|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * | 
|  | * Copyright (C) 2009, 2010 ARM Limited | 
|  | * | 
|  | * Author: Will Deacon <will.deacon@arm.com> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, | 
|  | * using the CPU's debug registers. | 
|  | */ | 
|  | #define pr_fmt(fmt) "hw-breakpoint: " fmt | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/hw_breakpoint.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/cfi.h> | 
|  | #include <linux/cpu_pm.h> | 
|  | #include <linux/coresight.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/current.h> | 
|  | #include <asm/hw_breakpoint.h> | 
|  | #include <asm/traps.h> | 
|  |  | 
|  | /* Breakpoint currently in use for each BRP. */ | 
|  | static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]); | 
|  |  | 
|  | /* Watchpoint currently in use for each WRP. */ | 
|  | static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]); | 
|  |  | 
|  | /* Number of BRP/WRP registers on this CPU. */ | 
|  | static int core_num_brps __ro_after_init; | 
|  | static int core_num_wrps __ro_after_init; | 
|  |  | 
|  | /* Debug architecture version. */ | 
|  | static u8 debug_arch __ro_after_init; | 
|  |  | 
|  | /* Does debug architecture support OS Save and Restore? */ | 
|  | static bool has_ossr __ro_after_init; | 
|  |  | 
|  | /* Maximum supported watchpoint length. */ | 
|  | static u8 max_watchpoint_len __ro_after_init; | 
|  |  | 
|  | #define READ_WB_REG_CASE(OP2, M, VAL)			\ | 
|  | case ((OP2 << 4) + M):				\ | 
|  | ARM_DBG_READ(c0, c ## M, OP2, VAL);	\ | 
|  | break | 
|  |  | 
|  | #define WRITE_WB_REG_CASE(OP2, M, VAL)			\ | 
|  | case ((OP2 << 4) + M):				\ | 
|  | ARM_DBG_WRITE(c0, c ## M, OP2, VAL);	\ | 
|  | break | 
|  |  | 
|  | #define GEN_READ_WB_REG_CASES(OP2, VAL)		\ | 
|  | READ_WB_REG_CASE(OP2, 0, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 1, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 2, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 3, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 4, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 5, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 6, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 7, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 8, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 9, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 10, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 11, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 12, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 13, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 14, VAL);		\ | 
|  | READ_WB_REG_CASE(OP2, 15, VAL) | 
|  |  | 
|  | #define GEN_WRITE_WB_REG_CASES(OP2, VAL)	\ | 
|  | WRITE_WB_REG_CASE(OP2, 0, VAL);		\ | 
|  | WRITE_WB_REG_CASE(OP2, 1, VAL);		\ | 
|  | WRITE_WB_REG_CASE(OP2, 2, VAL);		\ | 
|  | WRITE_WB_REG_CASE(OP2, 3, VAL);		\ | 
|  | WRITE_WB_REG_CASE(OP2, 4, VAL);		\ | 
|  | WRITE_WB_REG_CASE(OP2, 5, VAL);		\ | 
|  | WRITE_WB_REG_CASE(OP2, 6, VAL);		\ | 
|  | WRITE_WB_REG_CASE(OP2, 7, VAL);		\ | 
|  | WRITE_WB_REG_CASE(OP2, 8, VAL);		\ | 
|  | WRITE_WB_REG_CASE(OP2, 9, VAL);		\ | 
|  | WRITE_WB_REG_CASE(OP2, 10, VAL);	\ | 
|  | WRITE_WB_REG_CASE(OP2, 11, VAL);	\ | 
|  | WRITE_WB_REG_CASE(OP2, 12, VAL);	\ | 
|  | WRITE_WB_REG_CASE(OP2, 13, VAL);	\ | 
|  | WRITE_WB_REG_CASE(OP2, 14, VAL);	\ | 
|  | WRITE_WB_REG_CASE(OP2, 15, VAL) | 
|  |  | 
|  | static u32 read_wb_reg(int n) | 
|  | { | 
|  | u32 val = 0; | 
|  |  | 
|  | switch (n) { | 
|  | GEN_READ_WB_REG_CASES(ARM_OP2_BVR, val); | 
|  | GEN_READ_WB_REG_CASES(ARM_OP2_BCR, val); | 
|  | GEN_READ_WB_REG_CASES(ARM_OP2_WVR, val); | 
|  | GEN_READ_WB_REG_CASES(ARM_OP2_WCR, val); | 
|  | default: | 
|  | pr_warn("attempt to read from unknown breakpoint register %d\n", | 
|  | n); | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void write_wb_reg(int n, u32 val) | 
|  | { | 
|  | switch (n) { | 
|  | GEN_WRITE_WB_REG_CASES(ARM_OP2_BVR, val); | 
|  | GEN_WRITE_WB_REG_CASES(ARM_OP2_BCR, val); | 
|  | GEN_WRITE_WB_REG_CASES(ARM_OP2_WVR, val); | 
|  | GEN_WRITE_WB_REG_CASES(ARM_OP2_WCR, val); | 
|  | default: | 
|  | pr_warn("attempt to write to unknown breakpoint register %d\n", | 
|  | n); | 
|  | } | 
|  | isb(); | 
|  | } | 
|  |  | 
|  | /* Determine debug architecture. */ | 
|  | static u8 get_debug_arch(void) | 
|  | { | 
|  | u32 didr; | 
|  |  | 
|  | /* Do we implement the extended CPUID interface? */ | 
|  | if (((read_cpuid_id() >> 16) & 0xf) != 0xf) { | 
|  | pr_warn_once("CPUID feature registers not supported. " | 
|  | "Assuming v6 debug is present.\n"); | 
|  | return ARM_DEBUG_ARCH_V6; | 
|  | } | 
|  |  | 
|  | ARM_DBG_READ(c0, c0, 0, didr); | 
|  | return (didr >> 16) & 0xf; | 
|  | } | 
|  |  | 
|  | u8 arch_get_debug_arch(void) | 
|  | { | 
|  | return debug_arch; | 
