|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <api/fs/fs.h> | 
|  | #include "cpumap.h" | 
|  | #include "debug.h" | 
|  | #include "event.h" | 
|  | #include <assert.h> | 
|  | #include <dirent.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include "asm/bug.h" | 
|  |  | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/zalloc.h> | 
|  |  | 
|  | static struct perf_cpu max_cpu_num; | 
|  | static struct perf_cpu max_present_cpu_num; | 
|  | static int max_node_num; | 
|  | /** | 
|  | * The numa node X as read from /sys/devices/system/node/nodeX indexed by the | 
|  | * CPU number. | 
|  | */ | 
|  | static int *cpunode_map; | 
|  |  | 
|  | bool perf_record_cpu_map_data__test_bit(int i, | 
|  | const struct perf_record_cpu_map_data *data) | 
|  | { | 
|  | int bit_word32 = i / 32; | 
|  | __u32 bit_mask32 = 1U << (i & 31); | 
|  | int bit_word64 = i / 64; | 
|  | __u64 bit_mask64 = ((__u64)1) << (i & 63); | 
|  |  | 
|  | return (data->mask32_data.long_size == 4) | 
|  | ? (bit_word32 < data->mask32_data.nr) && | 
|  | (data->mask32_data.mask[bit_word32] & bit_mask32) != 0 | 
|  | : (bit_word64 < data->mask64_data.nr) && | 
|  | (data->mask64_data.mask[bit_word64] & bit_mask64) != 0; | 
|  | } | 
|  |  | 
|  | /* Read ith mask value from data into the given 64-bit sized bitmap */ | 
|  | static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data, | 
|  | int i, unsigned long *bitmap) | 
|  | { | 
|  | #if __SIZEOF_LONG__ == 8 | 
|  | if (data->mask32_data.long_size == 4) | 
|  | bitmap[0] = data->mask32_data.mask[i]; | 
|  | else | 
|  | bitmap[0] = data->mask64_data.mask[i]; | 
|  | #else | 
|  | if (data->mask32_data.long_size == 4) { | 
|  | bitmap[0] = data->mask32_data.mask[i]; | 
|  | bitmap[1] = 0; | 
|  | } else { | 
|  | #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ | 
|  | bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32); | 
|  | bitmap[1] = (unsigned long)data->mask64_data.mask[i]; | 
|  | #else | 
|  | bitmap[0] = (unsigned long)data->mask64_data.mask[i]; | 
|  | bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32); | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  | } | 
|  | static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data) | 
|  | { | 
|  | struct perf_cpu_map *map; | 
|  |  | 
|  | map = perf_cpu_map__empty_new(data->cpus_data.nr); | 
|  | if (map) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < data->cpus_data.nr; i++) { | 
|  | /* | 
|  | * Special treatment for -1, which is not real cpu number, | 
|  | * and we need to use (int) -1 to initialize map[i], | 
|  | * otherwise it would become 65535. | 
|  | */ | 
|  | if (data->cpus_data.cpu[i] == (u16) -1) | 
|  | map->map[i].cpu = -1; | 
|  | else | 
|  | map->map[i].cpu = (int) data->cpus_data.cpu[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return map; | 
|  | } | 
|  |  | 
|  | static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data) | 
|  | { | 
|  | DECLARE_BITMAP(local_copy, 64); | 
|  | int weight = 0, mask_nr = data->mask32_data.nr; | 
|  | struct perf_cpu_map *map; | 
|  |  | 
|  | for (int i = 0; i < mask_nr; i++) { | 
|  | perf_record_cpu_map_data__read_one_mask(data, i, local_copy); | 
|  | weight += bitmap_weight(local_copy, 64); | 
|  | } | 
|  |  | 
|  | map = perf_cpu_map__empty_new(weight); | 
|  | if (!map) | 
|  | return NULL; | 
|  |  | 
|  | for (int i = 0, j = 0; i < mask_nr; i++) { | 
|  | int cpus_per_i = (i * data->mask32_data.long_size  * BITS_PER_BYTE); | 
|  | int cpu; | 
|  |  | 
|  | perf_record_cpu_map_data__read_one_mask(data, i, local_copy); | 
|  | for_each_set_bit(cpu, local_copy, 64) | 
|  | map->map[j++].cpu = cpu + cpus_per_i; | 
|  | } | 
|  | return map; | 
|  |  | 
|  | } | 
|  |  | 
|  | static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data) | 
|  | { | 
