|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2010, 2023 Red Hat, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_discard.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_extent_busy.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_health.h" | 
|  | #include "xfs_rtbitmap.h" | 
|  |  | 
|  | /* | 
|  | * Notes on an efficient, low latency fstrim algorithm | 
|  | * | 
|  | * We need to walk the filesystem free space and issue discards on the free | 
|  | * space that meet the search criteria (size and location). We cannot issue | 
|  | * discards on extents that might be in use, or are so recently in use they are | 
|  | * still marked as busy. To serialise against extent state changes whilst we are | 
|  | * gathering extents to trim, we must hold the AGF lock to lock out other | 
|  | * allocations and extent free operations that might change extent state. | 
|  | * | 
|  | * However, we cannot just hold the AGF for the entire AG free space walk whilst | 
|  | * we issue discards on each free space that is found. Storage devices can have | 
|  | * extremely slow discard implementations (e.g. ceph RBD) and so walking a | 
|  | * couple of million free extents and issuing synchronous discards on each | 
|  | * extent can take a *long* time. Whilst we are doing this walk, nothing else | 
|  | * can access the AGF, and we can stall transactions and hence the log whilst | 
|  | * modifications wait for the AGF lock to be released. This can lead hung tasks | 
|  | * kicking the hung task timer and rebooting the system. This is bad. | 
|  | * | 
|  | * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI | 
|  | * lock, gathers a range of inode cluster buffers that are allocated, drops the | 
|  | * AGI lock and then reads all the inode cluster buffers and processes them. It | 
|  | * loops doing this, using a cursor to keep track of where it is up to in the AG | 
|  | * for each iteration to restart the INOBT lookup from. | 
|  | * | 
|  | * We can't do this exactly with free space - once we drop the AGF lock, the | 
|  | * state of the free extent is out of our control and we cannot run a discard | 
|  | * safely on it in this situation. Unless, of course, we've marked the free | 
|  | * extent as busy and undergoing a discard operation whilst we held the AGF | 
|  | * locked. | 
|  | * | 
|  | * This is exactly how online discard works - free extents are marked busy when | 
|  | * they are freed, and once the extent free has been committed to the journal, | 
|  | * the busy extent record is marked as "undergoing discard" and the discard is | 
|  | * then issued on the free extent. Once the discard completes, the busy extent | 
|  | * record is removed and the extent is able to be allocated again. | 
|  | * | 
|  | * In the context of fstrim, if we find a free extent we need to discard, we | 
|  | * don't have to discard it immediately. All we need to do it record that free | 
|  | * extent as being busy and under discard, and all the allocation routines will | 
|  | * now avoid trying to allocate it. Hence if we mark the extent as busy under | 
|  | * the AGF lock, we can safely discard it without holding the AGF lock because | 
|  | * nothing will attempt to allocate that free space until the discard completes. | 
|  | * | 
|  | * This also allows us to issue discards asynchronously like we do with online | 
|  | * discard, and so for fast devices fstrim will run much faster as we can have | 