|  | } | 
|  |  | 
|  | static int debug_arch_supported(void) | 
|  | { | 
|  | u8 arch = get_debug_arch(); | 
|  |  | 
|  | /* We don't support the memory-mapped interface. */ | 
|  | return (arch >= ARM_DEBUG_ARCH_V6 && arch <= ARM_DEBUG_ARCH_V7_ECP14) || | 
|  | arch >= ARM_DEBUG_ARCH_V7_1; | 
|  | } | 
|  |  | 
|  | /* Can we determine the watchpoint access type from the fsr? */ | 
|  | static int debug_exception_updates_fsr(void) | 
|  | { | 
|  | return get_debug_arch() >= ARM_DEBUG_ARCH_V8; | 
|  | } | 
|  |  | 
|  | /* Determine number of WRP registers available. */ | 
|  | static int get_num_wrp_resources(void) | 
|  | { | 
|  | u32 didr; | 
|  | ARM_DBG_READ(c0, c0, 0, didr); | 
|  | return ((didr >> 28) & 0xf) + 1; | 
|  | } | 
|  |  | 
|  | /* Determine number of BRP registers available. */ | 
|  | static int get_num_brp_resources(void) | 
|  | { | 
|  | u32 didr; | 
|  | ARM_DBG_READ(c0, c0, 0, didr); | 
|  | return ((didr >> 24) & 0xf) + 1; | 
|  | } | 
|  |  | 
|  | /* Does this core support mismatch breakpoints? */ | 
|  | static int core_has_mismatch_brps(void) | 
|  | { | 
|  | return (get_debug_arch() >= ARM_DEBUG_ARCH_V7_ECP14 && | 
|  | get_num_brp_resources() > 1); | 
|  | } | 
|  |  | 
|  | /* Determine number of usable WRPs available. */ | 
|  | static int get_num_wrps(void) | 
|  | { | 
|  | /* | 
|  | * On debug architectures prior to 7.1, when a watchpoint fires, the | 
|  | * only way to work out which watchpoint it was is by disassembling | 
|  | * the faulting instruction and working out the address of the memory | 
|  | * access. | 
|  | * | 
|  | * Furthermore, we can only do this if the watchpoint was precise | 
|  | * since imprecise watchpoints prevent us from calculating register | 
|  | * based addresses. | 
|  | * | 
|  | * Providing we have more than 1 breakpoint register, we only report | 
|  | * a single watchpoint register for the time being. This way, we always | 
|  | * know which watchpoint fired. In the future we can either add a | 
|  | * disassembler and address generation emulator, or we can insert a | 
|  | * check to see if the DFAR is set on watchpoint exception entry | 
|  | * [the ARM ARM states that the DFAR is UNKNOWN, but experience shows | 
|  | * that it is set on some implementations]. | 
|  | */ | 
|  | if (get_debug_arch() < ARM_DEBUG_ARCH_V7_1) | 
|  | return 1; | 
|  |  | 
|  | return get_num_wrp_resources(); | 
|  | } | 
|  |  | 
|  | /* Determine number of usable BRPs available. */ | 
|  | static int get_num_brps(void) | 
|  | { | 
|  | int brps = get_num_brp_resources(); | 
|  | return core_has_mismatch_brps() ? brps - 1 : brps; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In order to access the breakpoint/watchpoint control registers, | 
|  | * we must be running in debug monitor mode. Unfortunately, we can | 
|  | * be put into halting debug mode at any time by an external debugger | 
|  | * but there is nothing we can do to prevent that. | 
|  | */ | 
|  | static int monitor_mode_enabled(void) | 
|  | { | 
|  | u32 dscr; | 
|  | ARM_DBG_READ(c0, c1, 0, dscr); | 
|  | return !!(dscr & ARM_DSCR_MDBGEN); | 
|  | } | 
|  |  | 
|  | static int enable_monitor_mode(void) | 
|  | { | 
|  | u32 dscr; | 
|  | ARM_DBG_READ(c0, c1, 0, dscr); | 
|  |  | 
|  | /* If monitor mode is already enabled, just return. */ | 
|  | if (dscr & ARM_DSCR_MDBGEN) | 
|  | goto out; | 
|  |  | 
|  | /* Write to the corresponding DSCR. */ | 
|  | switch (get_debug_arch()) { | 
|  | case ARM_DEBUG_ARCH_V6: | 
|  | case ARM_DEBUG_ARCH_V6_1: | 
|  | ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN)); | 
|  | break; | 
|  | case ARM_DEBUG_ARCH_V7_ECP14: | 
|  | case ARM_DEBUG_ARCH_V7_1: | 
|  | case ARM_DEBUG_ARCH_V8: | 
|  | case ARM_DEBUG_ARCH_V8_1: | 
|  | case ARM_DEBUG_ARCH_V8_2: | 
|  | case ARM_DEBUG_ARCH_V8_4: | 
|  | ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN)); | 
|  | isb(); | 
|  | break; | 
|  | default: | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Check that the write made it through. */ | 
|  | ARM_DBG_READ(c0, c1, 0, dscr); | 
|  | if (!(dscr & ARM_DSCR_MDBGEN)) { | 
|  | pr_warn_once("Failed to enable monitor mode on CPU %d.\n", | 
|  | smp_processor_id()); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int hw_breakpoint_slots(int type) | 
|  | { | 
|  | if (!debug_arch_supported()) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We can be called early, so don't rely on | 
|  | * our static variables being initialised. | 
|  | */ | 
|  | switch (type) { | 
|  | case TYPE_INST: | 
|  | return get_num_brps(); | 
|  | case TYPE_DATA: | 
|  | return get_num_wrps(); | 
|  | default: | 
|  | pr_warn("unknown slot type: %d\n", type); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if 8-bit byte-address select is available. | 
|  | * This clobbers WRP 0. | 
