|  | /* | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs | 
|  | * | 
|  | *  Pentium III FXSR, SSE support | 
|  | *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Handle hardware traps and faults. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/context_tracking.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/kgdb.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/uprobes.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/atomic.h> | 
|  |  | 
|  | #include <asm/stacktrace.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/debugreg.h> | 
|  | #include <asm/realmode.h> | 
|  | #include <asm/text-patching.h> | 
|  | #include <asm/ftrace.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/fpu/internal.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/cpu_entry_area.h> | 
|  | #include <asm/mce.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/mach_traps.h> | 
|  | #include <asm/alternative.h> | 
|  | #include <asm/fpu/xstate.h> | 
|  | #include <asm/vm86.h> | 
|  | #include <asm/umip.h> | 
|  | #include <asm/insn.h> | 
|  | #include <asm/insn-eval.h> | 
|  | #include <asm/vdso.h> | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | #include <asm/x86_init.h> | 
|  | #include <asm/proto.h> | 
|  | #else | 
|  | #include <asm/processor-flags.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/proto.h> | 
|  | #endif | 
|  |  | 
|  | DECLARE_BITMAP(system_vectors, NR_VECTORS); | 
|  |  | 
|  | static inline void cond_local_irq_enable(struct pt_regs *regs) | 
|  | { | 
|  | if (regs->flags & X86_EFLAGS_IF) | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | static inline void cond_local_irq_disable(struct pt_regs *regs) | 
|  | { | 
|  | if (regs->flags & X86_EFLAGS_IF) | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | __always_inline int is_valid_bugaddr(unsigned long addr) | 
|  | { | 
|  | if (addr < TASK_SIZE_MAX) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We got #UD, if the text isn't readable we'd have gotten | 
|  | * a different exception. | 
|  | */ | 
|  | return *(unsigned short *)addr == INSN_UD2; | 
|  | } | 
|  |  | 
|  | static nokprobe_inline int | 
|  | do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, | 
|  | struct pt_regs *regs,	long error_code) | 
|  | { | 
|  | if (v8086_mode(regs)) { | 
|  | /* | 
|  | * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. | 
|  | * On nmi (interrupt 2), do_trap should not be called. | 
|  | */ | 
|  | if (trapnr < X86_TRAP_UD) { | 
|  | if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, | 
|  | error_code, trapnr)) | 
|  | return 0; | 
|  | } | 
|  | } else if (!user_mode(regs)) { | 
|  | if (fixup_exception(regs, trapnr, error_code, 0)) | 
|  | return 0; | 
|  |  | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_nr = trapnr; | 
|  | die(str, regs, error_code); | 
|  | } else { | 
|  | if (fixup_vdso_exception(regs, trapnr, error_code, 0)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want error_code and trap_nr set for userspace faults and | 
|  | * kernelspace faults which result in die(), but not | 
|  | * kernelspace faults which are fixed up.  die() gives the | 
|  | * process no chance to handle the signal and notice the | 
|  | * kernel fault information, so that won't result in polluting | 
|  | * the information about previously queued, but not yet | 
|  | * delivered, faults.  See also exc_general_protection below. | 
|  | */ | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_nr = trapnr; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void show_signal(struct task_struct *tsk, int signr, | 
|  | const char *type, const char *desc, | 
|  | struct pt_regs *regs, long error_code) | 
|  | { | 
|  | if (show_unhandled_signals && unhandled_signal(tsk, signr) && | 
|  | printk_ratelimit()) { | 
|  | pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", | 
|  | tsk->comm, task_pid_nr(tsk), type, desc, | 
|  | regs->ip, regs->sp, error_code); | 
|  | print_vma_addr(KERN_CONT " in ", regs->ip); | 
|  | pr_cont("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, | 
|  | long error_code, int sicode, void __user *addr) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) | 
|  | return; | 
|  |  | 
|  | show_signal(tsk, signr, "trap ", str, regs, error_code); | 
|  |  | 
|  | if (!sicode) | 
|  | force_sig(signr); | 
|  | else | 
|  | force_sig_fault(signr, sicode, addr); | 
|  | } | 
|  | NOKPROBE_SYMBOL(do_trap); | 
|  |  | 
|  | static void do_error_trap(struct pt_regs *regs, long error_code, char *str, | 
|  | unsigned long trapnr, int signr, int sicode, void __user *addr) | 
|  | { | 
|  | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); | 
|  |  | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != | 
|  | NOTIFY_STOP) { | 
|  | cond_local_irq_enable(regs); | 
|  | do_trap(trapnr, signr, str, regs, error_code, sicode, addr); | 
|  | cond_local_irq_disable(regs); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Posix requires to provide the address of the faulting instruction for | 