|  | * multiple discard operations in flight at once, as well as pipeline the free | 
|  | * extent search so that it overlaps in flight discard IO. | 
|  | */ | 
|  |  | 
|  | struct workqueue_struct *xfs_discard_wq; | 
|  |  | 
|  | static void | 
|  | xfs_discard_endio_work( | 
|  | struct work_struct	*work) | 
|  | { | 
|  | struct xfs_busy_extents	*extents = | 
|  | container_of(work, struct xfs_busy_extents, endio_work); | 
|  |  | 
|  | xfs_extent_busy_clear(extents->mount, &extents->extent_list, false); | 
|  | kfree(extents->owner); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue up the actual completion to a thread to avoid IRQ-safe locking for | 
|  | * pagb_lock. | 
|  | */ | 
|  | static void | 
|  | xfs_discard_endio( | 
|  | struct bio		*bio) | 
|  | { | 
|  | struct xfs_busy_extents	*extents = bio->bi_private; | 
|  |  | 
|  | INIT_WORK(&extents->endio_work, xfs_discard_endio_work); | 
|  | queue_work(xfs_discard_wq, &extents->endio_work); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the discard list and issue discards on all the busy extents in the | 
|  | * list. We plug and chain the bios so that we only need a single completion | 
|  | * call to clear all the busy extents once the discards are complete. | 
|  | */ | 
|  | int | 
|  | xfs_discard_extents( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_busy_extents	*extents) | 
|  | { | 
|  | struct xfs_extent_busy	*busyp; | 
|  | struct bio		*bio = NULL; | 
|  | struct blk_plug		plug; | 
|  | int			error = 0; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | list_for_each_entry(busyp, &extents->extent_list, list) { | 
|  | trace_xfs_discard_extent(mp, busyp->agno, busyp->bno, | 
|  | busyp->length); | 
|  |  | 
|  | error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev, | 
|  | XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno), | 
|  | XFS_FSB_TO_BB(mp, busyp->length), | 
|  | GFP_KERNEL, &bio); | 
|  | if (error && error != -EOPNOTSUPP) { | 
|  | xfs_info(mp, | 
|  | "discard failed for extent [0x%llx,%u], error %d", | 
|  | (unsigned long long)busyp->bno, | 
|  | busyp->length, | 
|  | error); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bio) { | 
|  | bio->bi_private = extents; | 
|  | bio->bi_end_io = xfs_discard_endio; | 
|  | submit_bio(bio); | 
|  | } else { | 
|  | xfs_discard_endio_work(&extents->endio_work); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Care must be taken setting up the trim cursor as the perags may not have been | 
|  | * initialised when the cursor is initialised. e.g. a clean mount which hasn't | 
|  | * read in AGFs and the first operation run on the mounted fs is a trim. This | 
|  | * can result in perag fields that aren't initialised until | 
|  | * xfs_trim_gather_extents() calls xfs_alloc_read_agf() to lock down the AG for | 
|  | * the free space search. | 
|  | */ | 
|  | struct xfs_trim_cur { | 
|  | xfs_agblock_t	start; | 
|  | xfs_extlen_t	count; | 
|  | xfs_agblock_t	end; | 
|  | xfs_extlen_t	minlen; | 
|  | bool		by_bno; | 
|  | }; | 
|  |  | 
|  | static int | 
|  | xfs_trim_gather_extents( | 
|  | struct xfs_perag	*pag, | 
|  | struct xfs_trim_cur	*tcur, | 
|  | struct xfs_busy_extents	*extents) | 
|  | { | 
|  | struct xfs_mount	*mp = pag->pag_mount; | 
|  | struct xfs_trans	*tp; | 
|  | struct xfs_btree_cur	*cur; | 
|  | struct xfs_buf		*agbp; | 
|  | int			error; | 
|  | int			i; | 
|  | int			batch = 100; | 
|  |  | 
|  | /* | 