|  | */ | 
|  | static u8 get_max_wp_len(void) | 
|  | { | 
|  | u32 ctrl_reg; | 
|  | struct arch_hw_breakpoint_ctrl ctrl; | 
|  | u8 size = 4; | 
|  |  | 
|  | if (debug_arch < ARM_DEBUG_ARCH_V7_ECP14) | 
|  | goto out; | 
|  |  | 
|  | memset(&ctrl, 0, sizeof(ctrl)); | 
|  | ctrl.len = ARM_BREAKPOINT_LEN_8; | 
|  | ctrl_reg = encode_ctrl_reg(ctrl); | 
|  |  | 
|  | write_wb_reg(ARM_BASE_WVR, 0); | 
|  | write_wb_reg(ARM_BASE_WCR, ctrl_reg); | 
|  | if ((read_wb_reg(ARM_BASE_WCR) & ctrl_reg) == ctrl_reg) | 
|  | size = 8; | 
|  |  | 
|  | out: | 
|  | return size; | 
|  | } | 
|  |  | 
|  | u8 arch_get_max_wp_len(void) | 
|  | { | 
|  | return max_watchpoint_len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Install a perf counter breakpoint. | 
|  | */ | 
|  | int arch_install_hw_breakpoint(struct perf_event *bp) | 
|  | { | 
|  | struct arch_hw_breakpoint *info = counter_arch_bp(bp); | 
|  | struct perf_event **slot, **slots; | 
|  | int i, max_slots, ctrl_base, val_base; | 
|  | u32 addr, ctrl; | 
|  |  | 
|  | addr = info->address; | 
|  | ctrl = encode_ctrl_reg(info->ctrl) | 0x1; | 
|  |  | 
|  | if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) { | 
|  | /* Breakpoint */ | 
|  | ctrl_base = ARM_BASE_BCR; | 
|  | val_base = ARM_BASE_BVR; | 
|  | slots = this_cpu_ptr(bp_on_reg); | 
|  | max_slots = core_num_brps; | 
|  | } else { | 
|  | /* Watchpoint */ | 
|  | ctrl_base = ARM_BASE_WCR; | 
|  | val_base = ARM_BASE_WVR; | 
|  | slots = this_cpu_ptr(wp_on_reg); | 
|  | max_slots = core_num_wrps; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < max_slots; ++i) { | 
|  | slot = &slots[i]; | 
|  |  | 
|  | if (!*slot) { | 
|  | *slot = bp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == max_slots) { | 
|  | pr_warn("Can't find any breakpoint slot\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Override the breakpoint data with the step data. */ | 
|  | if (info->step_ctrl.enabled) { | 
|  | addr = info->trigger & ~0x3; | 
|  | ctrl = encode_ctrl_reg(info->step_ctrl); | 
|  | if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE) { | 
|  | i = 0; | 
|  | ctrl_base = ARM_BASE_BCR + core_num_brps; | 
|  | val_base = ARM_BASE_BVR + core_num_brps; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Setup the address register. */ | 
|  | write_wb_reg(val_base + i, addr); | 
|  |  | 
|  | /* Setup the control register. */ | 
|  | write_wb_reg(ctrl_base + i, ctrl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void arch_uninstall_hw_breakpoint(struct perf_event *bp) | 
|  | { | 
|  | struct arch_hw_breakpoint *info = counter_arch_bp(bp); | 
|  | struct perf_event **slot, **slots; | 
|  | int i, max_slots, base; | 
|  |  | 
|  | if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) { | 
|  | /* Breakpoint */ | 
|  | base = ARM_BASE_BCR; | 
|  | slots = this_cpu_ptr(bp_on_reg); | 
|  | max_slots = core_num_brps; | 
|  | } else { | 
|  | /* Watchpoint */ | 
|  | base = ARM_BASE_WCR; | 
|  | slots = this_cpu_ptr(wp_on_reg); | 
|  | max_slots = core_num_wrps; | 
|  | } | 
|  |  | 
|  | /* Remove the breakpoint. */ | 
|  | for (i = 0; i < max_slots; ++i) { | 
|  | slot = &slots[i]; | 
|  |  | 
|  | if (*slot == bp) { | 
|  | *slot = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == max_slots) { | 
|  | pr_warn("Can't find any breakpoint slot\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Ensure that we disable the mismatch breakpoint. */ | 
|  | if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE && | 
|  | info->step_ctrl.enabled) { | 
|  | i = 0; | 
|  | base = ARM_BASE_BCR + core_num_brps; | 
|  | } | 
|  |  | 
|  | /* Reset the control register. */ | 
|  | write_wb_reg(base + i, 0); | 
|  | } | 
|  |  | 
|  | static int get_hbp_len(u8 hbp_len) | 
|  | { | 
|  | unsigned int len_in_bytes = 0; | 
|  |  | 
|  | switch (hbp_len) { | 
|  | case ARM_BREAKPOINT_LEN_1: | 
|  | len_in_bytes = 1; | 
|  | break; | 
|  | case ARM_BREAKPOINT_LEN_2: | 
|  | len_in_bytes = 2; | 
|  | break; | 
|  | case ARM_BREAKPOINT_LEN_4: | 
|  | len_in_bytes = 4; | 
|  | break; | 
|  | case ARM_BREAKPOINT_LEN_8: | 
|  | len_in_bytes = 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return len_in_bytes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether bp virtual address is in kernel space. | 
|  | */ | 
|  | int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) | 
|  | { | 
|  | unsigned int len; | 
|  | unsigned long va; | 
|  |  | 
|  | va = hw->address; | 
|  | len = get_hbp_len(hw->ctrl.len); | 
|  |  | 
|  | return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl. | 
|  | * Hopefully this will disappear when ptrace can bypass the conversion | 
|  | * to generic breakpoint descriptions. | 
|  | */ | 
|  | int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl, | 
|  | int *gen_len, int *gen_type) | 