|  | * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. | 
|  | * | 
|  | * This address is usually regs->ip, but when an uprobe moved the code out | 
|  | * of line then regs->ip points to the XOL code which would confuse | 
|  | * anything which analyzes the fault address vs. the unmodified binary. If | 
|  | * a trap happened in XOL code then uprobe maps regs->ip back to the | 
|  | * original instruction address. | 
|  | */ | 
|  | static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) | 
|  | { | 
|  | return (void __user *)uprobe_get_trap_addr(regs); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY(exc_divide_error) | 
|  | { | 
|  | do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE, | 
|  | FPE_INTDIV, error_get_trap_addr(regs)); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY(exc_overflow) | 
|  | { | 
|  | do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_F00F_BUG | 
|  | void handle_invalid_op(struct pt_regs *regs) | 
|  | #else | 
|  | static inline void handle_invalid_op(struct pt_regs *regs) | 
|  | #endif | 
|  | { | 
|  | do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL, | 
|  | ILL_ILLOPN, error_get_trap_addr(regs)); | 
|  | } | 
|  |  | 
|  | static noinstr bool handle_bug(struct pt_regs *regs) | 
|  | { | 
|  | bool handled = false; | 
|  |  | 
|  | if (!is_valid_bugaddr(regs->ip)) | 
|  | return handled; | 
|  |  | 
|  | /* | 
|  | * All lies, just get the WARN/BUG out. | 
|  | */ | 
|  | instrumentation_begin(); | 
|  | /* | 
|  | * Since we're emulating a CALL with exceptions, restore the interrupt | 
|  | * state to what it was at the exception site. | 
|  | */ | 
|  | if (regs->flags & X86_EFLAGS_IF) | 
|  | raw_local_irq_enable(); | 
|  | if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) { | 
|  | regs->ip += LEN_UD2; | 
|  | handled = true; | 
|  | } | 
|  | if (regs->flags & X86_EFLAGS_IF) | 
|  | raw_local_irq_disable(); | 
|  | instrumentation_end(); | 
|  |  | 
|  | return handled; | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY_RAW(exc_invalid_op) | 
|  | { | 
|  | irqentry_state_t state; | 
|  |  | 
|  | /* | 
|  | * We use UD2 as a short encoding for 'CALL __WARN', as such | 
|  | * handle it before exception entry to avoid recursive WARN | 
|  | * in case exception entry is the one triggering WARNs. | 
|  | */ | 
|  | if (!user_mode(regs) && handle_bug(regs)) | 
|  | return; | 
|  |  | 
|  | state = irqentry_enter(regs); | 
|  | instrumentation_begin(); | 
|  | handle_invalid_op(regs); | 
|  | instrumentation_end(); | 
|  | irqentry_exit(regs, state); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY(exc_coproc_segment_overrun) | 
|  | { | 
|  | do_error_trap(regs, 0, "coprocessor segment overrun", | 
|  | X86_TRAP_OLD_MF, SIGFPE, 0, NULL); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) | 
|  | { | 
|  | do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV, | 
|  | 0, NULL); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) | 
|  | { | 
|  | do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP, | 
|  | SIGBUS, 0, NULL); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) | 
|  | { | 
|  | do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS, | 
|  | 0, NULL); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) | 
|  | { | 
|  | char *str = "alignment check"; | 
|  |  | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | if (!user_mode(regs)) | 
|  | die("Split lock detected\n", regs, error_code); | 
|  |  | 
|  | local_irq_enable(); | 
|  |  | 
|  | if (handle_user_split_lock(regs, error_code)) | 
|  | goto out; | 
|  |  | 
|  | do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, | 
|  | error_code, BUS_ADRALN, NULL); | 
|  |  | 
|  | out: | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_VMAP_STACK | 
|  | __visible void __noreturn handle_stack_overflow(struct pt_regs *regs, | 
|  | unsigned long fault_address, | 
|  | struct stack_info *info) | 
|  | { | 
|  | const char *name = stack_type_name(info->type); | 
|  |  | 
|  | printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n", | 
|  | name, (void *)fault_address, info->begin, info->end); | 
|  |  | 
|  | die("stack guard page", regs, 0); | 
|  |  | 
|  | /* Be absolutely certain we don't return. */ | 
|  | panic("%s stack guard hit", name); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Runs on an IST stack for x86_64 and on a special task stack for x86_32. | 
|  | * | 
|  | * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the | 
|  | * SDM's warnings about double faults being unrecoverable, returning works as | 
|  | * expected.  Presumably what the SDM actually means is that the CPU may get | 
|  | * the register state wrong on entry, so returning could be a bad idea. | 
|  | * | 
|  | * Various CPU engineers have promised that double faults due to an IRET fault | 
|  | * while the stack is read-only are, in fact, recoverable. | 