|  | * Force out the log.  This means any transactions that might have freed | 
|  | * space before we take the AGF buffer lock are now on disk, and the | 
|  | * volatile disk cache is flushed. | 
|  | */ | 
|  | xfs_log_force(mp, XFS_LOG_SYNC); | 
|  |  | 
|  | error = xfs_trans_alloc_empty(mp, &tp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xfs_alloc_read_agf(pag, tp, 0, &agbp); | 
|  | if (error) | 
|  | goto out_trans_cancel; | 
|  |  | 
|  | /* | 
|  | * First time through tcur->count will not have been initialised as | 
|  | * pag->pagf_longest is not guaranteed to be valid before we read | 
|  | * the AGF buffer above. | 
|  | */ | 
|  | if (!tcur->count) | 
|  | tcur->count = pag->pagf_longest; | 
|  |  | 
|  | if (tcur->by_bno) { | 
|  | /* sub-AG discard request always starts at tcur->start */ | 
|  | cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag); | 
|  | error = xfs_alloc_lookup_le(cur, tcur->start, 0, &i); | 
|  | if (!error && !i) | 
|  | error = xfs_alloc_lookup_ge(cur, tcur->start, 0, &i); | 
|  | } else if (tcur->start == 0) { | 
|  | /* first time through a by-len starts with max length */ | 
|  | cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag); | 
|  | error = xfs_alloc_lookup_ge(cur, 0, tcur->count, &i); | 
|  | } else { | 
|  | /* nth time through a by-len starts where we left off */ | 
|  | cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag); | 
|  | error = xfs_alloc_lookup_le(cur, tcur->start, tcur->count, &i); | 
|  | } | 
|  | if (error) | 
|  | goto out_del_cursor; | 
|  | if (i == 0) { | 
|  | /* nothing of that length left in the AG, we are done */ | 
|  | tcur->count = 0; | 
|  | goto out_del_cursor; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Loop until we are done with all extents that are large | 
|  | * enough to be worth discarding or we hit batch limits. | 
|  | */ | 
|  | while (i) { | 
|  | xfs_agblock_t	fbno; | 
|  | xfs_extlen_t	flen; | 
|  |  | 
|  | error = xfs_alloc_get_rec(cur, &fbno, &flen, &i); | 
|  | if (error) | 
|  | break; | 
|  | if (XFS_IS_CORRUPT(mp, i != 1)) { | 
|  | xfs_btree_mark_sick(cur); | 
|  | error = -EFSCORRUPTED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (--batch <= 0) { | 
|  | /* | 
|  | * Update the cursor to point at this extent so we | 
|  | * restart the next batch from this extent. | 
|  | */ | 
|  | tcur->start = fbno; | 
|  | tcur->count = flen; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the extent is entirely outside of the range we are | 
|  | * supposed to skip it.  Do not bother to trim down partially | 
|  | * overlapping ranges for now. | 
|  | */ | 
|  | if (fbno + flen < tcur->start) { | 
|  | trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen); | 
|  | goto next_extent; | 
|  | } | 
|  | if (fbno > tcur->end) { | 
|  | trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen); | 
|  | if (tcur->by_bno) { | 
|  | tcur->count = 0; | 
|  | break; | 
|  | } | 
|  | goto next_extent; | 
|  | } | 
|  |  | 
|  | /* Trim the extent returned to the range we want. */ | 
|  | if (fbno < tcur->start) { | 
|  | flen -= tcur->start - fbno; | 
|  | fbno = tcur->start; | 
|  | } | 
|  | if (fbno + flen > tcur->end + 1) | 
|  | flen = tcur->end - fbno + 1; | 
|  |  | 
|  | /* Too small?  Give up. */ | 
|  | if (flen < tcur->minlen) { | 
|  | trace_xfs_discard_toosmall(mp, pag->pag_agno, fbno, flen); | 
|  | if (tcur->by_bno) | 
|  | goto next_extent; | 