|  | { | 
|  | /* Type */ | 
|  | switch (ctrl.type) { | 
|  | case ARM_BREAKPOINT_EXECUTE: | 
|  | *gen_type = HW_BREAKPOINT_X; | 
|  | break; | 
|  | case ARM_BREAKPOINT_LOAD: | 
|  | *gen_type = HW_BREAKPOINT_R; | 
|  | break; | 
|  | case ARM_BREAKPOINT_STORE: | 
|  | *gen_type = HW_BREAKPOINT_W; | 
|  | break; | 
|  | case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE: | 
|  | *gen_type = HW_BREAKPOINT_RW; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Len */ | 
|  | switch (ctrl.len) { | 
|  | case ARM_BREAKPOINT_LEN_1: | 
|  | *gen_len = HW_BREAKPOINT_LEN_1; | 
|  | break; | 
|  | case ARM_BREAKPOINT_LEN_2: | 
|  | *gen_len = HW_BREAKPOINT_LEN_2; | 
|  | break; | 
|  | case ARM_BREAKPOINT_LEN_4: | 
|  | *gen_len = HW_BREAKPOINT_LEN_4; | 
|  | break; | 
|  | case ARM_BREAKPOINT_LEN_8: | 
|  | *gen_len = HW_BREAKPOINT_LEN_8; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Construct an arch_hw_breakpoint from a perf_event. | 
|  | */ | 
|  | static int arch_build_bp_info(struct perf_event *bp, | 
|  | const struct perf_event_attr *attr, | 
|  | struct arch_hw_breakpoint *hw) | 
|  | { | 
|  | /* Type */ | 
|  | switch (attr->bp_type) { | 
|  | case HW_BREAKPOINT_X: | 
|  | hw->ctrl.type = ARM_BREAKPOINT_EXECUTE; | 
|  | break; | 
|  | case HW_BREAKPOINT_R: | 
|  | hw->ctrl.type = ARM_BREAKPOINT_LOAD; | 
|  | break; | 
|  | case HW_BREAKPOINT_W: | 
|  | hw->ctrl.type = ARM_BREAKPOINT_STORE; | 
|  | break; | 
|  | case HW_BREAKPOINT_RW: | 
|  | hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Len */ | 
|  | switch (attr->bp_len) { | 
|  | case HW_BREAKPOINT_LEN_1: | 
|  | hw->ctrl.len = ARM_BREAKPOINT_LEN_1; | 
|  | break; | 
|  | case HW_BREAKPOINT_LEN_2: | 
|  | hw->ctrl.len = ARM_BREAKPOINT_LEN_2; | 
|  | break; | 
|  | case HW_BREAKPOINT_LEN_4: | 
|  | hw->ctrl.len = ARM_BREAKPOINT_LEN_4; | 
|  | break; | 
|  | case HW_BREAKPOINT_LEN_8: | 
|  | hw->ctrl.len = ARM_BREAKPOINT_LEN_8; | 
|  | if ((hw->ctrl.type != ARM_BREAKPOINT_EXECUTE) | 
|  | && max_watchpoint_len >= 8) | 
|  | break; | 
|  | fallthrough; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Breakpoints must be of length 2 (thumb) or 4 (ARM) bytes. | 
|  | * Watchpoints can be of length 1, 2, 4 or 8 bytes if supported | 
|  | * by the hardware and must be aligned to the appropriate number of | 
|  | * bytes. | 
|  | */ | 
|  | if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE && | 
|  | hw->ctrl.len != ARM_BREAKPOINT_LEN_2 && | 
|  | hw->ctrl.len != ARM_BREAKPOINT_LEN_4) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Address */ | 
|  | hw->address = attr->bp_addr; | 
|  |  | 
|  | /* Privilege */ | 
|  | hw->ctrl.privilege = ARM_BREAKPOINT_USER; | 
|  | if (arch_check_bp_in_kernelspace(hw)) | 
|  | hw->ctrl.privilege |= ARM_BREAKPOINT_PRIV; | 
|  |  | 
|  | /* Enabled? */ | 
|  | hw->ctrl.enabled = !attr->disabled; | 
|  |  | 
|  | /* Mismatch */ | 
|  | hw->ctrl.mismatch = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate the arch-specific HW Breakpoint register settings. | 
|  | */ | 
|  | int hw_breakpoint_arch_parse(struct perf_event *bp, | 
|  | const struct perf_event_attr *attr, | 
|  | struct arch_hw_breakpoint *hw) | 
|  | { | 
|  | int ret = 0; | 
|  | u32 offset, alignment_mask = 0x3; | 
|  |  | 
|  | /* Ensure that we are in monitor debug mode. */ | 
|  | if (!monitor_mode_enabled()) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Build the arch_hw_breakpoint. */ | 
|  | ret = arch_build_bp_info(bp, attr, hw); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* Check address alignment. */ | 
|  | if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8) | 
|  | alignment_mask = 0x7; | 
|  | offset = hw->address & alignment_mask; | 
|  | switch (offset) { | 
|  | case 0: | 
|  | /* Aligned */ | 
|  | break; | 
|  | case 1: | 
|  | case 2: | 
|  | /* Allow halfword watchpoints and breakpoints. */ | 
|  | if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2) | 
|  | break; | 
|  | fallthrough; | 
|  | case 3: | 
|  | /* Allow single byte watchpoint. */ | 
|  | if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1) | 
|  | break; | 
|  | fallthrough; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hw->address &= ~alignment_mask; | 
|  | hw->ctrl.len <<= offset; | 
|  |  | 
|  | if (is_default_overflow_handler(bp)) { | 
|  | /* | 
|  | * Mismatch breakpoints are required for single-stepping | 
|  | * breakpoints. | 
|  | */ | 
|  | if (!core_has_mismatch_brps()) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* We don't allow mismatch breakpoints in kernel space. */ | 
|  | if (arch_check_bp_in_kernelspace(hw)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * Per-cpu breakpoints are not supported by our stepping | 
|  | * mechanism. | 
|  | */ | 
|  | if (!bp->hw.target) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * We only support specific access types if the fsr | 