|  | * | 
|  | * On x86_32, this is entered through a task gate, and regs are synthesized | 
|  | * from the TSS.  Returning is, in principle, okay, but changes to regs will | 
|  | * be lost.  If, for some reason, we need to return to a context with modified | 
|  | * regs, the shim code could be adjusted to synchronize the registers. | 
|  | * | 
|  | * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs | 
|  | * to be read before doing anything else. | 
|  | */ | 
|  | DEFINE_IDTENTRY_DF(exc_double_fault) | 
|  | { | 
|  | static const char str[] = "double fault"; | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | #ifdef CONFIG_VMAP_STACK | 
|  | unsigned long address = read_cr2(); | 
|  | struct stack_info info; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_ESPFIX64 | 
|  | extern unsigned char native_irq_return_iret[]; | 
|  |  | 
|  | /* | 
|  | * If IRET takes a non-IST fault on the espfix64 stack, then we | 
|  | * end up promoting it to a doublefault.  In that case, take | 
|  | * advantage of the fact that we're not using the normal (TSS.sp0) | 
|  | * stack right now.  We can write a fake #GP(0) frame at TSS.sp0 | 
|  | * and then modify our own IRET frame so that, when we return, | 
|  | * we land directly at the #GP(0) vector with the stack already | 
|  | * set up according to its expectations. | 
|  | * | 
|  | * The net result is that our #GP handler will think that we | 
|  | * entered from usermode with the bad user context. | 
|  | * | 
|  | * No need for nmi_enter() here because we don't use RCU. | 
|  | */ | 
|  | if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && | 
|  | regs->cs == __KERNEL_CS && | 
|  | regs->ip == (unsigned long)native_irq_return_iret) | 
|  | { | 
|  | struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; | 
|  | unsigned long *p = (unsigned long *)regs->sp; | 
|  |  | 
|  | /* | 
|  | * regs->sp points to the failing IRET frame on the | 
|  | * ESPFIX64 stack.  Copy it to the entry stack.  This fills | 
|  | * in gpregs->ss through gpregs->ip. | 
|  | * | 
|  | */ | 
|  | gpregs->ip	= p[0]; | 
|  | gpregs->cs	= p[1]; | 
|  | gpregs->flags	= p[2]; | 
|  | gpregs->sp	= p[3]; | 
|  | gpregs->ss	= p[4]; | 
|  | gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */ | 
|  |  | 
|  | /* | 
|  | * Adjust our frame so that we return straight to the #GP | 
|  | * vector with the expected RSP value.  This is safe because | 
|  | * we won't enable interrupts or schedule before we invoke | 
|  | * general_protection, so nothing will clobber the stack | 
|  | * frame we just set up. | 
|  | * | 
|  | * We will enter general_protection with kernel GSBASE, | 
|  | * which is what the stub expects, given that the faulting | 
|  | * RIP will be the IRET instruction. | 
|  | */ | 
|  | regs->ip = (unsigned long)asm_exc_general_protection; | 
|  | regs->sp = (unsigned long)&gpregs->orig_ax; | 
|  |  | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | irqentry_nmi_enter(regs); | 
|  | instrumentation_begin(); | 
|  | notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); | 
|  |  | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_nr = X86_TRAP_DF; | 
|  |  | 
|  | #ifdef CONFIG_VMAP_STACK | 
|  | /* | 
|  | * If we overflow the stack into a guard page, the CPU will fail | 
|  | * to deliver #PF and will send #DF instead.  Similarly, if we | 
|  | * take any non-IST exception while too close to the bottom of | 
|  | * the stack, the processor will get a page fault while | 
|  | * delivering the exception and will generate a double fault. | 
|  | * | 
|  | * According to the SDM (footnote in 6.15 under "Interrupt 14 - | 
|  | * Page-Fault Exception (#PF): | 
|  | * | 
|  | *   Processors update CR2 whenever a page fault is detected. If a | 
|  | *   second page fault occurs while an earlier page fault is being | 
|  | *   delivered, the faulting linear address of the second fault will | 
|  | *   overwrite the contents of CR2 (replacing the previous | 
|  | *   address). These updates to CR2 occur even if the page fault | 
|  | *   results in a double fault or occurs during the delivery of a | 
|  | *   double fault. | 
|  | * | 
|  | * The logic below has a small possibility of incorrectly diagnosing | 
|  | * some errors as stack overflows.  For example, if the IDT or GDT | 
|  | * gets corrupted such that #GP delivery fails due to a bad descriptor | 
|  | * causing #GP and we hit this condition while CR2 coincidentally | 
|  | * points to the stack guard page, we'll think we overflowed the | 
|  | * stack.  Given that we're going to panic one way or another | 
|  | * if this happens, this isn't necessarily worth fixing. | 
|  | * | 
|  | * If necessary, we could improve the test by only diagnosing | 
|  | * a stack overflow if the saved RSP points within 47 bytes of | 
|  | * the bottom of the stack: if RSP == tsk_stack + 48 and we | 
|  | * take an exception, the stack is already aligned and there | 