|  | tcur->count = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If any blocks in the range are still busy, skip the | 
|  | * discard and try again the next time. | 
|  | */ | 
|  | if (xfs_extent_busy_search(mp, pag, fbno, flen)) { | 
|  | trace_xfs_discard_busy(mp, pag->pag_agno, fbno, flen); | 
|  | goto next_extent; | 
|  | } | 
|  |  | 
|  | xfs_extent_busy_insert_discard(pag, fbno, flen, | 
|  | &extents->extent_list); | 
|  | next_extent: | 
|  | if (tcur->by_bno) | 
|  | error = xfs_btree_increment(cur, 0, &i); | 
|  | else | 
|  | error = xfs_btree_decrement(cur, 0, &i); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * If there's no more records in the tree, we are done. Set the | 
|  | * cursor block count to 0 to indicate to the caller that there | 
|  | * is no more extents to search. | 
|  | */ | 
|  | if (i == 0) | 
|  | tcur->count = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there was an error, release all the gathered busy extents because | 
|  | * we aren't going to issue a discard on them any more. | 
|  | */ | 
|  | if (error) | 
|  | xfs_extent_busy_clear(mp, &extents->extent_list, false); | 
|  | out_del_cursor: | 
|  | xfs_btree_del_cursor(cur, error); | 
|  | out_trans_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | xfs_trim_should_stop(void) | 
|  | { | 
|  | return fatal_signal_pending(current) || freezing(current); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterate the free list gathering extents and discarding them. We need a cursor | 
|  | * for the repeated iteration of gather/discard loop, so use the longest extent | 
|  | * we found in the last batch as the key to start the next. | 
|  | */ | 
|  | static int | 
|  | xfs_trim_perag_extents( | 
|  | struct xfs_perag	*pag, | 
|  | xfs_agblock_t		start, | 
|  | xfs_agblock_t		end, | 
|  | xfs_extlen_t		minlen) | 
|  | { | 
|  | struct xfs_trim_cur	tcur = { | 
|  | .start		= start, | 
|  | .end		= end, | 
|  | .minlen		= minlen, | 
|  | }; | 
|  | int			error = 0; | 
|  |  | 
|  | if (start != 0 || end != pag->block_count) | 
|  | tcur.by_bno = true; | 
|  |  | 
|  | do { | 
|  | struct xfs_busy_extents	*extents; | 
|  |  | 
|  | extents = kzalloc(sizeof(*extents), GFP_KERNEL); | 
|  | if (!extents) { | 
|  | error = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | extents->mount = pag->pag_mount; | 
|  | extents->owner = extents; | 
|  | INIT_LIST_HEAD(&extents->extent_list); | 
|  |  | 
|  | error = xfs_trim_gather_extents(pag, &tcur, extents); | 
|  | if (error) { | 
|  | kfree(extents); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We hand the extent list to the discard function here so the | 
|  | * discarded extents can be removed from the busy extent list. | 
|  | * This allows the discards to run asynchronously with gathering | 
|  | * the next round of extents to discard. | 
|  | * | 
|  | * However, we must ensure that we do not reference the extent | 
|  | * list  after this function call, as it may have been freed by | 
|  | * the time control returns to us. | 
|  | */ | 
|  | error = xfs_discard_extents(pag->pag_mount, extents); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | if (xfs_trim_should_stop()) | 
|  | break; | 
|  |  | 
|  | } while (tcur.count != 0); | 
|  |  | 
|  | return error; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_trim_datadev_extents( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_daddr_t		start, | 
|  | xfs_daddr_t		end, | 