|  | * reports them. | 
|  | */ | 
|  | if (!debug_exception_updates_fsr() && | 
|  | (hw->ctrl.type == ARM_BREAKPOINT_LOAD || | 
|  | hw->ctrl.type == ARM_BREAKPOINT_STORE)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable/disable single-stepping over the breakpoint bp at address addr. | 
|  | */ | 
|  | static void enable_single_step(struct perf_event *bp, u32 addr) | 
|  | { | 
|  | struct arch_hw_breakpoint *info = counter_arch_bp(bp); | 
|  |  | 
|  | arch_uninstall_hw_breakpoint(bp); | 
|  | info->step_ctrl.mismatch  = 1; | 
|  | info->step_ctrl.len	  = ARM_BREAKPOINT_LEN_4; | 
|  | info->step_ctrl.type	  = ARM_BREAKPOINT_EXECUTE; | 
|  | info->step_ctrl.privilege = info->ctrl.privilege; | 
|  | info->step_ctrl.enabled	  = 1; | 
|  | info->trigger		  = addr; | 
|  | arch_install_hw_breakpoint(bp); | 
|  | } | 
|  |  | 
|  | static void disable_single_step(struct perf_event *bp) | 
|  | { | 
|  | arch_uninstall_hw_breakpoint(bp); | 
|  | counter_arch_bp(bp)->step_ctrl.enabled = 0; | 
|  | arch_install_hw_breakpoint(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Arm32 hardware does not always report a watchpoint hit address that matches | 
|  | * one of the watchpoints set. It can also report an address "near" the | 
|  | * watchpoint if a single instruction access both watched and unwatched | 
|  | * addresses. There is no straight-forward way, short of disassembling the | 
|  | * offending instruction, to map that address back to the watchpoint. This | 
|  | * function computes the distance of the memory access from the watchpoint as a | 
|  | * heuristic for the likelyhood that a given access triggered the watchpoint. | 
|  | * | 
|  | * See this same function in the arm64 platform code, which has the same | 
|  | * problem. | 
|  | * | 
|  | * The function returns the distance of the address from the bytes watched by | 
|  | * the watchpoint. In case of an exact match, it returns 0. | 
|  | */ | 
|  | static u32 get_distance_from_watchpoint(unsigned long addr, u32 val, | 
|  | struct arch_hw_breakpoint_ctrl *ctrl) | 
|  | { | 
|  | u32 wp_low, wp_high; | 
|  | u32 lens, lene; | 
|  |  | 
|  | lens = __ffs(ctrl->len); | 
|  | lene = __fls(ctrl->len); | 
|  |  | 
|  | wp_low = val + lens; | 
|  | wp_high = val + lene; | 
|  | if (addr < wp_low) | 
|  | return wp_low - addr; | 
|  | else if (addr > wp_high) | 
|  | return addr - wp_high; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int watchpoint_fault_on_uaccess(struct pt_regs *regs, | 
|  | struct arch_hw_breakpoint *info) | 
|  | { | 
|  | return !user_mode(regs) && info->ctrl.privilege == ARM_BREAKPOINT_USER; | 
|  | } | 
|  |  | 
|  | static void watchpoint_handler(unsigned long addr, unsigned int fsr, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | int i, access, closest_match = 0; | 
|  | u32 min_dist = -1, dist; | 
|  | u32 val, ctrl_reg; | 
|  | struct perf_event *wp, **slots; | 
|  | struct arch_hw_breakpoint *info; | 
|  | struct arch_hw_breakpoint_ctrl ctrl; | 
|  |  | 
|  | slots = this_cpu_ptr(wp_on_reg); | 
|  |  | 
|  | /* | 
|  | * Find all watchpoints that match the reported address. If no exact | 
|  | * match is found. Attribute the hit to the closest watchpoint. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < core_num_wrps; ++i) { | 
|  | wp = slots[i]; | 
|  | if (wp == NULL) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * The DFAR is an unknown value on debug architectures prior | 
|  | * to 7.1. Since we only allow a single watchpoint on these | 
|  | * older CPUs, we can set the trigger to the lowest possible | 
|  | * faulting address. | 
|  | */ | 
|  | if (debug_arch < ARM_DEBUG_ARCH_V7_1) { | 
|  | BUG_ON(i > 0); | 
|  | info = counter_arch_bp(wp); | 
|  | info->trigger = wp->attr.bp_addr; | 
|  | } else { | 
|  | /* Check that the access type matches. */ | 
|  | if (debug_exception_updates_fsr()) { | 
|  | access = (fsr & ARM_FSR_ACCESS_MASK) ? | 
|  | HW_BREAKPOINT_W : HW_BREAKPOINT_R; | 
|  | if (!(access & hw_breakpoint_type(wp))) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | val = read_wb_reg(ARM_BASE_WVR + i); | 
|  | ctrl_reg = read_wb_reg(ARM_BASE_WCR + i); | 
|  | decode_ctrl_reg(ctrl_reg, &ctrl); | 
|  | dist = get_distance_from_watchpoint(addr, val, &ctrl); | 
|  | if (dist < min_dist) { | 
|  | min_dist = dist; | 
|  | closest_match = i; | 
|  | } | 
|  | /* Is this an exact match? */ | 
|  | if (dist != 0) | 
|  | continue; | 
|  |  | 
|  | /* We have a winner. */ | 
|  | info = counter_arch_bp(wp); | 
|  | info->trigger = addr; | 
|  | } | 
|  |  | 
|  | pr_debug("watchpoint fired: address = 0x%x\n", info->trigger); | 
|  |  | 
|  | /* | 
|  | * If we triggered a user watchpoint from a uaccess routine, | 
|  | * then handle the stepping ourselves since userspace really | 