|  | * will be enough room SS, RSP, RFLAGS, CS, RIP, and a | 
|  | * possible error code, so a stack overflow would *not* double | 
|  | * fault.  With any less space left, exception delivery could | 
|  | * fail, and, as a practical matter, we've overflowed the | 
|  | * stack even if the actual trigger for the double fault was | 
|  | * something else. | 
|  | */ | 
|  | if (get_stack_guard_info((void *)address, &info)) | 
|  | handle_stack_overflow(regs, address, &info); | 
|  | #endif | 
|  |  | 
|  | pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); | 
|  | die("double fault", regs, error_code); | 
|  | panic("Machine halted."); | 
|  | instrumentation_end(); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY(exc_bounds) | 
|  | { | 
|  | if (notify_die(DIE_TRAP, "bounds", regs, 0, | 
|  | X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) | 
|  | return; | 
|  | cond_local_irq_enable(regs); | 
|  |  | 
|  | if (!user_mode(regs)) | 
|  | die("bounds", regs, 0); | 
|  |  | 
|  | do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL); | 
|  |  | 
|  | cond_local_irq_disable(regs); | 
|  | } | 
|  |  | 
|  | enum kernel_gp_hint { | 
|  | GP_NO_HINT, | 
|  | GP_NON_CANONICAL, | 
|  | GP_CANONICAL | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * When an uncaught #GP occurs, try to determine the memory address accessed by | 
|  | * the instruction and return that address to the caller. Also, try to figure | 
|  | * out whether any part of the access to that address was non-canonical. | 
|  | */ | 
|  | static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, | 
|  | unsigned long *addr) | 
|  | { | 
|  | u8 insn_buf[MAX_INSN_SIZE]; | 
|  | struct insn insn; | 
|  | int ret; | 
|  |  | 
|  | if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip, | 
|  | MAX_INSN_SIZE)) | 
|  | return GP_NO_HINT; | 
|  |  | 
|  | ret = insn_decode_kernel(&insn, insn_buf); | 
|  | if (ret < 0) | 
|  | return GP_NO_HINT; | 
|  |  | 
|  | *addr = (unsigned long)insn_get_addr_ref(&insn, regs); | 
|  | if (*addr == -1UL) | 
|  | return GP_NO_HINT; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* | 
|  | * Check that: | 
|  | *  - the operand is not in the kernel half | 
|  | *  - the last byte of the operand is not in the user canonical half | 
|  | */ | 
|  | if (*addr < ~__VIRTUAL_MASK && | 
|  | *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) | 
|  | return GP_NON_CANONICAL; | 
|  | #endif | 
|  |  | 
|  | return GP_CANONICAL; | 
|  | } | 
|  |  | 
|  | #define GPFSTR "general protection fault" | 
|  |  | 
|  | static bool fixup_iopl_exception(struct pt_regs *regs) | 
|  | { | 
|  | struct thread_struct *t = ¤t->thread; | 
|  | unsigned char byte; | 
|  | unsigned long ip; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3) | 
|  | return false; | 
|  |  | 
|  | if (insn_get_effective_ip(regs, &ip)) | 
|  | return false; | 
|  |  | 
|  | if (get_user(byte, (const char __user *)ip)) | 
|  | return false; | 
|  |  | 
|  | if (byte != 0xfa && byte != 0xfb) | 
|  | return false; | 
|  |  | 
|  | if (!t->iopl_warn && printk_ratelimit()) { | 
|  | pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx", | 
|  | current->comm, task_pid_nr(current), ip); | 
|  | print_vma_addr(KERN_CONT " in ", ip); | 
|  | pr_cont("\n"); | 
|  | t->iopl_warn = 1; | 
|  | } | 
|  |  | 
|  | regs->ip += 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) | 
|  | { | 
|  | char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; | 
|  | enum kernel_gp_hint hint = GP_NO_HINT; | 
|  | struct task_struct *tsk; | 
|  | unsigned long gp_addr; | 
|  | int ret; | 
|  |  | 
|  | cond_local_irq_enable(regs); | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_UMIP)) { | 
|  | if (user_mode(regs) && fixup_umip_exception(regs)) | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | if (v8086_mode(regs)) { | 
|  | local_irq_enable(); | 
|  | handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); | 
|  | local_irq_disable(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tsk = current; | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | if (fixup_iopl_exception(regs)) | 
|  | goto exit; | 
|  |  | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_nr = X86_TRAP_GP; | 
|  |  | 
|  | if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0)) | 
|  | goto exit; | 
|  |  | 
|  | show_signal(tsk, SIGSEGV, "", desc, regs, error_code); | 
|  | force_sig(SIGSEGV); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) | 
|  | goto exit; | 
|  |  | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_nr = X86_TRAP_GP; | 
|  |  | 
|  | /* | 
|  | * To be potentially processing a kprobe fault and to trust the result | 
|  | * from kprobe_running(), we have to be non-preemptible. | 
|  | */ | 
|  | if (!preemptible() && | 
|  | kprobe_running() && | 
|  | kprobe_fault_handler(regs, X86_TRAP_GP)) | 
|  | goto exit; | 
|  |  | 
|  | ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); | 
