|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Kernel probes (kprobes) for SuperH | 
|  | * | 
|  | * Copyright (C) 2007 Chris Smith <chris.smith@st.com> | 
|  | * Copyright (C) 2006 Lineo Solutions, Inc. | 
|  | */ | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/extable.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
|  | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
|  |  | 
|  | static DEFINE_PER_CPU(struct kprobe, saved_current_opcode); | 
|  | static DEFINE_PER_CPU(struct kprobe, saved_next_opcode); | 
|  | static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2); | 
|  |  | 
|  | #define OPCODE_JMP(x)	(((x) & 0xF0FF) == 0x402b) | 
|  | #define OPCODE_JSR(x)	(((x) & 0xF0FF) == 0x400b) | 
|  | #define OPCODE_BRA(x)	(((x) & 0xF000) == 0xa000) | 
|  | #define OPCODE_BRAF(x)	(((x) & 0xF0FF) == 0x0023) | 
|  | #define OPCODE_BSR(x)	(((x) & 0xF000) == 0xb000) | 
|  | #define OPCODE_BSRF(x)	(((x) & 0xF0FF) == 0x0003) | 
|  |  | 
|  | #define OPCODE_BF_S(x)	(((x) & 0xFF00) == 0x8f00) | 
|  | #define OPCODE_BT_S(x)	(((x) & 0xFF00) == 0x8d00) | 
|  |  | 
|  | #define OPCODE_BF(x)	(((x) & 0xFF00) == 0x8b00) | 
|  | #define OPCODE_BT(x)	(((x) & 0xFF00) == 0x8900) | 
|  |  | 
|  | #define OPCODE_RTS(x)	(((x) & 0x000F) == 0x000b) | 
|  | #define OPCODE_RTE(x)	(((x) & 0xFFFF) == 0x002b) | 
|  |  | 
|  | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
|  | { | 
|  | kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr); | 
|  |  | 
|  | if (OPCODE_RTE(opcode)) | 
|  | return -EFAULT;	/* Bad breakpoint */ | 
|  |  | 
|  | memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); | 
|  | p->opcode = opcode; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
|  | { | 
|  | *p->addr = BREAKPOINT_INSTRUCTION; | 
|  | flush_icache_range((unsigned long)p->addr, | 
|  | (unsigned long)p->addr + sizeof(kprobe_opcode_t)); | 
|  | } | 
|  |  | 
|  | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
|  | { | 
|  | *p->addr = p->opcode; | 
|  | flush_icache_range((unsigned long)p->addr, | 
|  | (unsigned long)p->addr + sizeof(kprobe_opcode_t)); | 
|  | } | 
|  |  | 
|  | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
|  | { | 
|  | if (*p->addr == BREAKPOINT_INSTRUCTION) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * If an illegal slot instruction exception occurs for an address | 
|  | * containing a kprobe, remove the probe. | 
|  | * | 
|  | * Returns 0 if the exception was handled successfully, 1 otherwise. | 
|  | */ | 
|  | int __kprobes kprobe_handle_illslot(unsigned long pc) | 
|  | { | 
|  | struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1); | 
|  |  | 
|  | if (p != NULL) { | 
|  | printk("Warning: removing kprobe from delay slot: 0x%.8x\n", | 
|  | (unsigned int)pc + 2); | 
|  | unregister_kprobe(p); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
|  | { | 
|  | struct kprobe *saved = this_cpu_ptr(&saved_next_opcode); | 
|  |  | 
|  | if (saved->addr) { | 
|  | arch_disarm_kprobe(p); | 
|  | arch_disarm_kprobe(saved); | 
|  |  | 
|  | saved->addr = NULL; | 
|  | saved->opcode = 0; | 
|  |  | 
|  | saved = this_cpu_ptr(&saved_next_opcode2); | 
|  | if (saved->addr) { | 
|  | arch_disarm_kprobe(saved); | 
|  |  | 
|  | saved->addr = NULL; | 
|  | saved->opcode = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | kcb->prev_kprobe.kp = kprobe_running(); | 
|  | kcb->prev_kprobe.status = kcb->kprobe_status; | 
|  | } | 
|  |  | 
|  | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); | 
|  | kcb->kprobe_status = kcb->prev_kprobe.status; | 
|  | } | 
|  |  | 
|  | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
|  | struct kprobe_ctlblk *kcb) | 
|  | { | 
|  | __this_cpu_write(current_kprobe, p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Singlestep is implemented by disabling the current kprobe and setting one | 
|  | * on the next instruction, following branches. Two probes are set if the | 
|  | * branch is conditional. | 
|  | */ | 
|  | static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | __this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc); | 
|  |  | 
|  | if (p != NULL) { | 
|  | struct kprobe *op1, *op2; | 
|  |  | 
|  | arch_disarm_kprobe(p); | 
|  |  | 
|  | op1 = this_cpu_ptr(&saved_next_opcode); | 
|  | op2 = this_cpu_ptr(&saved_next_opcode2); | 
|  |  | 
|  | if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) { | 
