|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /*---------------------------------------------------------------------------+ | 
|  | |  fpu_trig.c                                                               | | 
|  | |                                                                           | | 
|  | | Implementation of the FPU "transcendental" functions.                     | | 
|  | |                                                                           | | 
|  | | Copyright (C) 1992,1993,1994,1997,1999                                    | | 
|  | |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      | | 
|  | |                       Australia.  E-mail   billm@melbpc.org.au            | | 
|  | |                                                                           | | 
|  | |                                                                           | | 
|  | +---------------------------------------------------------------------------*/ | 
|  |  | 
|  | #include "fpu_system.h" | 
|  | #include "exception.h" | 
|  | #include "fpu_emu.h" | 
|  | #include "status_w.h" | 
|  | #include "control_w.h" | 
|  | #include "reg_constant.h" | 
|  |  | 
|  | static void rem_kernel(unsigned long long st0, unsigned long long *y, | 
|  | unsigned long long st1, unsigned long long q, int n); | 
|  |  | 
|  | #define BETTER_THAN_486 | 
|  |  | 
|  | #define FCOS  4 | 
|  |  | 
|  | /* Used only by fptan, fsin, fcos, and fsincos. */ | 
|  | /* This routine produces very accurate results, similar to | 
|  | using a value of pi with more than 128 bits precision. */ | 
|  | /* Limited measurements show no results worse than 64 bit precision | 
|  | except for the results for arguments close to 2^63, where the | 
|  | precision of the result sometimes degrades to about 63.9 bits */ | 
|  | static int trig_arg(FPU_REG *st0_ptr, int even) | 
|  | { | 
|  | FPU_REG tmp; | 
|  | u_char tmptag; | 
|  | unsigned long long q; | 
|  | int old_cw = control_word, saved_status = partial_status; | 
|  | int tag, st0_tag = TAG_Valid; | 
|  |  | 
|  | if (exponent(st0_ptr) >= 63) { | 
|  | partial_status |= SW_C2;	/* Reduction incomplete. */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | control_word &= ~CW_RC; | 
|  | control_word |= RC_CHOP; | 
|  |  | 
|  | setpositive(st0_ptr); | 
|  | tag = FPU_u_div(st0_ptr, &CONST_PI2, &tmp, PR_64_BITS | RC_CHOP | 0x3f, | 
|  | SIGN_POS); | 
|  |  | 
|  | FPU_round_to_int(&tmp, tag);	/* Fortunately, this can't overflow | 
|  | to 2^64 */ | 
|  | q = significand(&tmp); | 
|  | if (q) { | 
|  | rem_kernel(significand(st0_ptr), | 
|  | &significand(&tmp), | 
|  | significand(&CONST_PI2), | 
|  | q, exponent(st0_ptr) - exponent(&CONST_PI2)); | 
|  | setexponent16(&tmp, exponent(&CONST_PI2)); | 
|  | st0_tag = FPU_normalize(&tmp); | 
|  | FPU_copy_to_reg0(&tmp, st0_tag); | 
|  | } | 
|  |  | 
|  | if ((even && !(q & 1)) || (!even && (q & 1))) { | 
|  | st0_tag = | 
|  | FPU_sub(REV | LOADED | TAG_Valid, (int)&CONST_PI2, | 
|  | FULL_PRECISION); | 
|  |  | 
|  | #ifdef BETTER_THAN_486 | 
|  | /* So far, the results are exact but based upon a 64 bit | 
|  | precision approximation to pi/2. The technique used | 
|  | now is equivalent to using an approximation to pi/2 which | 
|  | is accurate to about 128 bits. */ | 
|  | if ((exponent(st0_ptr) <= exponent(&CONST_PI2extra) + 64) | 
|  | || (q > 1)) { | 
|  | /* This code gives the effect of having pi/2 to better than | 
|  | 128 bits precision. */ | 
|  |  | 
|  | significand(&tmp) = q + 1; | 
|  | setexponent16(&tmp, 63); | 
|  | FPU_normalize(&tmp); | 
|  | tmptag = | 
|  | FPU_u_mul(&CONST_PI2extra, &tmp, &tmp, | 
|  | FULL_PRECISION, SIGN_POS, | 
|  | exponent(&CONST_PI2extra) + | 
|  | exponent(&tmp)); | 
|  | setsign(&tmp, getsign(&CONST_PI2extra)); | 
|  | st0_tag = FPU_add(&tmp, tmptag, 0, FULL_PRECISION); | 
|  | if (signnegative(st0_ptr)) { | 
|  | /* CONST_PI2extra is negative, so the result of the addition | 
|  | can be negative. This means that the argument is actually | 
|  | in a different quadrant. The correction is always < pi/2, | 
|  | so it can't overflow into yet another quadrant. */ | 
|  | setpositive(st0_ptr); | 
|  | q++; | 
|  | } | 
|  | } | 
|  | #endif /* BETTER_THAN_486 */ | 
|  | } | 
|  | #ifdef BETTER_THAN_486 | 
|  | else { | 
|  | /* So far, the results are exact but based upon a 64 bit | 
|  | precision approximation to pi/2. The technique used | 
|  | now is equivalent to using an approximation to pi/2 which | 
|  | is accurate to about 128 bits. */ | 
|  | if (((q > 0) | 
|  | && (exponent(st0_ptr) <= exponent(&CONST_PI2extra) + 64)) | 
|  | || (q > 1)) { | 
|  | /* This code gives the effect of having p/2 to better than | 
|  | 128 bits precision. */ | 
|  |  | 
|  | significand(&tmp) = q; | 
|  | setexponent16(&tmp, 63); | 
|  | FPU_normalize(&tmp);	/* This must return TAG_Valid */ | 
|  | tmptag = | 
|  | FPU_u_mul(&CONST_PI2extra, &tmp, &tmp, | 
|  | FULL_PRECISION, SIGN_POS, | 
|  | exponent(&CONST_PI2extra) + | 
|  | exponent(&tmp)); | 
|  | setsign(&tmp, getsign(&CONST_PI2extra)); | 
|  | st0_tag = FPU_sub(LOADED | (tmptag & 0x0f), (int)&tmp, | 
|  | FULL_PRECISION); | 
|  | if ((exponent(st0_ptr) == exponent(&CONST_PI2)) && | 
|  | ((st0_ptr->sigh > CONST_PI2.sigh) | 
|  | || ((st0_ptr->sigh == CONST_PI2.sigh) | 
|  | && (st0_ptr->sigl > CONST_PI2.sigl)))) { | 
|  | /* CONST_PI2extra is negative, so the result of the | 
|  | subtraction can be larger than pi/2. This means | 
|  | that the argument is actually in a different quadrant. | 
|  | The correction is always < pi/2, so it can't overflow | 
|  | into yet another quadrant. */ | 
|  | st0_tag = | 
|  | FPU_sub(REV | LOADED | TAG_Valid, | 
|  | (int)&CONST_PI2, FULL_PRECISION); | 
|  | q++; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* BETTER_THAN_486 */ | 
|  |  | 
|  | FPU_settag0(st0_tag); | 
|  | control_word = old_cw; | 
|  | partial_status = saved_status & ~SW_C2;	/* Reduction complete. */ | 
|  |  | 
|  | return (q & 3) | even; | 