|  | struct perf_cpu_map *map; | 
|  | unsigned int i = 0; | 
|  |  | 
|  | map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu - | 
|  | data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu); | 
|  | if (!map) | 
|  | return NULL; | 
|  |  | 
|  | if (data->range_cpu_data.any_cpu) | 
|  | map->map[i++].cpu = -1; | 
|  |  | 
|  | for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu; | 
|  | i++, cpu++) | 
|  | map->map[i].cpu = cpu; | 
|  |  | 
|  | return map; | 
|  | } | 
|  |  | 
|  | struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data) | 
|  | { | 
|  | switch (data->type) { | 
|  | case PERF_CPU_MAP__CPUS: | 
|  | return cpu_map__from_entries(data); | 
|  | case PERF_CPU_MAP__MASK: | 
|  | return cpu_map__from_mask(data); | 
|  | case PERF_CPU_MAP__RANGE_CPUS: | 
|  | return cpu_map__from_range(data); | 
|  | default: | 
|  | pr_err("cpu_map__new_data unknown type %d\n", data->type); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp) | 
|  | { | 
|  | #define BUFSIZE 1024 | 
|  | char buf[BUFSIZE]; | 
|  |  | 
|  | cpu_map__snprint(map, buf, sizeof(buf)); | 
|  | return fprintf(fp, "%s\n", buf); | 
|  | #undef BUFSIZE | 
|  | } | 
|  |  | 
|  | struct perf_cpu_map *perf_cpu_map__empty_new(int nr) | 
|  | { | 
|  | struct perf_cpu_map *cpus = malloc(sizeof(*cpus) + sizeof(int) * nr); | 
|  |  | 
|  | if (cpus != NULL) { | 
|  | int i; | 
|  |  | 
|  | cpus->nr = nr; | 
|  | for (i = 0; i < nr; i++) | 
|  | cpus->map[i].cpu = -1; | 
|  |  | 
|  | refcount_set(&cpus->refcnt, 1); | 
|  | } | 
|  |  | 
|  | return cpus; | 
|  | } | 
|  |  | 
|  | struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr) | 
|  | { | 
|  | struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr); | 
|  |  | 
|  | if (cpus != NULL) { | 
|  | int i; | 
|  |  | 
|  | cpus->nr = nr; | 
|  | for (i = 0; i < nr; i++) | 
|  | cpus->map[i] = aggr_cpu_id__empty(); | 
|  |  | 
|  | refcount_set(&cpus->refcnt, 1); | 
|  | } | 
|  |  | 
|  | return cpus; | 
|  | } | 
|  |  | 
|  | static int cpu__get_topology_int(int cpu, const char *name, int *value) | 
|  | { | 
|  | char path[PATH_MAX]; | 
|  |  | 
|  | snprintf(path, PATH_MAX, | 
|  | "devices/system/cpu/cpu%d/topology/%s", cpu, name); | 
|  |  | 
|  | return sysfs__read_int(path, value); | 
|  | } | 
|  |  | 
|  | int cpu__get_socket_id(struct perf_cpu cpu) | 
|  | { | 
|  | int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value); | 
|  | return ret ?: value; | 
|  | } | 
|  |  | 
|  | struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused) | 
|  | { | 
|  | struct aggr_cpu_id id = aggr_cpu_id__empty(); | 
|  |  | 
|  | id.socket = cpu__get_socket_id(cpu); | 
|  | return id; | 
|  | } | 
|  |  | 
|  | static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer) | 
|  | { | 
|  | struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer; | 
|  | struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer; | 
|  |  | 
|  | if (a->node != b->node) | 
|  | return a->node - b->node; | 
|  | else if (a->socket != b->socket) | 
|  | return a->socket - b->socket; | 
|  | else if (a->die != b->die) | 
|  | return a->die - b->die; | 
|  | else if (a->core != b->core) | 
|  | return a->core - b->core; | 
|  | else | 
|  | return a->thread_idx - b->thread_idx; | 
|  | } | 
|  |  | 
|  | struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus, | 
|  | aggr_cpu_id_get_t get_id, | 
|  | void *data) | 
|  | { | 
|  | int idx; | 
|  | struct perf_cpu cpu; | 
|  | struct cpu_aggr_map *c = cpu_aggr_map__empty_new(cpus->nr); | 
|  |  | 
|  | if (!c) | 
|  | return NULL; | 
|  |  | 
|  | /* Reset size as it may only be partially filled */ | 
|  | c->nr = 0; | 
|  |  | 
|  | perf_cpu_map__for_each_cpu(cpu, idx, cpus) { | 
|  | bool duplicate = false; | 
|  | struct aggr_cpu_id cpu_id = get_id(cpu, data); | 
|  |  | 