|  | unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); | 
|  | op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr]; | 
|  | } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) { | 
|  | unsigned long disp = (p->opcode & 0x0FFF); | 
|  | op1->addr = | 
|  | (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); | 
|  |  | 
|  | } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) { | 
|  | unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); | 
|  | op1->addr = | 
|  | (kprobe_opcode_t *) (regs->pc + 4 + | 
|  | regs->regs[reg_nr]); | 
|  |  | 
|  | } else if (OPCODE_RTS(p->opcode)) { | 
|  | op1->addr = (kprobe_opcode_t *) regs->pr; | 
|  |  | 
|  | } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) { | 
|  | unsigned long disp = (p->opcode & 0x00FF); | 
|  | /* case 1 */ | 
|  | op1->addr = p->addr + 1; | 
|  | /* case 2 */ | 
|  | op2->addr = | 
|  | (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); | 
|  | op2->opcode = *(op2->addr); | 
|  | arch_arm_kprobe(op2); | 
|  |  | 
|  | } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) { | 
|  | unsigned long disp = (p->opcode & 0x00FF); | 
|  | /* case 1 */ | 
|  | op1->addr = p->addr + 2; | 
|  | /* case 2 */ | 
|  | op2->addr = | 
|  | (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); | 
|  | op2->opcode = *(op2->addr); | 
|  | arch_arm_kprobe(op2); | 
|  |  | 
|  | } else { | 
|  | op1->addr = p->addr + 1; | 
|  | } | 
|  |  | 
|  | op1->opcode = *(op1->addr); | 
|  | arch_arm_kprobe(op1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called with kretprobe_lock held */ | 
|  | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | ri->ret_addr = (kprobe_opcode_t *) regs->pr; | 
|  | ri->fp = NULL; | 
|  |  | 
|  | /* Replace the return addr with trampoline addr */ | 
|  | regs->pr = (unsigned long)kretprobe_trampoline; | 
|  | } | 
|  |  | 
|  | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *p; | 
|  | int ret = 0; | 
|  | kprobe_opcode_t *addr = NULL; | 
|  | struct kprobe_ctlblk *kcb; | 
|  |  | 
|  | /* | 
|  | * We don't want to be preempted for the entire | 
|  | * duration of kprobe processing | 
|  | */ | 
|  | preempt_disable(); | 
|  | kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | addr = (kprobe_opcode_t *) (regs->pc); | 
|  |  | 
|  | /* Check we're not actually recursing */ | 
|  | if (kprobe_running()) { | 
|  | p = get_kprobe(addr); | 
|  | if (p) { | 
|  | if (kcb->kprobe_status == KPROBE_HIT_SS && | 
|  | *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { | 
|  | goto no_kprobe; | 
|  | } | 
|  | /* We have reentered the kprobe_handler(), since | 
|  | * another probe was hit while within the handler. | 
|  | * We here save the original kprobes variables and | 
|  | * just single step on the instruction of the new probe | 
|  | * without calling any user handlers. | 
|  | */ | 
|  | save_previous_kprobe(kcb); | 
|  | set_current_kprobe(p, regs, kcb); | 
|  | kprobes_inc_nmissed_count(p); | 
|  | prepare_singlestep(p, regs); | 
|  | kcb->kprobe_status = KPROBE_REENTER; | 
|  | return 1; | 
|  | } | 
|  | goto no_kprobe; | 
|  | } | 
|  |  | 
|  | p = get_kprobe(addr); | 
|  | if (!p) { | 
|  | /* Not one of ours: let kernel handle it */ | 
|  | if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) { | 
|  | /* | 
|  | * The breakpoint instruction was removed right | 
|  | * after we hit it. Another cpu has removed | 
|  | * either a probepoint or a debugger breakpoint | 
|  | * at this address. In either case, no further | 
|  | * handling of this interrupt is appropriate. | 
|  | */ | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | goto no_kprobe; | 
|  | } | 
|  |  | 
|  | set_current_kprobe(p, regs, kcb); | 
|  | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
|  |  | 
|  | if (p->pre_handler && p->pre_handler(p, regs)) { | 
|  | /* handler has already set things up, so skip ss setup */ | 
|  | reset_current_kprobe(); | 
|  | preempt_enable_no_resched(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | prepare_singlestep(p, regs); | 
|  | kcb->kprobe_status = KPROBE_HIT_SS; | 
|  | return 1; | 
|  |  | 
|  | no_kprobe: | 
|  | preempt_enable_no_resched(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For function-return probes, init_kprobes() establishes a probepoint | 
|  | * here. When a retprobed function returns, this probe is hit and | 