|  | * can't help us with this. | 
|  | */ | 
|  | if (watchpoint_fault_on_uaccess(regs, info)) | 
|  | goto step; | 
|  |  | 
|  | perf_bp_event(wp, regs); | 
|  |  | 
|  | /* | 
|  | * Defer stepping to the overflow handler if one is installed. | 
|  | * Otherwise, insert a temporary mismatch breakpoint so that | 
|  | * we can single-step over the watchpoint trigger. | 
|  | */ | 
|  | if (!is_default_overflow_handler(wp)) | 
|  | continue; | 
|  | step: | 
|  | enable_single_step(wp, instruction_pointer(regs)); | 
|  | } | 
|  |  | 
|  | if (min_dist > 0 && min_dist != -1) { | 
|  | /* No exact match found. */ | 
|  | wp = slots[closest_match]; | 
|  | info = counter_arch_bp(wp); | 
|  | info->trigger = addr; | 
|  | pr_debug("watchpoint fired: address = 0x%x\n", info->trigger); | 
|  | perf_bp_event(wp, regs); | 
|  | if (is_default_overflow_handler(wp)) | 
|  | enable_single_step(wp, instruction_pointer(regs)); | 
|  | } | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void watchpoint_single_step_handler(unsigned long pc) | 
|  | { | 
|  | int i; | 
|  | struct perf_event *wp, **slots; | 
|  | struct arch_hw_breakpoint *info; | 
|  |  | 
|  | slots = this_cpu_ptr(wp_on_reg); | 
|  |  | 
|  | for (i = 0; i < core_num_wrps; ++i) { | 
|  | rcu_read_lock(); | 
|  |  | 
|  | wp = slots[i]; | 
|  |  | 
|  | if (wp == NULL) | 
|  | goto unlock; | 
|  |  | 
|  | info = counter_arch_bp(wp); | 
|  | if (!info->step_ctrl.enabled) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * Restore the original watchpoint if we've completed the | 
|  | * single-step. | 
|  | */ | 
|  | if (info->trigger != pc) | 
|  | disable_single_step(wp); | 
|  |  | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void breakpoint_handler(unsigned long unknown, struct pt_regs *regs) | 
|  | { | 
|  | int i; | 
|  | u32 ctrl_reg, val, addr; | 
|  | struct perf_event *bp, **slots; | 
|  | struct arch_hw_breakpoint *info; | 
|  | struct arch_hw_breakpoint_ctrl ctrl; | 
|  |  | 
|  | slots = this_cpu_ptr(bp_on_reg); | 
|  |  | 
|  | /* The exception entry code places the amended lr in the PC. */ | 
|  | addr = regs->ARM_pc; | 
|  |  | 
|  | /* Check the currently installed breakpoints first. */ | 
|  | for (i = 0; i < core_num_brps; ++i) { | 
|  | rcu_read_lock(); | 
|  |  | 
|  | bp = slots[i]; | 
|  |  | 
|  | if (bp == NULL) | 
|  | goto unlock; | 
|  |  | 
|  | info = counter_arch_bp(bp); | 
|  |  | 
|  | /* Check if the breakpoint value matches. */ | 
|  | val = read_wb_reg(ARM_BASE_BVR + i); | 
|  | if (val != (addr & ~0x3)) | 
|  | goto mismatch; | 
|  |  | 
|  | /* Possible match, check the byte address select to confirm. */ | 
|  | ctrl_reg = read_wb_reg(ARM_BASE_BCR + i); | 
|  | decode_ctrl_reg(ctrl_reg, &ctrl); | 
|  | if ((1 << (addr & 0x3)) & ctrl.len) { | 
|  | info->trigger = addr; | 
|  | pr_debug("breakpoint fired: address = 0x%x\n", addr); | 
|  | perf_bp_event(bp, regs); | 
|  | if (is_default_overflow_handler(bp)) | 
|  | enable_single_step(bp, addr); | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | mismatch: | 
|  | /* If we're stepping a breakpoint, it can now be restored. */ | 
|  | if (info->step_ctrl.enabled) | 
|  | disable_single_step(bp); | 
|  | unlock: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* Handle any pending watchpoint single-step breakpoints. */ | 
|  | watchpoint_single_step_handler(addr); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CFI_CLANG | 
|  | static void hw_breakpoint_cfi_handler(struct pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * TODO: implementing target and type to pass to CFI using the more | 
|  | * elaborate report_cfi_failure() requires compiler work. To be able | 
|  | * to properly extract target information the compiler needs to | 
|  | * emit a stable instructions sequence for the CFI checks so we can | 
|  | * decode the instructions preceding the trap and figure out which | 
|  | * registers were used. | 
|  | */ | 
|  |  | 
|  | switch (report_cfi_failure_noaddr(regs, instruction_pointer(regs))) { | 
|  | case BUG_TRAP_TYPE_BUG: | 
|  | die("Oops - CFI", regs, 0); | 
|  | break; | 
|  | case BUG_TRAP_TYPE_WARN: | 
|  | /* Skip the breaking instruction */ | 
|  | instruction_pointer(regs) += 4; | 
|  | break; | 
|  | default: | 
|  | die("Unknown CFI error", regs, 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void hw_breakpoint_cfi_handler(struct pt_regs *regs) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Called from either the Data Abort Handler [watchpoint] or the | 
|  | * Prefetch Abort Handler [breakpoint] with interrupts disabled. | 
|  | */ | 
|  | static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | int ret = 0; | 
|  | u32 dscr; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | if (interrupts_enabled(regs)) | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* We only handle watchpoints and hardware breakpoints. */ | 