|  | for (int j = 0; j < c->nr; j++) { | 
|  | if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) { | 
|  | duplicate = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!duplicate) { | 
|  | c->map[c->nr] = cpu_id; | 
|  | c->nr++; | 
|  | } | 
|  | } | 
|  | /* Trim. */ | 
|  | if (c->nr != cpus->nr) { | 
|  | struct cpu_aggr_map *trimmed_c = | 
|  | realloc(c, | 
|  | sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr); | 
|  |  | 
|  | if (trimmed_c) | 
|  | c = trimmed_c; | 
|  | } | 
|  | /* ensure we process id in increasing order */ | 
|  | qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp); | 
|  |  | 
|  | return c; | 
|  |  | 
|  | } | 
|  |  | 
|  | int cpu__get_die_id(struct perf_cpu cpu) | 
|  | { | 
|  | int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value); | 
|  |  | 
|  | return ret ?: value; | 
|  | } | 
|  |  | 
|  | struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data) | 
|  | { | 
|  | struct aggr_cpu_id id; | 
|  | int die; | 
|  |  | 
|  | die = cpu__get_die_id(cpu); | 
|  | /* There is no die_id on legacy system. */ | 
|  | if (die == -1) | 
|  | die = 0; | 
|  |  | 
|  | /* | 
|  | * die_id is relative to socket, so start | 
|  | * with the socket ID and then add die to | 
|  | * make a unique ID. | 
|  | */ | 
|  | id = aggr_cpu_id__socket(cpu, data); | 
|  | if (aggr_cpu_id__is_empty(&id)) | 
|  | return id; | 
|  |  | 
|  | id.die = die; | 
|  | return id; | 
|  | } | 
|  |  | 
|  | int cpu__get_core_id(struct perf_cpu cpu) | 
|  | { | 
|  | int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value); | 
|  | return ret ?: value; | 
|  | } | 
|  |  | 
|  | struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data) | 
|  | { | 
|  | struct aggr_cpu_id id; | 
|  | int core = cpu__get_core_id(cpu); | 
|  |  | 
|  | /* aggr_cpu_id__die returns a struct with socket and die set. */ | 
|  | id = aggr_cpu_id__die(cpu, data); | 
|  | if (aggr_cpu_id__is_empty(&id)) | 
|  | return id; | 
|  |  | 
|  | /* | 
|  | * core_id is relative to socket and die, we need a global id. | 
|  | * So we combine the result from cpu_map__get_die with the core id | 
|  | */ | 
|  | id.core = core; | 
|  | return id; | 
|  |  | 
|  | } | 
|  |  | 
|  | struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data) | 
|  | { | 
|  | struct aggr_cpu_id id; | 
|  |  | 
|  | /* aggr_cpu_id__core returns a struct with socket, die and core set. */ | 
|  | id = aggr_cpu_id__core(cpu, data); | 
|  | if (aggr_cpu_id__is_empty(&id)) | 
|  | return id; | 
|  |  | 
|  | id.cpu = cpu; | 
|  | return id; | 
|  |  | 
|  | } | 
|  |  | 
|  | struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused) | 
|  | { | 
|  | struct aggr_cpu_id id = aggr_cpu_id__empty(); | 
|  |  | 
|  | id.node = cpu__get_node(cpu); | 
|  | return id; | 
|  | } | 
|  |  | 
|  | /* setup simple routines to easily access node numbers given a cpu number */ | 
|  | static int get_max_num(char *path, int *max) | 
|  | { | 
|  | size_t num; | 
|  | char *buf; | 
|  | int err = 0; | 
|  |  | 
|  | if (filename__read_str(path, &buf, &num)) | 
|  | return -1; | 
|  |  | 
|  | buf[num] = '\0'; | 
|  |  | 
|  | /* start on the right, to find highest node num */ | 
|  | while (--num) { | 
|  | if ((buf[num] == ',') || (buf[num] == '-')) { | 
|  | num++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (sscanf(&buf[num], "%d", max) < 1) { | 
|  | err = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* convert from 0-based to 1-based */ | 
|  | (*max)++; | 
|  |  | 
|  | out: | 
|  | free(buf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Determine highest possible cpu in the system for sparse allocation */ | 
|  | static void set_max_cpu_num(void) | 
|  | { | 
|  | const char *mnt; | 
|  | char path[PATH_MAX]; | 
|  | int ret = -1; | 
|  |  | 
|  | /* set up default */ | 