|  | } | 
|  |  | 
|  | /* Convert a long to register */ | 
|  | static void convert_l2reg(long const *arg, int deststnr) | 
|  | { | 
|  | int tag; | 
|  | long num = *arg; | 
|  | u_char sign; | 
|  | FPU_REG *dest = &st(deststnr); | 
|  |  | 
|  | if (num == 0) { | 
|  | FPU_copy_to_regi(&CONST_Z, TAG_Zero, deststnr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (num > 0) { | 
|  | sign = SIGN_POS; | 
|  | } else { | 
|  | num = -num; | 
|  | sign = SIGN_NEG; | 
|  | } | 
|  |  | 
|  | dest->sigh = num; | 
|  | dest->sigl = 0; | 
|  | setexponent16(dest, 31); | 
|  | tag = FPU_normalize(dest); | 
|  | FPU_settagi(deststnr, tag); | 
|  | setsign(dest, sign); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void single_arg_error(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | if (st0_tag == TAG_Empty) | 
|  | FPU_stack_underflow();	/* Puts a QNaN in st(0) */ | 
|  | else if (st0_tag == TW_NaN) | 
|  | real_1op_NaN(st0_ptr);	/* return with a NaN in st(0) */ | 
|  | #ifdef PARANOID | 
|  | else | 
|  | EXCEPTION(EX_INTERNAL | 0x0112); | 
|  | #endif /* PARANOID */ | 
|  | } | 
|  |  | 
|  | static void single_arg_2_error(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | int isNaN; | 
|  |  | 
|  | switch (st0_tag) { | 
|  | case TW_NaN: | 
|  | isNaN = (exponent(st0_ptr) == EXP_OVER) | 
|  | && (st0_ptr->sigh & 0x80000000); | 
|  | if (isNaN && !(st0_ptr->sigh & 0x40000000)) {	/* Signaling ? */ | 
|  | EXCEPTION(EX_Invalid); | 
|  | if (control_word & CW_Invalid) { | 
|  | /* The masked response */ | 
|  | /* Convert to a QNaN */ | 
|  | st0_ptr->sigh |= 0x40000000; | 
|  | push(); | 
|  | FPU_copy_to_reg0(st0_ptr, TAG_Special); | 
|  | } | 
|  | } else if (isNaN) { | 
|  | /* A QNaN */ | 
|  | push(); | 
|  | FPU_copy_to_reg0(st0_ptr, TAG_Special); | 
|  | } else { | 
|  | /* pseudoNaN or other unsupported */ | 
|  | EXCEPTION(EX_Invalid); | 
|  | if (control_word & CW_Invalid) { | 
|  | /* The masked response */ | 
|  | FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 
|  | push(); | 
|  | FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 
|  | } | 
|  | } | 
|  | break;		/* return with a NaN in st(0) */ | 
|  | #ifdef PARANOID | 
|  | default: | 
|  | EXCEPTION(EX_INTERNAL | 0x0112); | 
|  | #endif /* PARANOID */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------*/ | 
|  |  | 
|  | static void f2xm1(FPU_REG *st0_ptr, u_char tag) | 
|  | { | 
|  | FPU_REG a; | 
|  |  | 
|  | clear_C1(); | 
|  |  | 
|  | if (tag == TAG_Valid) { | 
|  | /* For an 80486 FPU, the result is undefined if the arg is >= 1.0 */ | 
|  | if (exponent(st0_ptr) < 0) { | 
|  | denormal_arg: | 
|  |  | 
|  | FPU_to_exp16(st0_ptr, &a); | 
|  |  | 
|  | /* poly_2xm1(x) requires 0 < st(0) < 1. */ | 
|  | poly_2xm1(getsign(st0_ptr), &a, st0_ptr); | 
|  | } | 
|  | set_precision_flag_up();	/* 80486 appears to always do this */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (tag == TAG_Zero) | 
|  | return; | 
|  |  | 
|  | if (tag == TAG_Special) | 
|  | tag = FPU_Special(st0_ptr); | 
|  |  | 
|  | switch (tag) { | 
|  | case TW_Denormal: | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  | goto denormal_arg; | 
|  | case TW_Infinity: | 
|  | if (signnegative(st0_ptr)) { | 
|  | /* -infinity gives -1 (p16-10) */ | 
|  | FPU_copy_to_reg0(&CONST_1, TAG_Valid); | 
|  | setnegative(st0_ptr); | 
|  | } | 
|  | return; | 
|  | default: | 
|  | single_arg_error(st0_ptr, tag); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fptan(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | FPU_REG *st_new_ptr; | 
|  | int q; | 
|  | u_char arg_sign = getsign(st0_ptr); | 
|  |  | 
|  | /* Stack underflow has higher priority */ | 
|  | if (st0_tag == TAG_Empty) { | 
|  | FPU_stack_underflow();	/* Puts a QNaN in st(0) */ | 
|  | if (control_word & CW_Invalid) { | 
|  | st_new_ptr = &st(-1); | 
|  | push(); | 
|  | FPU_stack_underflow();	/* Puts a QNaN in the new st(0) */ | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (STACK_OVERFLOW) { | 
|  | FPU_stack_overflow(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Valid) { | 
|  | if (exponent(st0_ptr) > -40) { | 
|  | if ((q = trig_arg(st0_ptr, 0)) == -1) { | 
|  | /* Operand is out of range */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | poly_tan(st0_ptr); | 
|  | setsign(st0_ptr, (q & 1) ^ (arg_sign != 0)); | 
|  | set_precision_flag_up();	/* We do not really know if up or down */ | 
|  | } else { | 
|  | /* For a small arg, the result == the argument */ | 
|  | /* Underflow may happen */ | 
|  |  | 
|  | denormal_arg: | 
|  |  | 
|  | FPU_to_exp16(st0_ptr, st0_ptr); | 
|  |  | 
|  | st0_tag = | 
|  | FPU_round(st0_ptr, 1, 0, FULL_PRECISION, arg_sign); | 
|  | FPU_settag0(st0_tag); | 
|  | } | 
|  | push(); | 
|  | FPU_copy_to_reg0(&CONST_1, TAG_Valid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Zero) { | 
|  | push(); | 
|  | FPU_copy_to_reg0(&CONST_1, TAG_Valid); | 
|  | setcc(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Special) | 
|  | st0_tag = FPU_Special(st0_ptr); | 
|  |  | 
|  | if (st0_tag == TW_Denormal) { | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  |  | 
|  | goto denormal_arg; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TW_Infinity) { | 
|  | /* The 80486 treats infinity as an invalid operand */ | 
|  | if (arith_invalid(0) >= 0) { | 
|  | st_new_ptr = &st(-1); | 
|  | push(); | 
|  | arith_invalid(0); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | single_arg_2_error(st0_ptr, st0_tag); | 
|  | } | 
|  |  | 
|  | static void fxtract(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | FPU_REG *st_new_ptr; | 
|  | u_char sign; | 
|  | register FPU_REG *st1_ptr = st0_ptr;	/* anticipate */ | 
|  |  | 
|  | if (STACK_OVERFLOW) { | 
|  | FPU_stack_overflow(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | clear_C1(); | 
|  |  | 
|  | if (st0_tag == TAG_Valid) { | 
|  | long e; | 
|  |  | 
|  | push(); | 
|  | sign = getsign(st1_ptr); | 
|  | reg_copy(st1_ptr, st_new_ptr); | 