|  | * trampoline_probe_handler() runs, calling the kretprobe's handler. | 
|  | */ | 
|  | static void __used kretprobe_trampoline_holder(void) | 
|  | { | 
|  | asm volatile (".globl kretprobe_trampoline\n" | 
|  | "kretprobe_trampoline:\n\t" | 
|  | "nop\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when we hit the probe point at kretprobe_trampoline | 
|  | */ | 
|  | int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) | 
|  | { | 
|  | regs->pc = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int __kprobes post_kprobe_handler(struct pt_regs *regs) | 
|  | { | 
|  | struct kprobe *cur = kprobe_running(); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | kprobe_opcode_t *addr = NULL; | 
|  | struct kprobe *p = NULL; | 
|  |  | 
|  | if (!cur) | 
|  | return 0; | 
|  |  | 
|  | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
|  | kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
|  | cur->post_handler(cur, regs, 0); | 
|  | } | 
|  |  | 
|  | p = this_cpu_ptr(&saved_next_opcode); | 
|  | if (p->addr) { | 
|  | arch_disarm_kprobe(p); | 
|  | p->addr = NULL; | 
|  | p->opcode = 0; | 
|  |  | 
|  | addr = __this_cpu_read(saved_current_opcode.addr); | 
|  | __this_cpu_write(saved_current_opcode.addr, NULL); | 
|  |  | 
|  | p = get_kprobe(addr); | 
|  | arch_arm_kprobe(p); | 
|  |  | 
|  | p = this_cpu_ptr(&saved_next_opcode2); | 
|  | if (p->addr) { | 
|  | arch_disarm_kprobe(p); | 
|  | p->addr = NULL; | 
|  | p->opcode = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Restore back the original saved kprobes variables and continue. */ | 
|  | if (kcb->kprobe_status == KPROBE_REENTER) { | 
|  | restore_previous_kprobe(kcb); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | reset_current_kprobe(); | 
|  |  | 
|  | out: | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | struct kprobe *cur = kprobe_running(); | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  | const struct exception_table_entry *entry; | 
|  |  | 
|  | switch (kcb->kprobe_status) { | 
|  | case KPROBE_HIT_SS: | 
|  | case KPROBE_REENTER: | 
|  | /* | 
|  | * We are here because the instruction being single | 
|  | * stepped caused a page fault. We reset the current | 
|  | * kprobe, point the pc back to the probe address | 
|  | * and allow the page fault handler to continue as a | 
|  | * normal page fault. | 
|  | */ | 
|  | regs->pc = (unsigned long)cur->addr; | 
|  | if (kcb->kprobe_status == KPROBE_REENTER) | 
|  | restore_previous_kprobe(kcb); | 
|  | else | 
|  | reset_current_kprobe(); | 
|  | preempt_enable_no_resched(); | 
|  | break; | 
|  | case KPROBE_HIT_ACTIVE: | 
|  | case KPROBE_HIT_SSDONE: | 
|  | /* | 
|  | * In case the user-specified fault handler returned | 
|  | * zero, try to fix up. | 
|  | */ | 
|  | if ((entry = search_exception_tables(regs->pc)) != NULL) { | 
|  | regs->pc = entry->fixup; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fixup_exception() could not handle it, | 
|  | * Let do_page_fault() fix it. | 
|  | */ | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrapper routine to for handling exceptions. | 
|  | */ | 
|  | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  | struct kprobe *p = NULL; | 
|  | struct die_args *args = (struct die_args *)data; | 
|  | int ret = NOTIFY_DONE; | 
|  | kprobe_opcode_t *addr = NULL; | 
|  | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
|  |  | 
|  | addr = (kprobe_opcode_t *) (args->regs->pc); | 
|  | if (val == DIE_TRAP && | 
|  | args->trapnr == (BREAKPOINT_INSTRUCTION & 0xff)) { | 
|  | if (!kprobe_running()) { | 
|  | if (kprobe_handler(args->regs)) { | 
|  | ret = NOTIFY_STOP; | 
|  | } else { | 
|  | /* Not a kprobe trap */ | 
|  | ret = NOTIFY_DONE; | 
|  | } | 
|  | } else { | 
|  | p = get_kprobe(addr); | 
|  | if ((kcb->kprobe_status == KPROBE_HIT_SS) || | 
|  | (kcb->kprobe_status == KPROBE_REENTER)) { | 
|  | if (post_kprobe_handler(args->regs)) | 
|  | ret = NOTIFY_STOP; | 
|  | } else { | 
|  | if (kprobe_handler(args->regs)) | 
|  | ret = NOTIFY_STOP; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct kprobe trampoline_p = { | 
|  | .addr = (kprobe_opcode_t *)&kretprobe_trampoline, | 
|  | .pre_handler = trampoline_probe_handler | 
|  | }; | 
|  |  | 
|  | int __init arch_init_kprobes(void) | 
|  | { | 
|  | return register_kprobe(&trampoline_p); | 
|  | } |