|  | max_cpu_num.cpu = 4096; | 
|  | max_present_cpu_num.cpu = 4096; | 
|  |  | 
|  | mnt = sysfs__mountpoint(); | 
|  | if (!mnt) | 
|  | goto out; | 
|  |  | 
|  | /* get the highest possible cpu number for a sparse allocation */ | 
|  | ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt); | 
|  | if (ret >= PATH_MAX) { | 
|  | pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = get_max_num(path, &max_cpu_num.cpu); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* get the highest present cpu number for a sparse allocation */ | 
|  | ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt); | 
|  | if (ret >= PATH_MAX) { | 
|  | pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = get_max_num(path, &max_present_cpu_num.cpu); | 
|  |  | 
|  | out: | 
|  | if (ret) | 
|  | pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu); | 
|  | } | 
|  |  | 
|  | /* Determine highest possible node in the system for sparse allocation */ | 
|  | static void set_max_node_num(void) | 
|  | { | 
|  | const char *mnt; | 
|  | char path[PATH_MAX]; | 
|  | int ret = -1; | 
|  |  | 
|  | /* set up default */ | 
|  | max_node_num = 8; | 
|  |  | 
|  | mnt = sysfs__mountpoint(); | 
|  | if (!mnt) | 
|  | goto out; | 
|  |  | 
|  | /* get the highest possible cpu number for a sparse allocation */ | 
|  | ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt); | 
|  | if (ret >= PATH_MAX) { | 
|  | pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = get_max_num(path, &max_node_num); | 
|  |  | 
|  | out: | 
|  | if (ret) | 
|  | pr_err("Failed to read max nodes, using default of %d\n", max_node_num); | 
|  | } | 
|  |  | 
|  | int cpu__max_node(void) | 
|  | { | 
|  | if (unlikely(!max_node_num)) | 
|  | set_max_node_num(); | 
|  |  | 
|  | return max_node_num; | 
|  | } | 
|  |  | 
|  | struct perf_cpu cpu__max_cpu(void) | 
|  | { | 
|  | if (unlikely(!max_cpu_num.cpu)) | 
|  | set_max_cpu_num(); | 
|  |  | 
|  | return max_cpu_num; | 
|  | } | 
|  |  | 
|  | struct perf_cpu cpu__max_present_cpu(void) | 
|  | { | 
|  | if (unlikely(!max_present_cpu_num.cpu)) | 
|  | set_max_cpu_num(); | 
|  |  | 
|  | return max_present_cpu_num; | 
|  | } | 
|  |  | 
|  |  | 
|  | int cpu__get_node(struct perf_cpu cpu) | 
|  | { | 
|  | if (unlikely(cpunode_map == NULL)) { | 
|  | pr_debug("cpu_map not initialized\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return cpunode_map[cpu.cpu]; | 
|  | } | 
|  |  | 
|  | static int init_cpunode_map(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | set_max_cpu_num(); | 
|  | set_max_node_num(); | 
|  |  | 
|  | cpunode_map = calloc(max_cpu_num.cpu, sizeof(int)); | 
|  | if (!cpunode_map) { | 
|  | pr_err("%s: calloc failed\n", __func__); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < max_cpu_num.cpu; i++) | 
|  | cpunode_map[i] = -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cpu__setup_cpunode_map(void) | 
|  | { | 
|  | struct dirent *dent1, *dent2; | 
|  | DIR *dir1, *dir2; | 
|  | unsigned int cpu, mem; | 
|  | char buf[PATH_MAX]; | 
|  | char path[PATH_MAX]; | 
|  | const char *mnt; | 
|  | int n; | 
|  |  | 
|  | /* initialize globals */ | 
|  | if (init_cpunode_map()) | 
|  | return -1; | 
|  |  | 
|  | mnt = sysfs__mountpoint(); | 
|  | if (!mnt) | 
|  | return 0; | 
|  |  | 
|  | n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt); | 
|  | if (n >= PATH_MAX) { | 
|  | pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | dir1 = opendir(path); | 
|  | if (!dir1) | 
|  | return 0; | 
|  |  | 
|  | /* walk tree and setup map */ | 
|  | while ((dent1 = readdir(dir1)) != NULL) { | 
|  | if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1) | 
|  | continue; | 
|  |  | 
|  | n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name); | 
|  | if (n >= PATH_MAX) { | 