|  | setexponent16(st_new_ptr, exponent(st_new_ptr)); | 
|  |  | 
|  | denormal_arg: | 
|  |  | 
|  | e = exponent16(st_new_ptr); | 
|  | convert_l2reg(&e, 1); | 
|  | setexponentpos(st_new_ptr, 0); | 
|  | setsign(st_new_ptr, sign); | 
|  | FPU_settag0(TAG_Valid);	/* Needed if arg was a denormal */ | 
|  | return; | 
|  | } else if (st0_tag == TAG_Zero) { | 
|  | sign = getsign(st0_ptr); | 
|  |  | 
|  | if (FPU_divide_by_zero(0, SIGN_NEG) < 0) | 
|  | return; | 
|  |  | 
|  | push(); | 
|  | FPU_copy_to_reg0(&CONST_Z, TAG_Zero); | 
|  | setsign(st_new_ptr, sign); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Special) | 
|  | st0_tag = FPU_Special(st0_ptr); | 
|  |  | 
|  | if (st0_tag == TW_Denormal) { | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  |  | 
|  | push(); | 
|  | sign = getsign(st1_ptr); | 
|  | FPU_to_exp16(st1_ptr, st_new_ptr); | 
|  | goto denormal_arg; | 
|  | } else if (st0_tag == TW_Infinity) { | 
|  | sign = getsign(st0_ptr); | 
|  | setpositive(st0_ptr); | 
|  | push(); | 
|  | FPU_copy_to_reg0(&CONST_INF, TAG_Special); | 
|  | setsign(st_new_ptr, sign); | 
|  | return; | 
|  | } else if (st0_tag == TW_NaN) { | 
|  | if (real_1op_NaN(st0_ptr) < 0) | 
|  | return; | 
|  |  | 
|  | push(); | 
|  | FPU_copy_to_reg0(st0_ptr, TAG_Special); | 
|  | return; | 
|  | } else if (st0_tag == TAG_Empty) { | 
|  | /* Is this the correct behaviour? */ | 
|  | if (control_word & EX_Invalid) { | 
|  | FPU_stack_underflow(); | 
|  | push(); | 
|  | FPU_stack_underflow(); | 
|  | } else | 
|  | EXCEPTION(EX_StackUnder); | 
|  | } | 
|  | #ifdef PARANOID | 
|  | else | 
|  | EXCEPTION(EX_INTERNAL | 0x119); | 
|  | #endif /* PARANOID */ | 
|  | } | 
|  |  | 
|  | static void fdecstp(void) | 
|  | { | 
|  | clear_C1(); | 
|  | top--; | 
|  | } | 
|  |  | 
|  | static void fincstp(void) | 
|  | { | 
|  | clear_C1(); | 
|  | top++; | 
|  | } | 
|  |  | 
|  | static void fsqrt_(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | int expon; | 
|  |  | 
|  | clear_C1(); | 
|  |  | 
|  | if (st0_tag == TAG_Valid) { | 
|  | u_char tag; | 
|  |  | 
|  | if (signnegative(st0_ptr)) { | 
|  | arith_invalid(0);	/* sqrt(negative) is invalid */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* make st(0) in  [1.0 .. 4.0) */ | 
|  | expon = exponent(st0_ptr); | 
|  |  | 
|  | denormal_arg: | 
|  |  | 
|  | setexponent16(st0_ptr, (expon & 1)); | 
|  |  | 
|  | /* Do the computation, the sign of the result will be positive. */ | 
|  | tag = wm_sqrt(st0_ptr, 0, 0, control_word, SIGN_POS); | 
|  | addexponent(st0_ptr, expon >> 1); | 
|  | FPU_settag0(tag); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Zero) | 
|  | return; | 
|  |  | 
|  | if (st0_tag == TAG_Special) | 
|  | st0_tag = FPU_Special(st0_ptr); | 
|  |  | 
|  | if (st0_tag == TW_Infinity) { | 
|  | if (signnegative(st0_ptr)) | 
|  | arith_invalid(0);	/* sqrt(-Infinity) is invalid */ | 
|  | return; | 
|  | } else if (st0_tag == TW_Denormal) { | 
|  | if (signnegative(st0_ptr)) { | 
|  | arith_invalid(0);	/* sqrt(negative) is invalid */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  |  | 
|  | FPU_to_exp16(st0_ptr, st0_ptr); | 
|  |  | 
|  | expon = exponent16(st0_ptr); | 
|  |  | 
|  | goto denormal_arg; | 
|  | } | 
|  |  | 
|  | single_arg_error(st0_ptr, st0_tag); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void frndint_(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | int flags, tag; | 
|  |  | 
|  | if (st0_tag == TAG_Valid) { | 
|  | u_char sign; | 
|  |  | 
|  | denormal_arg: | 
|  |  | 
|  | sign = getsign(st0_ptr); | 
|  |  | 
|  | if (exponent(st0_ptr) > 63) | 
|  | return; | 
|  |  | 
|  | if (st0_tag == TW_Denormal) { | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Fortunately, this can't overflow to 2^64 */ | 
|  | if ((flags = FPU_round_to_int(st0_ptr, st0_tag))) | 
|  | set_precision_flag(flags); | 
|  |  | 
|  | setexponent16(st0_ptr, 63); | 
|  | tag = FPU_normalize(st0_ptr); | 
|  | setsign(st0_ptr, sign); | 
|  | FPU_settag0(tag); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Zero) | 
|  | return; | 
|  |  | 
|  | if (st0_tag == TAG_Special) | 
|  | st0_tag = FPU_Special(st0_ptr); | 
|  |  | 
|  | if (st0_tag == TW_Denormal) | 
|  | goto denormal_arg; | 
|  | else if (st0_tag == TW_Infinity) | 
|  | return; | 
|  | else | 
|  | single_arg_error(st0_ptr, st0_tag); | 
|  | } | 
|  |  | 
|  | static int f_sin(FPU_REG *st0_ptr, u_char tag) | 
|  | { | 
|  | u_char arg_sign = getsign(st0_ptr); | 
|  |  | 
|  | if (tag == TAG_Valid) { | 
|  | int q; | 
|  |  | 
|  | if (exponent(st0_ptr) > -40) { | 
|  | if ((q = trig_arg(st0_ptr, 0)) == -1) { | 
|  | /* Operand is out of range */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | poly_sine(st0_ptr); | 
|  |  | 
|  | if (q & 2) | 
|  | changesign(st0_ptr); | 
|  |  | 
|  | setsign(st0_ptr, getsign(st0_ptr) ^ arg_sign); | 
|  |  | 
|  | /* We do not really know if up or down */ | 
|  | set_precision_flag_up(); | 
|  | return 0; | 
|  | } else { | 
|  | /* For a small arg, the result == the argument */ | 
|  | set_precision_flag_up();	/* Must be up. */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tag == TAG_Zero) { | 
|  | setcc(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (tag == TAG_Special) | 
|  | tag = FPU_Special(st0_ptr); | 
|  |  | 
|  | if (tag == TW_Denormal) { | 
|  | if (denormal_operand() < 0) | 
|  | return 1; | 
|  |  | 
|  | /* For a small arg, the result == the argument */ | 
|  | /* Underflow may happen */ | 
|  | FPU_to_exp16(st0_ptr, st0_ptr); | 
|  |  | 
|  | tag = FPU_round(st0_ptr, 1, 0, FULL_PRECISION, arg_sign); | 
|  |  | 
|  | FPU_settag0(tag); | 
|  |  | 
|  | return 0; | 
|  | } else if (tag == TW_Infinity) { | 
|  | /* The 80486 treats infinity as an invalid operand */ | 
|  | arith_invalid(0); | 
|  | return 1; | 
|  | } else { | 
|  | single_arg_error(st0_ptr, tag); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fsin(FPU_REG *st0_ptr, u_char tag) | 
|  | { | 
|  | f_sin(st0_ptr, tag); | 
|  | } | 