|  | ARM_DBG_READ(c0, c1, 0, dscr); | 
|  |  | 
|  | /* Perform perf callbacks. */ | 
|  | switch (ARM_DSCR_MOE(dscr)) { | 
|  | case ARM_ENTRY_BREAKPOINT: | 
|  | breakpoint_handler(addr, regs); | 
|  | break; | 
|  | case ARM_ENTRY_ASYNC_WATCHPOINT: | 
|  | WARN(1, "Asynchronous watchpoint exception taken. Debugging results may be unreliable\n"); | 
|  | fallthrough; | 
|  | case ARM_ENTRY_SYNC_WATCHPOINT: | 
|  | watchpoint_handler(addr, fsr, regs); | 
|  | break; | 
|  | case ARM_ENTRY_CFI_BREAKPOINT: | 
|  | hw_breakpoint_cfi_handler(regs); | 
|  | break; | 
|  | default: | 
|  | ret = 1; /* Unhandled fault. */ | 
|  | } | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM_ERRATA_764319 | 
|  | static int oslsr_fault; | 
|  |  | 
|  | static int debug_oslsr_trap(struct pt_regs *regs, unsigned int instr) | 
|  | { | 
|  | oslsr_fault = 1; | 
|  | instruction_pointer(regs) += 4; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct undef_hook debug_oslsr_hook = { | 
|  | .instr_mask  = 0xffffffff, | 
|  | .instr_val = 0xee115e91, | 
|  | .fn = debug_oslsr_trap, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * One-time initialisation. | 
|  | */ | 
|  | static cpumask_t debug_err_mask; | 
|  |  | 
|  | static int debug_reg_trap(struct pt_regs *regs, unsigned int instr) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | pr_warn("Debug register access (0x%x) caused undefined instruction on CPU %d\n", | 
|  | instr, cpu); | 
|  |  | 
|  | /* Set the error flag for this CPU and skip the faulting instruction. */ | 
|  | cpumask_set_cpu(cpu, &debug_err_mask); | 
|  | instruction_pointer(regs) += 4; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct undef_hook debug_reg_hook = { | 
|  | .instr_mask	= 0x0fe80f10, | 
|  | .instr_val	= 0x0e000e10, | 
|  | .fn		= debug_reg_trap, | 
|  | }; | 
|  |  | 
|  | /* Does this core support OS Save and Restore? */ | 
|  | static bool core_has_os_save_restore(void) | 
|  | { | 
|  | u32 oslsr; | 
|  |  | 
|  | switch (get_debug_arch()) { | 
|  | case ARM_DEBUG_ARCH_V7_1: | 
|  | return true; | 
|  | case ARM_DEBUG_ARCH_V7_ECP14: | 
|  | #ifdef CONFIG_ARM_ERRATA_764319 | 
|  | oslsr_fault = 0; | 
|  | register_undef_hook(&debug_oslsr_hook); | 
|  | ARM_DBG_READ(c1, c1, 4, oslsr); | 
|  | unregister_undef_hook(&debug_oslsr_hook); | 
|  | if (oslsr_fault) | 
|  | return false; | 
|  | #else | 
|  | ARM_DBG_READ(c1, c1, 4, oslsr); | 
|  | #endif | 
|  | if (oslsr & ARM_OSLSR_OSLM0) | 
|  | return true; | 
|  | fallthrough; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void reset_ctrl_regs(unsigned int cpu) | 
|  | { | 
|  | int i, raw_num_brps, err = 0; | 
|  | u32 val; | 
|  |  | 
|  | /* | 
|  | * v7 debug contains save and restore registers so that debug state | 
|  | * can be maintained across low-power modes without leaving the debug | 
|  | * logic powered up. It is IMPLEMENTATION DEFINED whether we can access | 
|  | * the debug registers out of reset, so we must unlock the OS Lock | 
|  | * Access Register to avoid taking undefined instruction exceptions | 
|  | * later on. | 
|  | */ | 
|  | switch (debug_arch) { | 
|  | case ARM_DEBUG_ARCH_V6: | 
|  | case ARM_DEBUG_ARCH_V6_1: | 
|  | /* ARMv6 cores clear the registers out of reset. */ | 
|  | goto out_mdbgen; | 
|  | case ARM_DEBUG_ARCH_V7_ECP14: | 
|  | /* | 
|  | * Ensure sticky power-down is clear (i.e. debug logic is | 
|  | * powered up). | 
|  | */ | 
|  | ARM_DBG_READ(c1, c5, 4, val); | 
|  | if ((val & 0x1) == 0) | 
|  | err = -EPERM; | 
|  |  | 
|  | if (!has_ossr) | 
|  | goto clear_vcr; | 
|  | break; | 
|  | case ARM_DEBUG_ARCH_V7_1: | 
|  | /* | 
|  | * Ensure the OS double lock is clear. | 
|  | */ | 
|  | ARM_DBG_READ(c1, c3, 4, val); | 
|  | if ((val & 0x1) == 1) | 
|  | err = -EPERM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | pr_warn_once("CPU %d debug is powered down!\n", cpu); | 
|  | cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unconditionally clear the OS lock by writing a value | 
|  | * other than CS_LAR_KEY to the access register. | 
|  | */ | 
|  | ARM_DBG_WRITE(c1, c0, 4, ~CORESIGHT_UNLOCK); | 
|  | isb(); | 
|  |  | 
|  | /* | 
|  | * Clear any configured vector-catch events before | 
|  | * enabling monitor mode. | 
|  | */ | 
|  | clear_vcr: | 
|  | ARM_DBG_WRITE(c0, c7, 0, 0); | 
|  | isb(); | 
|  |  | 
|  | if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) { | 
|  | pr_warn_once("CPU %d failed to disable vector catch\n", cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The control/value register pairs are UNKNOWN out of reset so | 
|  | * clear them to avoid spurious debug events. | 
|  | */ | 
|  | raw_num_brps = get_num_brp_resources(); | 
|  | for (i = 0; i < raw_num_brps; ++i) { | 
