute from C=1 to C=0 or vice versa. Flush the | 
|  | * caches to ensure that data gets accessed with the correct C-bit. | 
|  | */ | 
|  | clflush_cache_range(__va(pa), size); | 
|  |  | 
|  | /* Encrypt/decrypt the contents in-place */ | 
|  | if (enc) | 
|  | sme_early_encrypt(pa, size); | 
|  | else | 
|  | sme_early_decrypt(pa, size); | 
|  |  | 
|  | /* Change the page encryption mask. */ | 
|  | new_pte = pfn_pte(pfn, new_prot); | 
|  | set_pte_atomic(kpte, new_pte); | 
|  | } | 
|  |  | 
|  | static int __init early_set_memory_enc_dec(unsigned long vaddr, | 
|  | unsigned long size, bool enc) | 
|  | { | 
|  | unsigned long vaddr_end, vaddr_next; | 
|  | unsigned long psize, pmask; | 
|  | int split_page_size_mask; | 
|  | int level, ret; | 
|  | pte_t *kpte; | 
|  |  | 
|  | vaddr_next = vaddr; | 
|  | vaddr_end = vaddr + size; | 
|  |  | 
|  | for (; vaddr < vaddr_end; vaddr = vaddr_next) { | 
|  | kpte = lookup_address(vaddr, &level); | 
|  | if (!kpte || pte_none(*kpte)) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (level == PG_LEVEL_4K) { | 
|  | __set_clr_pte_enc(kpte, level, enc); | 
|  | vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | psize = page_level_size(level); | 
|  | pmask = page_level_mask(level); | 
|  |  | 
|  | /* | 
|  | * Check whether we can change the large page in one go. | 
|  | * We request a split when the address is not aligned and | 
|  | * the number of pages to set/clear encryption bit is smaller | 
|  | * than the number of pages in the large page. | 
|  | */ | 
|  | if (vaddr == (vaddr & pmask) && | 
|  | ((vaddr_end - vaddr) >= psize)) { | 
|  | __set_clr_pte_enc(kpte, level, enc); | 
|  | vaddr_next = (vaddr & pmask) + psize; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The virtual address is part of a larger page, create the next | 
|  | * level page table mapping (4K or 2M). If it is part of a 2M | 
|  | * page then we request a split of the large page into 4K | 
|  | * chunks. A 1GB large page is split into 2M pages, resp. | 
|  | */ | 
|  | if (level == PG_LEVEL_2M) | 
|  | split_page_size_mask = 0; | 
|  | else | 
|  | split_page_size_mask = 1 << PG_LEVEL_2M; | 
|  |  | 
|  | /* | 
|  | * kernel_physical_mapping_change() does not flush the TLBs, so | 
|  | * a TLB flush is required after we exit from the for loop. | 
|  | */ | 
|  | kernel_physical_mapping_change(__pa(vaddr & pmask), | 
|  | __pa((vaddr_end & pmask) + psize), | 
|  | split_page_size_mask); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | __flush_tlb_all(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) | 
|  | { | 
|  | return early_set_memory_enc_dec(vaddr, size, false); | 
|  | } | 
|  |  | 
|  | int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) | 
|  | { | 
|  | return early_set_memory_enc_dec(vaddr, size, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SME and SEV are very similar but they are not the same, so there are | 
|  | * times that the kernel will need to distinguish between SME and SEV. The | 
|  | * sme_active() and sev_active() functions are used for this.  When a | 
|  | * distinction isn't needed, the mem_encrypt_active() function can be used. | 
|  | * | 
|  | * The trampoline code is a good example for this requirement.  Before | 
|  | * paging is activated, SME will access all memory as decrypted, but SEV | 
|  | * will access all memory as encrypted.  So, when APs are being brought | 
|  | * up under SME the trampoline area cannot be encrypted, whereas under SEV | 
|  | * the trampoline area must be encrypted. | 
|  | */ | 
|  | bool sme_active(void) | 
|  | { | 
|  | return sme_me_mask && !sev_enabled; | 
|  | } | 
|  |  | 
|  | bool sev_active(void) | 
|  | { | 
|  | return sme_me_mask && sev_enabled; | 
|  | } | 
|  |  | 
|  | /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */ | 
|  | bool force_dma_unencrypted(struct device *dev) | 
|  | { | 
|  | /* | 
|  | * For SEV, all DMA must be to unencrypted addresses. | 
|  | */ | 
|  | if (sev_active()) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * For SME, all DMA must be to unencrypted addresses if the | 
|  | * device does not support DMA to addresses that include the | 
|  | * encryption mask. | 
|  | */ | 
|  | if (sme_active()) { | 
|  | u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask)); | 
|  | u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask, | 
|  | dev->bus_dma_limit); | 
|  |  | 
|  | if (dma_dev_mask <= dma_enc_mask) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Architecture __weak replacement functions */ | 
|  | void __init mem_encrypt_free_decrypted_mem(void) | 
|  | { | 
|  | unsigned long vaddr, vaddr_end, npages; | 
|  | int r; | 
|  |  | 
|  | vaddr = (unsigned long)__start_bss_decrypted_unused; | 
|  | vaddr_end = (unsigned long)__end_bss_decrypted; | 
|  | npages = (vaddr_end - vaddr) >> PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * The unused memory range was mapped decrypted, change the encryption | 
|  | * attribute from decrypted to encrypted before freeing it. | 
|  | */ | 
|  | if (mem_encrypt_active()) { | 
|  | r = set_memory_encrypted(vaddr, npages); | 
|  | if (r) { | 
|  | pr_warn("failed to free unused decrypted pages\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | free_init_pages("unused decrypted", vaddr, vaddr_end); | 
|  | } | 
|  |  | 
|  | void __init mem_encrypt_init(void) | 
|  | { | 
|  | if (!sme_me_mask) | 
|  | return; | 
|  |  | 
|  | /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ | 
|  | swiotlb_update_mem_attributes(); | 
|  |  | 
|  | /* | 
|  | * With SEV, we need to unroll the rep string I/O instructions. | 
|  | */ | 
|  | if (sev_active()) | 
|  | static_branch_enable(&sev_enable_key); | 
|  |  | 
|  | pr_info("AMD %s active\n", | 
|  | sev_active() ? "Secure Encrypted Virtualization (SEV)" | 
|  | : "Secure Memory Encryption (SME)"); | 
|  | } | 
|  |  |