|  | if (ret == NOTIFY_STOP) | 
|  | goto exit; | 
|  |  | 
|  | if (error_code) | 
|  | snprintf(desc, sizeof(desc), "segment-related " GPFSTR); | 
|  | else | 
|  | hint = get_kernel_gp_address(regs, &gp_addr); | 
|  |  | 
|  | if (hint != GP_NO_HINT) | 
|  | snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", | 
|  | (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" | 
|  | : "maybe for address", | 
|  | gp_addr); | 
|  |  | 
|  | /* | 
|  | * KASAN is interested only in the non-canonical case, clear it | 
|  | * otherwise. | 
|  | */ | 
|  | if (hint != GP_NON_CANONICAL) | 
|  | gp_addr = 0; | 
|  |  | 
|  | die_addr(desc, regs, error_code, gp_addr); | 
|  |  | 
|  | exit: | 
|  | cond_local_irq_disable(regs); | 
|  | } | 
|  |  | 
|  | static bool do_int3(struct pt_regs *regs) | 
|  | { | 
|  | int res; | 
|  |  | 
|  | #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP | 
|  | if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, | 
|  | SIGTRAP) == NOTIFY_STOP) | 
|  | return true; | 
|  | #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ | 
|  |  | 
|  | #ifdef CONFIG_KPROBES | 
|  | if (kprobe_int3_handler(regs)) | 
|  | return true; | 
|  | #endif | 
|  | res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP); | 
|  |  | 
|  | return res == NOTIFY_STOP; | 
|  | } | 
|  | NOKPROBE_SYMBOL(do_int3); | 
|  |  | 
|  | static void do_int3_user(struct pt_regs *regs) | 
|  | { | 
|  | if (do_int3(regs)) | 
|  | return; | 
|  |  | 
|  | cond_local_irq_enable(regs); | 
|  | do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL); | 
|  | cond_local_irq_disable(regs); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY_RAW(exc_int3) | 
|  | { | 
|  | /* | 
|  | * poke_int3_handler() is completely self contained code; it does (and | 
|  | * must) *NOT* call out to anything, lest it hits upon yet another | 
|  | * INT3. | 
|  | */ | 
|  | if (poke_int3_handler(regs)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * irqentry_enter_from_user_mode() uses static_branch_{,un}likely() | 
|  | * and therefore can trigger INT3, hence poke_int3_handler() must | 
|  | * be done before. If the entry came from kernel mode, then use | 
|  | * nmi_enter() because the INT3 could have been hit in any context | 
|  | * including NMI. | 
|  | */ | 
|  | if (user_mode(regs)) { | 
|  | irqentry_enter_from_user_mode(regs); | 
|  | instrumentation_begin(); | 
|  | do_int3_user(regs); | 
|  | instrumentation_end(); | 
|  | irqentry_exit_to_user_mode(regs); | 
|  | } else { | 
|  | irqentry_state_t irq_state = irqentry_nmi_enter(regs); | 
|  |  | 
|  | instrumentation_begin(); | 
|  | if (!do_int3(regs)) | 
|  | die("int3", regs, 0); | 
|  | instrumentation_end(); | 
|  | irqentry_nmi_exit(regs, irq_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* | 
|  | * Help handler running on a per-cpu (IST or entry trampoline) stack | 
|  | * to switch to the normal thread stack if the interrupted code was in | 
|  | * user mode. The actual stack switch is done in entry_64.S | 
|  | */ | 
|  | asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) | 
|  | { | 
|  | struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; | 
|  | if (regs != eregs) | 
|  | *regs = *eregs; | 
|  | return regs; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_AMD_MEM_ENCRYPT | 
|  | asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) | 
|  | { | 
|  | unsigned long sp, *stack; | 
|  | struct stack_info info; | 
|  | struct pt_regs *regs_ret; | 
|  |  | 
|  | /* | 
|  | * In the SYSCALL entry path the RSP value comes from user-space - don't | 
|  | * trust it and switch to the current kernel stack | 
|  | */ | 
|  | if (ip_within_syscall_gap(regs)) { | 
|  | sp = this_cpu_read(cpu_current_top_of_stack); | 
|  | goto sync; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * From here on the RSP value is trusted. Now check whether entry | 
|  | * happened from a safe stack. Not safe are the entry or unknown stacks, | 
|  | * use the fall-back stack instead in this case. | 
|  | */ | 
|  | sp    = regs->sp; | 
|  | stack = (unsigned long *)sp; | 
|  |  | 
|  | if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY || | 
|  | info.type > STACK_TYPE_EXCEPTION_LAST) | 
|  | sp = __this_cpu_ist_top_va(VC2); | 
|  |  | 
|  | sync: | 
|  | /* | 
|  | * Found a safe stack - switch to it as if the entry didn't happen via | 
|  | * IST stack. The code below only copies pt_regs, the real switch happens | 
|  | * in assembly code. | 
|  | */ | 
|  | sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret); | 
|  |  | 
|  | regs_ret = (struct pt_regs *)sp; | 
|  | *regs_ret = *regs; | 
|  |  | 
|  | return regs_ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs) | 
|  | { | 
|  | struct pt_regs tmp, *new_stack; | 
|  |  | 
|  | /* | 
|  | * This is called from entry_64.S early in handling a fault | 
|  | * caused by a bad iret to user mode.  To handle the fault | 