|  | write_wb_reg(ARM_BASE_BCR + i, 0UL); | 
|  | write_wb_reg(ARM_BASE_BVR + i, 0UL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < core_num_wrps; ++i) { | 
|  | write_wb_reg(ARM_BASE_WCR + i, 0UL); | 
|  | write_wb_reg(ARM_BASE_WVR + i, 0UL); | 
|  | } | 
|  |  | 
|  | if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) { | 
|  | pr_warn_once("CPU %d failed to clear debug register pairs\n", cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Have a crack at enabling monitor mode. We don't actually need | 
|  | * it yet, but reporting an error early is useful if it fails. | 
|  | */ | 
|  | out_mdbgen: | 
|  | if (enable_monitor_mode()) | 
|  | cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu)); | 
|  | } | 
|  |  | 
|  | static int dbg_reset_online(unsigned int cpu) | 
|  | { | 
|  | local_irq_disable(); | 
|  | reset_ctrl_regs(cpu); | 
|  | local_irq_enable(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_PM | 
|  | static int dbg_cpu_pm_notify(struct notifier_block *self, unsigned long action, | 
|  | void *v) | 
|  | { | 
|  | if (action == CPU_PM_EXIT) | 
|  | reset_ctrl_regs(smp_processor_id()); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block dbg_cpu_pm_nb = { | 
|  | .notifier_call = dbg_cpu_pm_notify, | 
|  | }; | 
|  |  | 
|  | static void __init pm_init(void) | 
|  | { | 
|  | cpu_pm_register_notifier(&dbg_cpu_pm_nb); | 
|  | } | 
|  | #else | 
|  | static inline void pm_init(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int __init arch_hw_breakpoint_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | debug_arch = get_debug_arch(); | 
|  |  | 
|  | if (!debug_arch_supported()) { | 
|  | pr_info("debug architecture 0x%x unsupported.\n", debug_arch); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scorpion CPUs (at least those in APQ8060) seem to set DBGPRSR.SPD | 
|  | * whenever a WFI is issued, even if the core is not powered down, in | 
|  | * violation of the architecture.  When DBGPRSR.SPD is set, accesses to | 
|  | * breakpoint and watchpoint registers are treated as undefined, so | 
|  | * this results in boot time and runtime failures when these are | 
|  | * accessed and we unexpectedly take a trap. | 
|  | * | 
|  | * It's not clear if/how this can be worked around, so we blacklist | 
|  | * Scorpion CPUs to avoid these issues. | 
|  | */ | 
|  | if (read_cpuid_part() == ARM_CPU_PART_SCORPION) { | 
|  | pr_info("Scorpion CPU detected. Hardware breakpoints and watchpoints disabled\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | has_ossr = core_has_os_save_restore(); | 
|  |  | 
|  | /* Determine how many BRPs/WRPs are available. */ | 
|  | core_num_brps = get_num_brps(); | 
|  | core_num_wrps = get_num_wrps(); | 
|  |  | 
|  | /* | 
|  | * We need to tread carefully here because DBGSWENABLE may be | 
|  | * driven low on this core and there isn't an architected way to | 
|  | * determine that. | 
|  | */ | 
|  | cpus_read_lock(); | 
|  | register_undef_hook(&debug_reg_hook); | 
|  |  | 
|  | /* | 
|  | * Register CPU notifier which resets the breakpoint resources. We | 
|  | * assume that a halting debugger will leave the world in a nice state | 
|  | * for us. | 
|  | */ | 
|  | ret = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN, | 
|  | "arm/hw_breakpoint:online", | 
|  | dbg_reset_online, NULL); | 
|  | unregister_undef_hook(&debug_reg_hook); | 
|  | if (WARN_ON(ret < 0) || !cpumask_empty(&debug_err_mask)) { | 
|  | core_num_brps = 0; | 
|  | core_num_wrps = 0; | 
|  | if (ret > 0) | 
|  | cpuhp_remove_state_nocalls_cpuslocked(ret); | 
|  | cpus_read_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_info("found %d " "%s" "breakpoint and %d watchpoint registers.\n", | 
|  | core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " : | 
|  | "", core_num_wrps); | 
|  |  | 
|  | /* Work out the maximum supported watchpoint length. */ | 
|  | max_watchpoint_len = get_max_wp_len(); | 
|  | pr_info("maximum watchpoint size is %u bytes.\n", | 
|  | max_watchpoint_len); | 
|  |  | 
|  | /* Register debug fault handler. */ | 
|  | hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP, | 
|  | TRAP_HWBKPT, "watchpoint debug exception"); | 
|  | hook_ifault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP, | 
|  | TRAP_HWBKPT, "breakpoint debug exception"); | 
|  | cpus_read_unlock(); | 
|  |  | 
|  | /* Register PM notifiers. */ | 
|  | pm_init(); | 
|  | return 0; | 
|  | } | 
|  | arch_initcall(arch_hw_breakpoint_init); | 
|  |  | 
|  | void hw_breakpoint_pmu_read(struct perf_event *bp) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dummy function to register with die_notifier. | 
|  | */ | 
|  | int hw_breakpoint_exceptions_notify(struct notifier_block *unused, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  | return NOTIFY_DONE; | 
|  | } |