|  |  | 
|  | static int f_cos(FPU_REG *st0_ptr, u_char tag) | 
|  | { | 
|  | u_char st0_sign; | 
|  |  | 
|  | st0_sign = getsign(st0_ptr); | 
|  |  | 
|  | if (tag == TAG_Valid) { | 
|  | int q; | 
|  |  | 
|  | if (exponent(st0_ptr) > -40) { | 
|  | if ((exponent(st0_ptr) < 0) | 
|  | || ((exponent(st0_ptr) == 0) | 
|  | && (significand(st0_ptr) <= | 
|  | 0xc90fdaa22168c234LL))) { | 
|  | poly_cos(st0_ptr); | 
|  |  | 
|  | /* We do not really know if up or down */ | 
|  | set_precision_flag_down(); | 
|  |  | 
|  | return 0; | 
|  | } else if ((q = trig_arg(st0_ptr, FCOS)) != -1) { | 
|  | poly_sine(st0_ptr); | 
|  |  | 
|  | if ((q + 1) & 2) | 
|  | changesign(st0_ptr); | 
|  |  | 
|  | /* We do not really know if up or down */ | 
|  | set_precision_flag_down(); | 
|  |  | 
|  | return 0; | 
|  | } else { | 
|  | /* Operand is out of range */ | 
|  | return 1; | 
|  | } | 
|  | } else { | 
|  | denormal_arg: | 
|  |  | 
|  | setcc(0); | 
|  | FPU_copy_to_reg0(&CONST_1, TAG_Valid); | 
|  | #ifdef PECULIAR_486 | 
|  | set_precision_flag_down();	/* 80486 appears to do this. */ | 
|  | #else | 
|  | set_precision_flag_up();	/* Must be up. */ | 
|  | #endif /* PECULIAR_486 */ | 
|  | return 0; | 
|  | } | 
|  | } else if (tag == TAG_Zero) { | 
|  | FPU_copy_to_reg0(&CONST_1, TAG_Valid); | 
|  | setcc(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (tag == TAG_Special) | 
|  | tag = FPU_Special(st0_ptr); | 
|  |  | 
|  | if (tag == TW_Denormal) { | 
|  | if (denormal_operand() < 0) | 
|  | return 1; | 
|  |  | 
|  | goto denormal_arg; | 
|  | } else if (tag == TW_Infinity) { | 
|  | /* The 80486 treats infinity as an invalid operand */ | 
|  | arith_invalid(0); | 
|  | return 1; | 
|  | } else { | 
|  | single_arg_error(st0_ptr, tag);	/* requires st0_ptr == &st(0) */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fcos(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | f_cos(st0_ptr, st0_tag); | 
|  | } | 
|  |  | 
|  | static void fsincos(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | FPU_REG *st_new_ptr; | 
|  | FPU_REG arg; | 
|  | u_char tag; | 
|  |  | 
|  | /* Stack underflow has higher priority */ | 
|  | if (st0_tag == TAG_Empty) { | 
|  | FPU_stack_underflow();	/* Puts a QNaN in st(0) */ | 
|  | if (control_word & CW_Invalid) { | 
|  | st_new_ptr = &st(-1); | 
|  | push(); | 
|  | FPU_stack_underflow();	/* Puts a QNaN in the new st(0) */ | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (STACK_OVERFLOW) { | 
|  | FPU_stack_overflow(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Special) | 
|  | tag = FPU_Special(st0_ptr); | 
|  | else | 
|  | tag = st0_tag; | 
|  |  | 
|  | if (tag == TW_NaN) { | 
|  | single_arg_2_error(st0_ptr, TW_NaN); | 
|  | return; | 
|  | } else if (tag == TW_Infinity) { | 
|  | /* The 80486 treats infinity as an invalid operand */ | 
|  | if (arith_invalid(0) >= 0) { | 
|  | /* Masked response */ | 
|  | push(); | 
|  | arith_invalid(0); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | reg_copy(st0_ptr, &arg); | 
|  | if (!f_sin(st0_ptr, st0_tag)) { | 
|  | push(); | 
|  | FPU_copy_to_reg0(&arg, st0_tag); | 
|  | f_cos(&st(0), st0_tag); | 
|  | } else { | 
|  | /* An error, so restore st(0) */ | 
|  | FPU_copy_to_reg0(&arg, st0_tag); | 
|  | } | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------*/ | 
|  | /* The following all require two arguments: st(0) and st(1) */ | 
|  |  | 
|  | /* A lean, mean kernel for the fprem instructions. This relies upon | 
|  | the division and rounding to an integer in do_fprem giving an | 
|  | exact result. Because of this, rem_kernel() needs to deal only with | 
|  | the least significant 64 bits, the more significant bits of the | 
|  | result must be zero. | 
|  | */ | 
|  | static void rem_kernel(unsigned long long st0, unsigned long long *y, | 
|  | unsigned long long st1, unsigned long long q, int n) | 
|  | { | 
|  | int dummy; | 
|  | unsigned long long x; | 
|  |  | 
|  | x = st0 << n; | 
|  |  | 
|  | /* Do the required multiplication and subtraction in the one operation */ | 
|  |  | 
|  | /* lsw x -= lsw st1 * lsw q */ | 
|  | asm volatile ("mull %4; subl %%eax,%0; sbbl %%edx,%1":"=m" | 
|  | (((unsigned *)&x)[0]), "=m"(((unsigned *)&x)[1]), | 
|  | "=a"(dummy) | 
|  | :"2"(((unsigned *)&st1)[0]), "m"(((unsigned *)&q)[0]) | 
|  | :"%dx"); | 
|  | /* msw x -= msw st1 * lsw q */ | 
|  | asm volatile ("mull %3; subl %%eax,%0":"=m" (((unsigned *)&x)[1]), | 
|  | "=a"(dummy) | 
|  | :"1"(((unsigned *)&st1)[1]), "m"(((unsigned *)&q)[0]) | 
|  | :"%dx"); | 
|  | /* msw x -= lsw st1 * msw q */ | 
|  | asm volatile ("mull %3; subl %%eax,%0":"=m" (((unsigned *)&x)[1]), | 
|  | "=a"(dummy) | 
|  | :"1"(((unsigned *)&st1)[0]), "m"(((unsigned *)&q)[1]) | 
|  | :"%dx"); | 
|  |  | 
|  | *y = x; | 
|  | } | 
|  |  | 
|  | /* Remainder of st(0) / st(1) */ | 
|  | /* This routine produces exact results, i.e. there is never any | 
|  | rounding or truncation, etc of the result. */ | 
|  | static void do_fprem(FPU_REG *st0_ptr, u_char st0_tag, int round) | 
|  | { | 
|  | FPU_REG *st1_ptr = &st(1); | 
|  | u_char st1_tag = FPU_gettagi(1); | 
|  |  | 
|  | if (!((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid))) { | 
|  | FPU_REG tmp, st0, st1; | 
|  | u_char st0_sign, st1_sign; | 
|  | u_char tmptag; | 
|  | int tag; | 
|  | int old_cw; | 
|  | int expdif; | 
|  | long long q; | 
|  | unsigned short saved_status; | 
|  | int cc; | 
|  |  | 
|  | fprem_valid: | 
|  | /* Convert registers for internal use. */ | 
|  | st0_sign = FPU_to_exp16(st0_ptr, &st0); | 
|  | st1_sign = FPU_to_exp16(st1_ptr, &st1); | 
|  | expdif = exponent16(&st0) - exponent16(&st1); | 
|  |  | 
|  | old_cw = control_word; | 
|  | cc = 0; | 
|  |  | 
|  | /* We want the status following the denorm tests, but don't want | 
|  | the status changed by the arithmetic operations. */ | 
|  | saved_status = partial_status; | 
|  | control_word &= ~CW_RC; | 
|  | control_word |= RC_CHOP; | 
|  |  | 
|  | if (expdif < 64) { | 