|  | xfs_extlen_t		minlen) | 
|  | { | 
|  | xfs_agnumber_t		start_agno, end_agno; | 
|  | xfs_agblock_t		start_agbno, end_agbno; | 
|  | xfs_daddr_t		ddev_end; | 
|  | struct xfs_perag	*pag; | 
|  | int			last_error = 0, error; | 
|  |  | 
|  | ddev_end = min_t(xfs_daddr_t, end, | 
|  | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1); | 
|  |  | 
|  | start_agno = xfs_daddr_to_agno(mp, start); | 
|  | start_agbno = xfs_daddr_to_agbno(mp, start); | 
|  | end_agno = xfs_daddr_to_agno(mp, ddev_end); | 
|  | end_agbno = xfs_daddr_to_agbno(mp, ddev_end); | 
|  |  | 
|  | for_each_perag_range(mp, start_agno, end_agno, pag) { | 
|  | xfs_agblock_t	agend = pag->block_count; | 
|  |  | 
|  | if (start_agno == end_agno) | 
|  | agend = end_agbno; | 
|  | error = xfs_trim_perag_extents(pag, start_agbno, agend, minlen); | 
|  | if (error) | 
|  | last_error = error; | 
|  |  | 
|  | if (xfs_trim_should_stop()) { | 
|  | xfs_perag_rele(pag); | 
|  | break; | 
|  | } | 
|  | start_agbno = 0; | 
|  | } | 
|  |  | 
|  | return last_error; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_XFS_RT | 
|  | struct xfs_trim_rtdev { | 
|  | /* list of rt extents to free */ | 
|  | struct list_head	extent_list; | 
|  |  | 
|  | /* minimum length that caller allows us to trim */ | 
|  | xfs_rtblock_t		minlen_fsb; | 
|  |  | 
|  | /* restart point for the rtbitmap walk */ | 
|  | xfs_rtxnum_t		restart_rtx; | 
|  |  | 
|  | /* stopping point for the current rtbitmap walk */ | 
|  | xfs_rtxnum_t		stop_rtx; | 
|  | }; | 
|  |  | 
|  | struct xfs_rtx_busy { | 
|  | struct list_head	list; | 
|  | xfs_rtblock_t		bno; | 
|  | xfs_rtblock_t		length; | 
|  | }; | 
|  |  | 
|  | static void | 
|  | xfs_discard_free_rtdev_extents( | 
|  | struct xfs_trim_rtdev	*tr) | 
|  | { | 
|  | struct xfs_rtx_busy	*busyp, *n; | 
|  |  | 
|  | list_for_each_entry_safe(busyp, n, &tr->extent_list, list) { | 
|  | list_del_init(&busyp->list); | 
|  | kfree(busyp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the discard list and issue discards on all the busy extents in the | 
|  | * list. We plug and chain the bios so that we only need a single completion | 
|  | * call to clear all the busy extents once the discards are complete. | 
|  | */ | 
|  | static int | 
|  | xfs_discard_rtdev_extents( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_trim_rtdev	*tr) | 
|  | { | 
|  | struct block_device	*bdev = mp->m_rtdev_targp->bt_bdev; | 
|  | struct xfs_rtx_busy	*busyp; | 
|  | struct bio		*bio = NULL; | 
|  | struct blk_plug		plug; | 
|  | xfs_rtblock_t		start = NULLRTBLOCK, length = 0; | 
|  | int			error = 0; | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | list_for_each_entry(busyp, &tr->extent_list, list) { | 
|  | if (start == NULLRTBLOCK) | 
|  | start = busyp->bno; | 
|  | length += busyp->length; | 
|  |  | 
|  | trace_xfs_discard_rtextent(mp, busyp->bno, busyp->length); | 
|  |  | 
|  | error = __blkdev_issue_discard(bdev, | 
|  | XFS_FSB_TO_BB(mp, busyp->bno), | 
|  | XFS_FSB_TO_BB(mp, busyp->length), | 
|  | GFP_NOFS, &bio); | 
|  | if (error) | 
|  | break; | 
|  | } | 
|  | xfs_discard_free_rtdev_extents(tr); | 
|  |  | 
|  | if (bio) { | 
|  | error = submit_bio_wait(bio); | 
|  | if (error == -EOPNOTSUPP) | 
|  | error = 0; | 
|  | if (error) | 
|  | xfs_info(mp, | 
|  | "discard failed for rtextent [0x%llx,%llu], error %d", | 
|  | (unsigned long long)start, | 
|  | (unsigned long long)length, | 
|  | error); | 