|  | pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | dir2 = opendir(buf); | 
|  | if (!dir2) | 
|  | continue; | 
|  | while ((dent2 = readdir(dir2)) != NULL) { | 
|  | if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1) | 
|  | continue; | 
|  | cpunode_map[cpu] = mem; | 
|  | } | 
|  | closedir(dir2); | 
|  | } | 
|  | closedir(dir1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size) | 
|  | { | 
|  | int i, start = -1; | 
|  | bool first = true; | 
|  | size_t ret = 0; | 
|  |  | 
|  | #define COMMA first ? "" : "," | 
|  |  | 
|  | for (i = 0; i < map->nr + 1; i++) { | 
|  | struct perf_cpu cpu = { .cpu = INT_MAX }; | 
|  | bool last = i == map->nr; | 
|  |  | 
|  | if (!last) | 
|  | cpu = map->map[i]; | 
|  |  | 
|  | if (start == -1) { | 
|  | start = i; | 
|  | if (last) { | 
|  | ret += snprintf(buf + ret, size - ret, | 
|  | "%s%d", COMMA, | 
|  | map->map[i].cpu); | 
|  | } | 
|  | } else if (((i - start) != (cpu.cpu - map->map[start].cpu)) || last) { | 
|  | int end = i - 1; | 
|  |  | 
|  | if (start == end) { | 
|  | ret += snprintf(buf + ret, size - ret, | 
|  | "%s%d", COMMA, | 
|  | map->map[start].cpu); | 
|  | } else { | 
|  | ret += snprintf(buf + ret, size - ret, | 
|  | "%s%d-%d", COMMA, | 
|  | map->map[start].cpu, map->map[end].cpu); | 
|  | } | 
|  | first = false; | 
|  | start = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef COMMA | 
|  |  | 
|  | pr_debug2("cpumask list: %s\n", buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static char hex_char(unsigned char val) | 
|  | { | 
|  | if (val < 10) | 
|  | return val + '0'; | 
|  | if (val < 16) | 
|  | return val - 10 + 'a'; | 
|  | return '?'; | 
|  | } | 
|  |  | 
|  | size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size) | 
|  | { | 
|  | int i, cpu; | 
|  | char *ptr = buf; | 
|  | unsigned char *bitmap; | 
|  | struct perf_cpu last_cpu = perf_cpu_map__cpu(map, map->nr - 1); | 
|  |  | 
|  | if (buf == NULL) | 
|  | return 0; | 
|  |  | 
|  | bitmap = zalloc(last_cpu.cpu / 8 + 1); | 
|  | if (bitmap == NULL) { | 
|  | buf[0] = '\0'; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < map->nr; i++) { | 
|  | cpu = perf_cpu_map__cpu(map, i).cpu; | 
|  | bitmap[cpu / 8] |= 1 << (cpu % 8); | 
|  | } | 
|  |  | 
|  | for (cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) { | 
|  | unsigned char bits = bitmap[cpu / 8]; | 
|  |  | 
|  | if (cpu % 8) | 
|  | bits >>= 4; | 
|  | else | 
|  | bits &= 0xf; | 
|  |  | 
|  | *ptr++ = hex_char(bits); | 
|  | if ((cpu % 32) == 0 && cpu > 0) | 
|  | *ptr++ = ','; | 
|  | } | 
|  | *ptr = '\0'; | 
|  | free(bitmap); | 
|  |  | 
|  | buf[size - 1] = '\0'; | 
|  | return ptr - buf; | 
|  | } | 
|  |  | 
|  | const struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */ | 
|  | { | 
|  | static const struct perf_cpu_map *online = NULL; | 
|  |  | 
|  | if (!online) | 
|  | online = perf_cpu_map__new(NULL); /* from /sys/devices/system/cpu/online */ | 
|  |  | 
|  | return online; | 
|  | } | 
|  |  | 
|  | bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b) | 
|  | { | 
|  | return a->thread_idx == b->thread_idx && | 
|  | a->node == b->node && | 
|  | a->socket == b->socket && | 
|  | a->die == b->die && | 
|  | a->core == b->core && | 
|  | a->cpu.cpu == b->cpu.cpu; | 
|  | } | 
|  |  | 
|  | bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a) | 
|  | { | 
|  | return a->thread_idx == -1 && | 
|  | a->node == -1 && | 
|  | a->socket == -1 && | 
|  | a->die == -1 && | 
|  | a->core == -1 && | 
|  | a->cpu.cpu == -1; | 
|  | } | 
|  |  | 
|  | struct aggr_cpu_id aggr_cpu_id__empty(void) | 
|  | { | 
|  | struct aggr_cpu_id ret = { | 
|  | .thread_idx = -1, | 
|  | .node = -1, | 
|  | .socket = -1, | 
|  | .die = -1, | 
|  | .core = -1, | 
|  | .cpu = (struct perf_cpu){ .cpu = -1 }, | 
|  | }; | 
|  | return ret; | 
|  | } |