|  | * correctly, we want to move our stack frame to where it would | 
|  | * be had we entered directly on the entry stack (rather than | 
|  | * just below the IRET frame) and we want to pretend that the | 
|  | * exception came from the IRET target. | 
|  | */ | 
|  | new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; | 
|  |  | 
|  | /* Copy the IRET target to the temporary storage. */ | 
|  | __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8); | 
|  |  | 
|  | /* Copy the remainder of the stack from the current stack. */ | 
|  | __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip)); | 
|  |  | 
|  | /* Update the entry stack */ | 
|  | __memcpy(new_stack, &tmp, sizeof(tmp)); | 
|  |  | 
|  | BUG_ON(!user_mode(new_stack)); | 
|  | return new_stack; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool is_sysenter_singlestep(struct pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * We don't try for precision here.  If we're anywhere in the region of | 
|  | * code that can be single-stepped in the SYSENTER entry path, then | 
|  | * assume that this is a useless single-step trap due to SYSENTER | 
|  | * being invoked with TF set.  (We don't know in advance exactly | 
|  | * which instructions will be hit because BTF could plausibly | 
|  | * be set.) | 
|  | */ | 
|  | #ifdef CONFIG_X86_32 | 
|  | return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < | 
|  | (unsigned long)__end_SYSENTER_singlestep_region - | 
|  | (unsigned long)__begin_SYSENTER_singlestep_region; | 
|  | #elif defined(CONFIG_IA32_EMULATION) | 
|  | return (regs->ip - (unsigned long)entry_SYSENTER_compat) < | 
|  | (unsigned long)__end_entry_SYSENTER_compat - | 
|  | (unsigned long)entry_SYSENTER_compat; | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static __always_inline unsigned long debug_read_clear_dr6(void) | 
|  | { | 
|  | unsigned long dr6; | 
|  |  | 
|  | /* | 
|  | * The Intel SDM says: | 
|  | * | 
|  | *   Certain debug exceptions may clear bits 0-3. The remaining | 
|  | *   contents of the DR6 register are never cleared by the | 
|  | *   processor. To avoid confusion in identifying debug | 
|  | *   exceptions, debug handlers should clear the register before | 
|  | *   returning to the interrupted task. | 
|  | * | 
|  | * Keep it simple: clear DR6 immediately. | 
|  | */ | 
|  | get_debugreg(dr6, 6); | 
|  | set_debugreg(DR6_RESERVED, 6); | 
|  | dr6 ^= DR6_RESERVED; /* Flip to positive polarity */ | 
|  |  | 
|  | return dr6; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Our handling of the processor debug registers is non-trivial. | 
|  | * We do not clear them on entry and exit from the kernel. Therefore | 
|  | * it is possible to get a watchpoint trap here from inside the kernel. | 
|  | * However, the code in ./ptrace.c has ensured that the user can | 
|  | * only set watchpoints on userspace addresses. Therefore the in-kernel | 
|  | * watchpoint trap can only occur in code which is reading/writing | 
|  | * from user space. Such code must not hold kernel locks (since it | 
|  | * can equally take a page fault), therefore it is safe to call | 
|  | * force_sig_info even though that claims and releases locks. | 
|  | * | 
|  | * Code in ./signal.c ensures that the debug control register | 
|  | * is restored before we deliver any signal, and therefore that | 
|  | * user code runs with the correct debug control register even though | 
|  | * we clear it here. | 
|  | * | 
|  | * Being careful here means that we don't have to be as careful in a | 
|  | * lot of more complicated places (task switching can be a bit lazy | 
|  | * about restoring all the debug state, and ptrace doesn't have to | 
|  | * find every occurrence of the TF bit that could be saved away even | 
|  | * by user code) | 
|  | * | 
|  | * May run on IST stack. | 
|  | */ | 
|  |  | 
|  | static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) | 
|  | { | 
|  | /* | 
|  | * Notifiers will clear bits in @dr6 to indicate the event has been | 
|  | * consumed - hw_breakpoint_handler(), single_stop_cont(). | 
|  | * | 
|  | * Notifiers will set bits in @virtual_dr6 to indicate the desire | 
|  | * for signals - ptrace_triggered(), kgdb_hw_overflow_handler(). | 
|  | */ | 
|  | if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static __always_inline void exc_debug_kernel(struct pt_regs *regs, | 
|  | unsigned long dr6) | 
|  | { | 
|  | /* | 
|  | * Disable breakpoints during exception handling; recursive exceptions | 
|  | * are exceedingly 'fun'. | 
|  | * | 
|  | * Since this function is NOKPROBE, and that also applies to | 
|  | * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a | 
|  | * HW_BREAKPOINT_W on our stack) | 
|  | * | 
|  | * Entry text is excluded for HW_BP_X and cpu_entry_area, which | 
|  | * includes the entry stack is excluded for everything. | 
|  | */ | 
|  | unsigned long dr7 = local_db_save(); | 
|  | irqentry_state_t irq_state = irqentry_nmi_enter(regs); | 
|  | instrumentation_begin(); | 
|  |  | 
|  | /* | 
|  | * If something gets miswired and we end up here for a user mode | 
|  | * #DB, we will malfunction. | 
|  | */ | 
|  | WARN_ON_ONCE(user_mode(regs)); | 
|  |  | 
|  | if (test_thread_flag(TIF_BLOCKSTEP)) { | 
|  | /* | 
|  | * The SDM says "The processor clears the BTF flag when it | 
|  | * generates a debug exception." but PTRACE_BLOCKSTEP requested | 
|  | * it for userspace, but we just took a kernel #DB, so re-set | 
|  | * BTF. | 
|  | */ | 
|  | unsigned long debugctl; | 
|  |  | 
|  | rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
|  | debugctl |= DEBUGCTLMSR_BTF; | 
|  | wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Catch SYSENTER with TF set and clear DR_STEP. If this hit a | 
|  | * watchpoint at the same time then that will still be handled. | 
|  | */ | 
|  | if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs)) | 
|  | dr6 &= ~DR_STEP; | 
|  |  | 
|  | /* | 
|  | * The kernel doesn't use INT1 | 
|  | */ | 
|  | if (!dr6) | 
|  | goto out; | 
|  |  | 
|  | if (notify_debug(regs, &dr6)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * The kernel doesn't use TF single-step outside of: | 
|  | * | 
|  | *  - Kprobes, consumed through kprobe_debug_handler() | 
|  | *  - KGDB, consumed through notify_debug() | 
|  | * | 
|  | * So if we get here with DR_STEP set, something is wonky. | 
|  | * | 
|  | * A known way to trigger this is through QEMU's GDB stub, | 
|  | * which leaks #DB into the guest and causes IST recursion. | 
|  | */ | 
|  | if (WARN_ON_ONCE(dr6 & DR_STEP)) | 
|  | regs->flags &= ~X86_EFLAGS_TF; | 
|  | out: | 
|  | instrumentation_end(); | 
|  | irqentry_nmi_exit(regs, irq_state); | 
|  |  | 
|  | local_db_restore(dr7); | 
|  | } | 
|  |  | 
|  | static __always_inline void exc_debug_user(struct pt_regs *regs, | 
|  | unsigned long dr6) | 
|  | { | 
|  | bool icebp; | 
|  |  | 
|  | /* | 
|  | * If something gets miswired and we end up here for a kernel mode | 
|  | * #DB, we will malfunction. | 
|  | */ | 
|  | WARN_ON_ONCE(!user_mode(regs)); | 
|  |  | 
|  | /* | 
|  | * NB: We can't easily clear DR7 here because | 
|  | * irqentry_exit_to_usermode() can invoke ptrace, schedule, access | 
|  | * user memory, etc.  This means that a recursive #DB is possible.  If | 
|  | * this happens, that #DB will hit exc_debug_kernel() and clear DR7. | 
|  | * Since we're not on the IST stack right now, everything will be | 
|  | * fine. | 
|  | */ | 
|  |  | 
|  | irqentry_enter_from_user_mode(regs); | 
|  | instrumentation_begin(); | 
|  |  | 
|  | /* | 
|  | * Start the virtual/ptrace DR6 value with just the DR_STEP mask | 
|  | * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits. | 
|  | * | 
|  | * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6) | 
|  | * even if it is not the result of PTRACE_SINGLESTEP. | 
|  | */ | 
|  | current->thread.virtual_dr6 = (dr6 & DR_STEP); | 
|  |  | 
|  | /* | 
|  | * The SDM says "The processor clears the BTF flag when it | 
|  | * generates a debug exception."  Clear TIF_BLOCKSTEP to keep | 
|  | * TIF_BLOCKSTEP in sync with the hardware BTF flag. | 
|  | */ | 
|  | clear_thread_flag(TIF_BLOCKSTEP); | 
|  |  | 
|  | /* | 
|  | * If dr6 has no reason to give us about the origin of this trap, | 
|  | * then it's very likely the result of an icebp/int01 trap. | 
|  | * User wants a sigtrap for that. | 
|  | */ | 
|  | icebp = !dr6; | 
|  |  | 
|  | if (notify_debug(regs, &dr6)) | 
|  | goto out; | 
|  |  | 
|  | /* It's safe to allow irq's after DR6 has been saved */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | if (v8086_mode(regs)) { | 
|  | handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB); | 
|  | goto out_irq; | 
|  | } | 
|  |  | 
|  | /* #DB for bus lock can only be triggered from userspace. */ | 
|  | if (dr6 & DR_BUS_LOCK) | 
|  | handle_bus_lock(regs); | 
|  |  | 
|  | /* Add the virtual_dr6 bits for signals. */ | 
|  | dr6 |= current->thread.virtual_dr6; | 
|  | if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp) | 
|  | send_sigtrap(regs, 0, get_si_code(dr6)); | 
|  |  | 
|  | out_irq: | 
|  | local_irq_disable(); | 
|  | out: | 
|  | instrumentation_end(); | 
|  | irqentry_exit_to_user_mode(regs); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* IST stack entry */ | 
|  | DEFINE_IDTENTRY_DEBUG(exc_debug) | 
|  | { | 
|  | exc_debug_kernel(regs, debug_read_clear_dr6()); | 
|  | } | 
|  |  | 
|  | /* User entry, runs on regular task stack */ | 
|  | DEFINE_IDTENTRY_DEBUG_USER(exc_debug) | 
|  | { | 
|  | exc_debug_user(regs, debug_read_clear_dr6()); | 
|  | } | 
|  | #else | 
|  | /* 32 bit does not have separate entry points. */ | 
|  | DEFINE_IDTENTRY_RAW(exc_debug) | 
|  | { | 
|  | unsigned long dr6 = debug_read_clear_dr6(); | 
|  |  | 
|  | if (user_mode(regs)) | 
|  | exc_debug_user(regs, dr6); | 
|  | else | 