|  | bio_put(bio); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_trim_gather_rtextent( | 
|  | struct xfs_mount		*mp, | 
|  | struct xfs_trans		*tp, | 
|  | const struct xfs_rtalloc_rec	*rec, | 
|  | void				*priv) | 
|  | { | 
|  | struct xfs_trim_rtdev		*tr = priv; | 
|  | struct xfs_rtx_busy		*busyp; | 
|  | xfs_rtblock_t			rbno, rlen; | 
|  |  | 
|  | if (rec->ar_startext > tr->stop_rtx) { | 
|  | /* | 
|  | * If we've scanned a large number of rtbitmap blocks, update | 
|  | * the cursor to point at this extent so we restart the next | 
|  | * batch from this extent. | 
|  | */ | 
|  | tr->restart_rtx = rec->ar_startext; | 
|  | return -ECANCELED; | 
|  | } | 
|  |  | 
|  | rbno = xfs_rtx_to_rtb(mp, rec->ar_startext); | 
|  | rlen = xfs_rtx_to_rtb(mp, rec->ar_extcount); | 
|  |  | 
|  | /* Ignore too small. */ | 
|  | if (rlen < tr->minlen_fsb) { | 
|  | trace_xfs_discard_rttoosmall(mp, rbno, rlen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | busyp = kzalloc(sizeof(struct xfs_rtx_busy), GFP_KERNEL); | 
|  | if (!busyp) | 
|  | return -ENOMEM; | 
|  |  | 
|  | busyp->bno = rbno; | 
|  | busyp->length = rlen; | 
|  | INIT_LIST_HEAD(&busyp->list); | 
|  | list_add_tail(&busyp->list, &tr->extent_list); | 
|  |  | 
|  | tr->restart_rtx = rec->ar_startext + rec->ar_extcount; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_trim_rtdev_extents( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_daddr_t		start, | 
|  | xfs_daddr_t		end, | 
|  | xfs_daddr_t		minlen) | 
|  | { | 
|  | struct xfs_trim_rtdev	tr = { | 
|  | .minlen_fsb	= XFS_BB_TO_FSB(mp, minlen), | 
|  | }; | 
|  | xfs_rtxnum_t		low, high; | 
|  | struct xfs_trans	*tp; | 
|  | xfs_daddr_t		rtdev_daddr; | 
|  | int			error; | 
|  |  | 
|  | INIT_LIST_HEAD(&tr.extent_list); | 
|  |  | 
|  | /* Shift the start and end downwards to match the rt device. */ | 
|  | rtdev_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); | 
|  | if (start > rtdev_daddr) | 
|  | start -= rtdev_daddr; | 
|  | else | 
|  | start = 0; | 
|  |  | 
|  | if (end <= rtdev_daddr) | 
|  | return 0; | 
|  | end -= rtdev_daddr; | 
|  |  | 
|  | error = xfs_trans_alloc_empty(mp, &tp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | end = min_t(xfs_daddr_t, end, | 
|  | XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks) - 1); | 
|  |  | 
|  | /* Convert the rt blocks to rt extents */ | 
|  | low = xfs_rtb_to_rtxup(mp, XFS_BB_TO_FSB(mp, start)); | 
|  | high = xfs_rtb_to_rtx(mp, XFS_BB_TO_FSBT(mp, end)); | 
|  |  | 
|  | /* | 
|  | * Walk the free ranges between low and high.  The query_range function | 
|  | * trims the extents returned. | 
|  | */ | 
|  | do { | 
|  | tr.stop_rtx = low + (mp->m_sb.sb_blocksize * NBBY); | 
|  | xfs_rtbitmap_lock_shared(mp, XFS_RBMLOCK_BITMAP); | 
|  | error = xfs_rtalloc_query_range(mp, tp, low, high, | 
|  | xfs_trim_gather_rtextent, &tr); | 
|  |  | 
|  | if (error == -ECANCELED) | 
|  | error = 0; | 
|  | if (error) { | 
|  | xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP); | 
|  | xfs_discard_free_rtdev_extents(&tr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (list_empty(&tr.extent_list)) { | 
|  | xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP); | 
|  | break; | 
|  | } | 
|  |  | 
|  | error = xfs_discard_rtdev_extents(mp, &tr); | 
|  | xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP); | 
|  | if (error) | 
|  | break; | 
|  |  | 
|  | low = tr.restart_rtx; | 