|  | /* This should be the most common case */ | 
|  |  | 
|  | if (expdif > -2) { | 
|  | u_char sign = st0_sign ^ st1_sign; | 
|  | tag = FPU_u_div(&st0, &st1, &tmp, | 
|  | PR_64_BITS | RC_CHOP | 0x3f, | 
|  | sign); | 
|  | setsign(&tmp, sign); | 
|  |  | 
|  | if (exponent(&tmp) >= 0) { | 
|  | FPU_round_to_int(&tmp, tag);	/* Fortunately, this can't | 
|  | overflow to 2^64 */ | 
|  | q = significand(&tmp); | 
|  |  | 
|  | rem_kernel(significand(&st0), | 
|  | &significand(&tmp), | 
|  | significand(&st1), | 
|  | q, expdif); | 
|  |  | 
|  | setexponent16(&tmp, exponent16(&st1)); | 
|  | } else { | 
|  | reg_copy(&st0, &tmp); | 
|  | q = 0; | 
|  | } | 
|  |  | 
|  | if ((round == RC_RND) | 
|  | && (tmp.sigh & 0xc0000000)) { | 
|  | /* We may need to subtract st(1) once more, | 
|  | to get a result <= 1/2 of st(1). */ | 
|  | unsigned long long x; | 
|  | expdif = | 
|  | exponent16(&st1) - exponent16(&tmp); | 
|  | if (expdif <= 1) { | 
|  | if (expdif == 0) | 
|  | x = significand(&st1) - | 
|  | significand(&tmp); | 
|  | else	/* expdif is 1 */ | 
|  | x = (significand(&st1) | 
|  | << 1) - | 
|  | significand(&tmp); | 
|  | if ((x < significand(&tmp)) || | 
|  | /* or equi-distant (from 0 & st(1)) and q is odd */ | 
|  | ((x == significand(&tmp)) | 
|  | && (q & 1))) { | 
|  | st0_sign = !st0_sign; | 
|  | significand(&tmp) = x; | 
|  | q++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (q & 4) | 
|  | cc |= SW_C0; | 
|  | if (q & 2) | 
|  | cc |= SW_C3; | 
|  | if (q & 1) | 
|  | cc |= SW_C1; | 
|  | } else { | 
|  | control_word = old_cw; | 
|  | setcc(0); | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | /* There is a large exponent difference ( >= 64 ) */ | 
|  | /* To make much sense, the code in this section should | 
|  | be done at high precision. */ | 
|  | int exp_1, N; | 
|  | u_char sign; | 
|  |  | 
|  | /* prevent overflow here */ | 
|  | /* N is 'a number between 32 and 63' (p26-113) */ | 
|  | reg_copy(&st0, &tmp); | 
|  | tmptag = st0_tag; | 
|  | N = (expdif & 0x0000001f) + 32;	/* This choice gives results | 
|  | identical to an AMD 486 */ | 
|  | setexponent16(&tmp, N); | 
|  | exp_1 = exponent16(&st1); | 
|  | setexponent16(&st1, 0); | 
|  | expdif -= N; | 
|  |  | 
|  | sign = getsign(&tmp) ^ st1_sign; | 
|  | tag = | 
|  | FPU_u_div(&tmp, &st1, &tmp, | 
|  | PR_64_BITS | RC_CHOP | 0x3f, sign); | 
|  | setsign(&tmp, sign); | 
|  |  | 
|  | FPU_round_to_int(&tmp, tag);	/* Fortunately, this can't | 
|  | overflow to 2^64 */ | 
|  |  | 
|  | rem_kernel(significand(&st0), | 
|  | &significand(&tmp), | 
|  | significand(&st1), | 
|  | significand(&tmp), exponent(&tmp) | 
|  | ); | 
|  | setexponent16(&tmp, exp_1 + expdif); | 
|  |  | 
|  | /* It is possible for the operation to be complete here. | 
|  | What does the IEEE standard say? The Intel 80486 manual | 
|  | implies that the operation will never be completed at this | 
|  | point, and the behaviour of a real 80486 confirms this. | 
|  | */ | 
|  | if (!(tmp.sigh | tmp.sigl)) { | 
|  | /* The result is zero */ | 
|  | control_word = old_cw; | 
|  | partial_status = saved_status; | 
|  | FPU_copy_to_reg0(&CONST_Z, TAG_Zero); | 
|  | setsign(&st0, st0_sign); | 
|  | #ifdef PECULIAR_486 | 
|  | setcc(SW_C2); | 
|  | #else | 
|  | setcc(0); | 
|  | #endif /* PECULIAR_486 */ | 
|  | return; | 
|  | } | 
|  | cc = SW_C2; | 
|  | } | 
|  |  | 
|  | control_word = old_cw; | 
|  | partial_status = saved_status; | 
|  | tag = FPU_normalize_nuo(&tmp); | 
|  | reg_copy(&tmp, st0_ptr); | 
|  |  | 
|  | /* The only condition to be looked for is underflow, | 
|  | and it can occur here only if underflow is unmasked. */ | 
|  | if ((exponent16(&tmp) <= EXP_UNDER) && (tag != TAG_Zero) | 
|  | && !(control_word & CW_Underflow)) { | 
|  | setcc(cc); | 
|  | tag = arith_underflow(st0_ptr); | 
|  | setsign(st0_ptr, st0_sign); | 
|  | FPU_settag0(tag); | 
|  | return; | 
|  | } else if ((exponent16(&tmp) > EXP_UNDER) || (tag == TAG_Zero)) { | 
|  | stdexp(st0_ptr); | 
|  | setsign(st0_ptr, st0_sign); | 
|  | } else { | 
|  | tag = | 
|  | FPU_round(st0_ptr, 0, 0, FULL_PRECISION, st0_sign); | 
|  | } | 
|  | FPU_settag0(tag); | 
|  | setcc(cc); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Special) | 
|  | st0_tag = FPU_Special(st0_ptr); | 
|  | if (st1_tag == TAG_Special) | 
|  | st1_tag = FPU_Special(st1_ptr); | 
|  |  | 
|  | if (((st0_tag == TAG_Valid) && (st1_tag == TW_Denormal)) | 
|  | || ((st0_tag == TW_Denormal) && (st1_tag == TAG_Valid)) | 
|  | || ((st0_tag == TW_Denormal) && (st1_tag == TW_Denormal))) { | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  | goto fprem_valid; | 
|  | } else if ((st0_tag == TAG_Empty) || (st1_tag == TAG_Empty)) { | 
|  | FPU_stack_underflow(); | 
|  | return; | 
|  | } else if (st0_tag == TAG_Zero) { | 
|  | if (st1_tag == TAG_Valid) { | 
|  | setcc(0); | 
|  | return; | 
|  | } else if (st1_tag == TW_Denormal) { | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  | setcc(0); | 
|  | return; | 
|  | } else if (st1_tag == TAG_Zero) { | 
|  | arith_invalid(0); | 
|  | return; | 
|  | } /* fprem(?,0) always invalid */ | 
|  | else if (st1_tag == TW_Infinity) { | 
|  | setcc(0); | 
|  | return; | 
|  | } | 
|  | } else if ((st0_tag == TAG_Valid) || (st0_tag == TW_Denormal)) { | 
|  | if (st1_tag == TAG_Zero) { | 
|  | arith_invalid(0);	/* fprem(Valid,Zero) is invalid */ | 
|  | return; | 
|  | } else if (st1_tag != TW_NaN) { | 
|  | if (((st0_tag == TW_Denormal) | 
|  | || (st1_tag == TW_Denormal)) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  |  | 
|  | if (st1_tag == TW_Infinity) { | 
|  | /* fprem(Valid,Infinity) is o.k. */ | 
|  | setcc(0); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else if (st0_tag == TW_Infinity) { | 
|  | if (st1_tag != TW_NaN) { | 
|  | arith_invalid(0);	/* fprem(Infinity,?) is invalid */ | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* One of the registers must contain a NaN if we got here. */ | 
|  |  | 
|  | #ifdef PARANOID | 
|  | if ((st0_tag != TW_NaN) && (st1_tag != TW_NaN)) | 
|  | EXCEPTION(EX_INTERNAL | 0x118); | 
|  | #endif /* PARANOID */ | 
|  |  | 
|  | real_2op_NaN(st1_ptr, st1_tag, 0, st1_ptr); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* ST(1) <- ST(1) * log ST;  pop ST */ | 
|  | static void fyl2x(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | FPU_REG *st1_ptr = &st(1), exponent; | 
|  | u_char st1_tag = FPU_gettagi(1); | 
|  | u_char sign; | 
|  | int e, tag; | 
|  |  | 
|  | clear_C1(); | 
|  |  | 
|  | if ((st0_tag == TAG_Valid) && (st1_tag == TAG_Valid)) { | 
|  | both_valid: | 
|  | /* Both regs are Valid or Denormal */ | 
|  | if (signpositive(st0_ptr)) { | 
|  | if (st0_tag == TW_Denormal) | 
|  | FPU_to_exp16(st0_ptr, st0_ptr); | 
|  | else | 
|  | /* Convert st(0) for internal use. */ | 
|  | setexponent16(st0_ptr, exponent(st0_ptr)); | 
|  |  | 
|  | if ((st0_ptr->sigh == 0x80000000) | 
|  | && (st0_ptr->sigl == 0)) { | 
|  | /* Special case. The result can be precise. */ | 
|  | u_char esign; | 
|  | e = exponent16(st0_ptr); | 
|  | if (e >= 0) { | 
|  | exponent.sigh = e; | 
|  | esign = SIGN_POS; | 
|  | } else { | 
|  | exponent.sigh = -e; | 
|  | esign = SIGN_NEG; | 
|  | } | 
|  | exponent.sigl = 0; | 
|  | setexponent16(&exponent, 31); | 
|  | tag = FPU_normalize_nuo(&exponent); | 
|  | stdexp(&exponent); | 
|  | setsign(&exponent, esign); | 
|  | tag = | 
|  | FPU_mul(&exponent, tag, 1, FULL_PRECISION); | 
|  | if (tag >= 0) | 
|  | FPU_settagi(1, tag); | 
|  | } else { | 
|  | /* The usual case */ | 
|  | sign = getsign(st1_ptr); | 
|  | if (st1_tag == TW_Denormal) | 
|  | FPU_to_exp16(st1_ptr, st1_ptr); | 
|  | else | 
|  | /* Convert st(1) for internal use. */ | 
|  | setexponent16(st1_ptr, | 
|  | exponent(st1_ptr)); | 
|  | poly_l2(st0_ptr, st1_ptr, sign); | 
|  | } | 
|  | } else { | 
|  | /* negative */ | 
|  | if (arith_invalid(1) < 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | FPU_pop(); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Special) | 
|  | st0_tag = FPU_Special(st0_ptr); | 
|  | if (st1_tag == TAG_Special) | 
|  | st1_tag = FPU_Special(st1_ptr); | 
|  |  | 
|  | if ((st0_tag == TAG_Empty) || (st1_tag == TAG_Empty)) { | 
|  | FPU_stack_underflow_pop(1); | 
|  | return; | 
|  | } else if ((st0_tag <= TW_Denormal) && (st1_tag <= TW_Denormal)) { | 
|  | if (st0_tag == TAG_Zero) { | 
|  | if (st1_tag == TAG_Zero) { | 
|  | /* Both args zero is invalid */ | 
|  | if (arith_invalid(1) < 0) | 
|  | return; | 
|  | } else { | 
|  | u_char sign; | 
|  | sign = getsign(st1_ptr) ^ SIGN_NEG; | 
|  | if (FPU_divide_by_zero(1, sign) < 0) | 
|  | return; | 
|  |  | 
|  | setsign(st1_ptr, sign); | 
|  | } | 
|  | } else if (st1_tag == TAG_Zero) { | 
|  | /* st(1) contains zero, st(0) valid <> 0 */ | 
|  | /* Zero is the valid answer */ | 
|  | sign = getsign(st1_ptr); | 
|  |  | 
|  | if (signnegative(st0_ptr)) { | 
|  | /* log(negative) */ | 
|  | if (arith_invalid(1) < 0) | 
|  | return; | 
|  | } else if ((st0_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  | else { | 
|  | if (exponent(st0_ptr) < 0) | 
|  | sign ^= SIGN_NEG; | 
|  |  | 
|  | FPU_copy_to_reg1(&CONST_Z, TAG_Zero); | 
|  | setsign(st1_ptr, sign); | 
|  | } | 
|  | } else { | 
|  | /* One or both operands are denormals. */ | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  | goto both_valid; | 
|  | } | 
|  | } else if ((st0_tag == TW_NaN) || (st1_tag == TW_NaN)) { | 
|  | if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0) | 
|  | return; | 
|  | } | 
|  | /* One or both arg must be an infinity */ | 
|  | else if (st0_tag == TW_Infinity) { | 
|  | if ((signnegative(st0_ptr)) || (st1_tag == TAG_Zero)) { | 
|  | /* log(-infinity) or 0*log(infinity) */ | 
|  | if (arith_invalid(1) < 0) | 
|  | return; | 
|  | } else { | 
|  | u_char sign = getsign(st1_ptr); | 
|  |  | 
|  | if ((st1_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  |  | 
|  | FPU_copy_to_reg1(&CONST_INF, TAG_Special); | 
|  | setsign(st1_ptr, sign); | 
|  | } | 
|  | } | 
|  | /* st(1) must be infinity here */ | 
|  | else if (((st0_tag == TAG_Valid) || (st0_tag == TW_Denormal)) | 
|  | && (signpositive(st0_ptr))) { | 
|  | if (exponent(st0_ptr) >= 0) { | 
|  | if ((exponent(st0_ptr) == 0) && | 
|  | (st0_ptr->sigh == 0x80000000) && | 
|  | (st0_ptr->sigl == 0)) { | 
|  | /* st(0) holds 1.0 */ | 
|  | /* infinity*log(1) */ | 
|  | if (arith_invalid(1) < 0) | 
|  | return; | 
|  | } | 
|  | /* else st(0) is positive and > 1.0 */ | 
|  | } else { | 
|  | /* st(0) is positive and < 1.0 */ | 
|  |  | 
|  | if ((st0_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  |  | 
|  | changesign(st1_ptr); | 
|  | } | 
|  | } else { | 
|  | /* st(0) must be zero or negative */ | 
|  | if (st0_tag == TAG_Zero) { | 
|  | /* This should be invalid, but a real 80486 is happy with it. */ | 
|  |  | 
|  | #ifndef PECULIAR_486 | 
|  | sign = getsign(st1_ptr); | 
|  | if (FPU_divide_by_zero(1, sign) < 0) | 
|  | return; | 
|  | #endif /* PECULIAR_486 */ | 
|  |  | 
|  | changesign(st1_ptr); | 
|  | } else if (arith_invalid(1) < 0)	/* log(negative) */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | FPU_pop(); | 
|  | } | 
|  |  | 
|  | static void fpatan(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | FPU_REG *st1_ptr = &st(1); | 
|  | u_char st1_tag = FPU_gettagi(1); | 
|  | int tag; | 
|  |  | 
|  | clear_C1(); | 
|  | if (!((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid))) { | 
|  | valid_atan: | 
|  |  | 
|  | poly_atan(st0_ptr, st0_tag, st1_ptr, st1_tag); | 
|  |  | 
|  | FPU_pop(); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Special) | 
|  | st0_tag = FPU_Special(st0_ptr); | 
|  | if (st1_tag == TAG_Special) | 
|  | st1_tag = FPU_Special(st1_ptr); | 
|  |  | 
|  | if (((st0_tag == TAG_Valid) && (st1_tag == TW_Denormal)) | 
|  | || ((st0_tag == TW_Denormal) && (st1_tag == TAG_Valid)) | 
|  | || ((st0_tag == TW_Denormal) && (st1_tag == TW_Denormal))) { | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  |  | 
|  | goto valid_atan; | 
|  | } else if ((st0_tag == TAG_Empty) || (st1_tag == TAG_Empty)) { | 
|  | FPU_stack_underflow_pop(1); | 
|  | return; | 
|  | } else if ((st0_tag == TW_NaN) || (st1_tag == TW_NaN)) { | 
|  | if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) >= 0) | 
|  | FPU_pop(); | 
|  | return; | 
|  | } else if ((st0_tag == TW_Infinity) || (st1_tag == TW_Infinity)) { | 
|  | u_char sign = getsign(st1_ptr); | 
|  | if (st0_tag == TW_Infinity) { | 
|  | if (st1_tag == TW_Infinity) { | 
|  | if (signpositive(st0_ptr)) { | 
|  | FPU_copy_to_reg1(&CONST_PI4, TAG_Valid); | 
|  | } else { | 
|  | setpositive(st1_ptr); | 
|  | tag = | 
|  | FPU_u_add(&CONST_PI4, &CONST_PI2, | 
|  | st1_ptr, FULL_PRECISION, | 
|  | SIGN_POS, | 
|  | exponent(&CONST_PI4), | 
|  | exponent(&CONST_PI2)); | 
|  | if (tag >= 0) | 
|  | FPU_settagi(1, tag); | 
|  | } | 
|  | } else { | 
|  | if ((st1_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  |  | 
|  | if (signpositive(st0_ptr)) { | 
|  | FPU_copy_to_reg1(&CONST_Z, TAG_Zero); | 
|  | setsign(st1_ptr, sign);	/* An 80486 preserves the sign */ | 
|  | FPU_pop(); | 
|  | return; | 
|  | } else { | 
|  | FPU_copy_to_reg1(&CONST_PI, TAG_Valid); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* st(1) is infinity, st(0) not infinity */ | 
|  | if ((st0_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  |  | 
|  | FPU_copy_to_reg1(&CONST_PI2, TAG_Valid); | 
|  | } | 
|  | setsign(st1_ptr, sign); | 
|  | } else if (st1_tag == TAG_Zero) { | 
|  | /* st(0) must be valid or zero */ | 
|  | u_char sign = getsign(st1_ptr); | 
|  |  | 
|  | if ((st0_tag == TW_Denormal) && (denormal_operand() < 0)) | 
|  | return; | 
|  |  | 
|  | if (signpositive(st0_ptr)) { | 
|  | /* An 80486 preserves the sign */ | 
|  | FPU_pop(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | FPU_copy_to_reg1(&CONST_PI, TAG_Valid); | 
|  | setsign(st1_ptr, sign); | 
|  | } else if (st0_tag == TAG_Zero) { | 
|  | /* st(1) must be TAG_Valid here */ | 
|  | u_char sign = getsign(st1_ptr); | 
|  |  | 
|  | if ((st1_tag == TW_Denormal) && (denormal_operand() < 0)) | 
|  | return; | 
|  |  | 
|  | FPU_copy_to_reg1(&CONST_PI2, TAG_Valid); | 
|  | setsign(st1_ptr, sign); | 
|  | } | 
|  | #ifdef PARANOID | 
|  | else | 
|  | EXCEPTION(EX_INTERNAL | 0x125); | 
|  | #endif /* PARANOID */ | 
|  |  | 
|  | FPU_pop(); | 
|  | set_precision_flag_up();	/* We do not really know if up or down */ | 
|  | } | 
|  |  | 
|  | static void fprem(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | do_fprem(st0_ptr, st0_tag, RC_CHOP); | 
|  | } | 
|  |  | 
|  | static void fprem1(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | do_fprem(st0_ptr, st0_tag, RC_RND); | 
|  | } | 
|  |  | 
|  | static void fyl2xp1(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | u_char sign, sign1; | 
|  | FPU_REG *st1_ptr = &st(1), a, b; | 
|  | u_char st1_tag = FPU_gettagi(1); | 
|  |  | 
|  | clear_C1(); | 
|  | if (!((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid))) { | 
|  | valid_yl2xp1: | 
|  |  | 
|  | sign = getsign(st0_ptr); | 
|  | sign1 = getsign(st1_ptr); | 
|  |  | 
|  | FPU_to_exp16(st0_ptr, &a); | 
|  | FPU_to_exp16(st1_ptr, &b); | 
|  |  | 
|  | if (poly_l2p1(sign, sign1, &a, &b, st1_ptr)) | 
|  | return; | 
|  |  | 
|  | FPU_pop(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Special) | 
|  | st0_tag = FPU_Special(st0_ptr); | 
|  | if (st1_tag == TAG_Special) | 
|  | st1_tag = FPU_Special(st1_ptr); | 
|  |  | 
|  | if (((st0_tag == TAG_Valid) && (st1_tag == TW_Denormal)) | 
|  | || ((st0_tag == TW_Denormal) && (st1_tag == TAG_Valid)) | 
|  | || ((st0_tag == TW_Denormal) && (st1_tag == TW_Denormal))) { | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  |  | 
|  | goto valid_yl2xp1; | 
|  | } else if ((st0_tag == TAG_Empty) | (st1_tag == TAG_Empty)) { | 
|  | FPU_stack_underflow_pop(1); | 
|  | return; | 
|  | } else if (st0_tag == TAG_Zero) { | 
|  | switch (st1_tag) { | 
|  | case TW_Denormal: | 
|  | if (denormal_operand() < 0) | 
|  | return; | 
|  | fallthrough; | 
|  | case TAG_Zero: | 
|  | case TAG_Valid: | 
|  | setsign(st0_ptr, getsign(st0_ptr) ^ getsign(st1_ptr)); | 
|  | FPU_copy_to_reg1(st0_ptr, st0_tag); | 
|  | break; | 
|  |  | 
|  | case TW_Infinity: | 
|  | /* Infinity*log(1) */ | 
|  | if (arith_invalid(1) < 0) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case TW_NaN: | 
|  | if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | #ifdef PARANOID | 
|  | EXCEPTION(EX_INTERNAL | 0x116); | 
|  | return; | 
|  | #endif /* PARANOID */ | 
|  | break; | 
|  | } | 
|  | } else if ((st0_tag == TAG_Valid) || (st0_tag == TW_Denormal)) { | 
|  | switch (st1_tag) { | 
|  | case TAG_Zero: | 
|  | if (signnegative(st0_ptr)) { | 
|  | if (exponent(st0_ptr) >= 0) { | 
|  | /* st(0) holds <= -1.0 */ | 
|  | #ifdef PECULIAR_486		/* Stupid 80486 doesn't worry about log(negative). */ | 
|  | changesign(st1_ptr); | 
|  | #else | 
|  | if (arith_invalid(1) < 0) | 
|  | return; | 
|  | #endif /* PECULIAR_486 */ | 
|  | } else if ((st0_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  | else | 
|  | changesign(st1_ptr); | 
|  | } else if ((st0_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case TW_Infinity: | 
|  | if (signnegative(st0_ptr)) { | 
|  | if ((exponent(st0_ptr) >= 0) && | 
|  | !((st0_ptr->sigh == 0x80000000) && | 
|  | (st0_ptr->sigl == 0))) { | 
|  | /* st(0) holds < -1.0 */ | 
|  | #ifdef PECULIAR_486		/* Stupid 80486 doesn't worry about log(negative). */ | 
|  | changesign(st1_ptr); | 
|  | #else | 
|  | if (arith_invalid(1) < 0) | 
|  | return; | 
|  | #endif /* PECULIAR_486 */ | 
|  | } else if ((st0_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  | else | 
|  | changesign(st1_ptr); | 
|  | } else if ((st0_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  | break; | 
|  |  | 
|  | case TW_NaN: | 
|  | if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | } else if (st0_tag == TW_NaN) { | 
|  | if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0) | 
|  | return; | 
|  | } else if (st0_tag == TW_Infinity) { | 
|  | if (st1_tag == TW_NaN) { | 
|  | if (real_2op_NaN(st0_ptr, st0_tag, 1, st0_ptr) < 0) | 
|  | return; | 
|  | } else if (signnegative(st0_ptr)) { | 
|  | #ifndef PECULIAR_486 | 
|  | /* This should have higher priority than denormals, but... */ | 
|  | if (arith_invalid(1) < 0)	/* log(-infinity) */ | 
|  | return; | 
|  | #endif /* PECULIAR_486 */ | 
|  | if ((st1_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  | #ifdef PECULIAR_486 | 
|  | /* Denormal operands actually get higher priority */ | 
|  | if (arith_invalid(1) < 0)	/* log(-infinity) */ | 
|  | return; | 
|  | #endif /* PECULIAR_486 */ | 
|  | } else if (st1_tag == TAG_Zero) { | 
|  | /* log(infinity) */ | 
|  | if (arith_invalid(1) < 0) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* st(1) must be valid here. */ | 
|  |  | 
|  | else if ((st1_tag == TW_Denormal) && (denormal_operand() < 0)) | 
|  | return; | 
|  |  | 
|  | /* The Manual says that log(Infinity) is invalid, but a real | 
|  | 80486 sensibly says that it is o.k. */ | 
|  | else { | 
|  | u_char sign = getsign(st1_ptr); | 
|  | FPU_copy_to_reg1(&CONST_INF, TAG_Special); | 
|  | setsign(st1_ptr, sign); | 
|  | } | 
|  | } | 
|  | #ifdef PARANOID | 
|  | else { | 
|  | EXCEPTION(EX_INTERNAL | 0x117); | 
|  | return; | 
|  | } | 
|  | #endif /* PARANOID */ | 
|  |  | 
|  | FPU_pop(); | 
|  | return; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void fscale(FPU_REG *st0_ptr, u_char st0_tag) | 
|  | { | 
|  | FPU_REG *st1_ptr = &st(1); | 
|  | u_char st1_tag = FPU_gettagi(1); | 
|  | int old_cw = control_word; | 
|  | u_char sign = getsign(st0_ptr); | 
|  |  | 
|  | clear_C1(); | 
|  | if (!((st0_tag ^ TAG_Valid) | (st1_tag ^ TAG_Valid))) { | 
|  | long scale; | 
|  | FPU_REG tmp; | 
|  |  | 
|  | /* Convert register for internal use. */ | 
|  | setexponent16(st0_ptr, exponent(st0_ptr)); | 
|  |  | 
|  | valid_scale: | 
|  |  | 
|  | if (exponent(st1_ptr) > 30) { | 
|  | /* 2^31 is far too large, would require 2^(2^30) or 2^(-2^30) */ | 
|  |  | 
|  | if (signpositive(st1_ptr)) { | 
|  | EXCEPTION(EX_Overflow); | 
|  | FPU_copy_to_reg0(&CONST_INF, TAG_Special); | 
|  | } else { | 
|  | EXCEPTION(EX_Underflow); | 
|  | FPU_copy_to_reg0(&CONST_Z, TAG_Zero); | 
|  | } | 
|  | setsign(st0_ptr, sign); | 
|  | return; | 
|  | } | 
|  |  | 
|  | control_word &= ~CW_RC; | 
|  | control_word |= RC_CHOP; | 
|  | reg_copy(st1_ptr, &tmp); | 
|  | FPU_round_to_int(&tmp, st1_tag);	/* This can never overflow here */ | 
|  | control_word = old_cw; | 
|  | scale = signnegative(st1_ptr) ? -tmp.sigl : tmp.sigl; | 
|  | scale += exponent16(st0_ptr); | 
|  |  | 
|  | setexponent16(st0_ptr, scale); | 
|  |  | 
|  | /* Use FPU_round() to properly detect under/overflow etc */ | 
|  | FPU_round(st0_ptr, 0, 0, control_word, sign); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (st0_tag == TAG_Special) | 
|  | st0_tag = FPU_Special(st0_ptr); | 
|  | if (st1_tag == TAG_Special) | 
|  | st1_tag = FPU_Special(st1_ptr); | 
|  |  | 
|  | if ((st0_tag == TAG_Valid) || (st0_tag == TW_Denormal)) { | 
|  | switch (st1_tag) { | 
|  | case TAG_Valid: | 
|  | /* st(0) must be a denormal */ | 
|  | if ((st0_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  |  | 
|  | FPU_to_exp16(st0_ptr, st0_ptr);	/* Will not be left on stack */ | 
|  | goto valid_scale; | 
|  |  | 
|  | case TAG_Zero: | 
|  | if (st0_tag == TW_Denormal) | 
|  | denormal_operand(); | 
|  | return; | 
|  |  | 
|  | case TW_Denormal: | 
|  | denormal_operand(); | 
|  | return; | 
|  |  | 
|  | case TW_Infinity: | 
|  | if ((st0_tag == TW_Denormal) | 
|  | && (denormal_operand() < 0)) | 
|  | return; | 
|  |  | 
|  | if (signpositive(st1_ptr)) | 
|  | FPU_copy_to_reg0(&CONST_INF, TAG_Special); | 
|  | else | 
|  | FPU_copy_to_reg0(&CONST_Z, TAG_Zero); | 
|  | setsign(st0_ptr, sign); | 
|  | return; | 
|  |  | 
|  | case TW_NaN: | 
|  | real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr); | 
|  | return; | 
|  | } | 
|  | } else if (st0_tag == TAG_Zero) { | 
|  | switch (st1_tag) { | 
|  | case TAG_Valid: | 
|  | case TAG_Zero: | 
|  | return; | 
|  |  | 
|  | case TW_Denormal: | 
|  | denormal_operand(); | 
|  | return; | 
|  |  | 
|  | case TW_Infinity: | 
|  | if (signpositive(st1_ptr)) | 
|  | arith_invalid(0);	/* Zero scaled by +Infinity */ | 
|  | return; | 
|  |  | 
|  | case TW_NaN: | 
|  | real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr); | 
|  | return; | 
|  | } | 
|  | } else if (st0_tag == TW_Infinity) { | 
|  | switch (st1_tag) { | 
|  | case TAG_Valid: | 
|  | case TAG_Zero: | 
|  | return; | 
|  |  | 
|  | case TW_Denormal: | 
|  | denormal_operand(); | 
|  | return; | 
|  |  | 
|  | case TW_Infinity: | 
|  | if (signnegative(st1_ptr)) | 
|  | arith_invalid(0);	/* Infinity scaled by -Infinity */ | 
|  | return; | 
|  |  | 
|  | case TW_NaN: | 
|  | real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr); | 
|  | return; | 
|  | } | 
|  | } else if (st0_tag == TW_NaN) { | 
|  | if (st1_tag != TAG_Empty) { | 
|  | real_2op_NaN(st1_ptr, st1_tag, 0, st0_ptr); | 
|  | return; | 
|  | } | 
|  | } | 
|  | #ifdef PARANOID | 
|  | if (!((st0_tag == TAG_Empty) || (st1_tag == TAG_Empty))) { | 
|  | EXCEPTION(EX_INTERNAL | 0x115); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* At least one of st(0), st(1) must be empty */ | 
|  | FPU_stack_underflow(); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------*/ | 
|  |  | 
|  | static FUNC_ST0 const trig_table_a[] = { | 
|  | f2xm1, fyl2x, fptan, fpatan, | 
|  | fxtract, fprem1, (FUNC_ST0) fdecstp, (FUNC_ST0) fincstp | 
|  | }; | 
|  |  | 
|  | void FPU_triga(void) | 
|  | { | 
|  | (trig_table_a[FPU_rm]) (&st(0), FPU_gettag0()); | 
|  | } | 
|  |  | 
|  | static FUNC_ST0 const trig_table_b[] = { | 
|  | fprem, fyl2xp1, fsqrt_, fsincos, frndint_, fscale, fsin, fcos | 
|  | }; | 
|  |  | 
|  | void FPU_trigb(void) | 
|  | { | 
|  | (trig_table_b[FPU_rm]) (&st(0), FPU_gettag0()); | 
|  | } |