|  | exc_debug_kernel(regs, dr6); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Note that we play around with the 'TS' bit in an attempt to get | 
|  | * the correct behaviour even in the presence of the asynchronous | 
|  | * IRQ13 behaviour | 
|  | */ | 
|  | static void math_error(struct pt_regs *regs, int trapnr) | 
|  | { | 
|  | struct task_struct *task = current; | 
|  | struct fpu *fpu = &task->thread.fpu; | 
|  | int si_code; | 
|  | char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : | 
|  | "simd exception"; | 
|  |  | 
|  | cond_local_irq_enable(regs); | 
|  |  | 
|  | if (!user_mode(regs)) { | 
|  | if (fixup_exception(regs, trapnr, 0, 0)) | 
|  | goto exit; | 
|  |  | 
|  | task->thread.error_code = 0; | 
|  | task->thread.trap_nr = trapnr; | 
|  |  | 
|  | if (notify_die(DIE_TRAP, str, regs, 0, trapnr, | 
|  | SIGFPE) != NOTIFY_STOP) | 
|  | die(str, regs, 0); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Synchronize the FPU register state to the memory register state | 
|  | * if necessary. This allows the exception handler to inspect it. | 
|  | */ | 
|  | fpu_sync_fpstate(fpu); | 
|  |  | 
|  | task->thread.trap_nr	= trapnr; | 
|  | task->thread.error_code = 0; | 
|  |  | 
|  | si_code = fpu__exception_code(fpu, trapnr); | 
|  | /* Retry when we get spurious exceptions: */ | 
|  | if (!si_code) | 
|  | goto exit; | 
|  |  | 
|  | if (fixup_vdso_exception(regs, trapnr, 0, 0)) | 
|  | goto exit; | 
|  |  | 
|  | force_sig_fault(SIGFPE, si_code, | 
|  | (void __user *)uprobe_get_trap_addr(regs)); | 
|  | exit: | 
|  | cond_local_irq_disable(regs); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY(exc_coprocessor_error) | 
|  | { | 
|  | math_error(regs, X86_TRAP_MF); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY(exc_simd_coprocessor_error) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_X86_INVD_BUG)) { | 
|  | /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */ | 
|  | if (!static_cpu_has(X86_FEATURE_XMM)) { | 
|  | __exc_general_protection(regs, 0); | 
|  | return; | 
|  | } | 
|  | } | 
|  | math_error(regs, X86_TRAP_XF); | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY(exc_spurious_interrupt_bug) | 
|  | { | 
|  | /* | 
|  | * This addresses a Pentium Pro Erratum: | 
|  | * | 
|  | * PROBLEM: If the APIC subsystem is configured in mixed mode with | 
|  | * Virtual Wire mode implemented through the local APIC, an | 
|  | * interrupt vector of 0Fh (Intel reserved encoding) may be | 
|  | * generated by the local APIC (Int 15).  This vector may be | 
|  | * generated upon receipt of a spurious interrupt (an interrupt | 
|  | * which is removed before the system receives the INTA sequence) | 
|  | * instead of the programmed 8259 spurious interrupt vector. | 
|  | * | 
|  | * IMPLICATION: The spurious interrupt vector programmed in the | 
|  | * 8259 is normally handled by an operating system's spurious | 
|  | * interrupt handler. However, a vector of 0Fh is unknown to some | 
|  | * operating systems, which would crash if this erratum occurred. | 
|  | * | 
|  | * In theory this could be limited to 32bit, but the handler is not | 
|  | * hurting and who knows which other CPUs suffer from this. | 
|  | */ | 
|  | } | 
|  |  | 
|  | DEFINE_IDTENTRY(exc_device_not_available) | 
|  | { | 
|  | unsigned long cr0 = read_cr0(); | 
|  |  | 
|  | #ifdef CONFIG_MATH_EMULATION | 
|  | if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { | 
|  | struct math_emu_info info = { }; | 
|  |  | 
|  | cond_local_irq_enable(regs); | 
|  |  | 
|  | info.regs = regs; | 
|  | math_emulate(&info); | 
|  |  | 
|  | cond_local_irq_disable(regs); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* This should not happen. */ | 
|  | if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { | 
|  | /* Try to fix it up and carry on. */ | 
|  | write_cr0(cr0 & ~X86_CR0_TS); | 
|  | } else { | 
|  | /* | 
|  | * Something terrible happened, and we're better off trying | 
|  | * to kill the task than getting stuck in a never-ending | 
|  | * loop of #NM faults. | 
|  | */ | 
|  | die("unexpected #NM exception", regs, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | DEFINE_IDTENTRY_SW(iret_error) | 
|  | { | 
|  | local_irq_enable(); | 
|  | if (notify_die(DIE_TRAP, "iret exception", regs, 0, | 
|  | X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { | 
|  | do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, | 
|  | ILL_BADSTK, (void __user *)NULL); | 
|  | } | 
|  | local_irq_disable(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init trap_init(void) | 
|  | { | 
|  | /* Init cpu_entry_area before IST entries are set up */ | 
|  | setup_cpu_entry_areas(); | 
|  |  | 
|  | /* Init GHCB memory pages when running as an SEV-ES guest */ | 
|  | sev_es_init_vc_handling(); | 
|  |  | 
|  | /* Initialize TSS before setting up traps so ISTs work */ | 
|  | cpu_init_exception_handling(); | 
|  | /* Setup traps as cpu_init() might #GP */ | 
|  | idt_setup_traps(); | 
|  | cpu_init(); | 
|  | } |