|  | } while (!xfs_trim_should_stop() && low <= high); | 
|  |  | 
|  | xfs_trans_cancel(tp); | 
|  | return error; | 
|  | } | 
|  | #else | 
|  | # define xfs_trim_rtdev_extents(...)	(-EOPNOTSUPP) | 
|  | #endif /* CONFIG_XFS_RT */ | 
|  |  | 
|  | /* | 
|  | * trim a range of the filesystem. | 
|  | * | 
|  | * Note: the parameters passed from userspace are byte ranges into the | 
|  | * filesystem which does not match to the format we use for filesystem block | 
|  | * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format | 
|  | * is a linear address range. Hence we need to use DADDR based conversions and | 
|  | * comparisons for determining the correct offset and regions to trim. | 
|  | * | 
|  | * The realtime device is mapped into the FITRIM "address space" immediately | 
|  | * after the data device. | 
|  | */ | 
|  | int | 
|  | xfs_ioc_trim( | 
|  | struct xfs_mount		*mp, | 
|  | struct fstrim_range __user	*urange) | 
|  | { | 
|  | unsigned int		granularity = | 
|  | bdev_discard_granularity(mp->m_ddev_targp->bt_bdev); | 
|  | struct block_device	*rt_bdev = NULL; | 
|  | struct fstrim_range	range; | 
|  | xfs_daddr_t		start, end; | 
|  | xfs_extlen_t		minlen; | 
|  | xfs_rfsblock_t		max_blocks; | 
|  | int			error, last_error = 0; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (mp->m_rtdev_targp && | 
|  | bdev_max_discard_sectors(mp->m_rtdev_targp->bt_bdev)) | 
|  | rt_bdev = mp->m_rtdev_targp->bt_bdev; | 
|  | if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev) && !rt_bdev) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (rt_bdev) | 
|  | granularity = max(granularity, | 
|  | bdev_discard_granularity(rt_bdev)); | 
|  |  | 
|  | /* | 
|  | * We haven't recovered the log, so we cannot use our bnobt-guided | 
|  | * storage zapping commands. | 
|  | */ | 
|  | if (xfs_has_norecovery(mp)) | 
|  | return -EROFS; | 
|  |  | 
|  | if (copy_from_user(&range, urange, sizeof(range))) | 
|  | return -EFAULT; | 
|  |  | 
|  | range.minlen = max_t(u64, granularity, range.minlen); | 
|  | minlen = XFS_B_TO_FSB(mp, range.minlen); | 
|  |  | 
|  | /* | 
|  | * Truncating down the len isn't actually quite correct, but using | 
|  | * BBTOB would mean we trivially get overflows for values | 
|  | * of ULLONG_MAX or slightly lower.  And ULLONG_MAX is the default | 
|  | * used by the fstrim application.  In the end it really doesn't | 
|  | * matter as trimming blocks is an advisory interface. | 
|  | */ | 
|  | max_blocks = mp->m_sb.sb_dblocks + mp->m_sb.sb_rblocks; | 
|  | if (range.start >= XFS_FSB_TO_B(mp, max_blocks) || | 
|  | range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) || | 
|  | range.len < mp->m_sb.sb_blocksize) | 
|  | return -EINVAL; | 
|  |  | 
|  | start = BTOBB(range.start); | 
|  | end = start + BTOBBT(range.len) - 1; | 
|  |  | 
|  | if (bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev)) { | 
|  | error = xfs_trim_datadev_extents(mp, start, end, minlen); | 
|  | if (error) | 
|  | last_error = error; | 
|  | } | 
|  |  | 
|  | if (rt_bdev && !xfs_trim_should_stop()) { | 
|  | error = xfs_trim_rtdev_extents(mp, start, end, minlen); | 
|  | if (error) | 
|  | last_error = error; | 
|  | } | 
|  |  | 
|  | if (last_error) | 
|  | return last_error; | 
|  |  | 
|  | range.len = min_t(unsigned long long, range.len, | 
|  | XFS_FSB_TO_B(mp, max_blocks) - range.start); | 
|  | if (copy_to_user(urange, &range, sizeof(range))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } |