| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2012 Alexander Block.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/bsearch.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/file.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/xattr.h> | 
 | #include <linux/posix_acl_xattr.h> | 
 | #include <linux/radix-tree.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/string.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/crc32c.h> | 
 |  | 
 | #include "send.h" | 
 | #include "backref.h" | 
 | #include "locking.h" | 
 | #include "disk-io.h" | 
 | #include "btrfs_inode.h" | 
 | #include "transaction.h" | 
 | #include "compression.h" | 
 | #include "xattr.h" | 
 | #include "print-tree.h" | 
 |  | 
 | /* | 
 |  * Maximum number of references an extent can have in order for us to attempt to | 
 |  * issue clone operations instead of write operations. This currently exists to | 
 |  * avoid hitting limitations of the backreference walking code (taking a lot of | 
 |  * time and using too much memory for extents with large number of references). | 
 |  */ | 
 | #define SEND_MAX_EXTENT_REFS	64 | 
 |  | 
 | /* | 
 |  * A fs_path is a helper to dynamically build path names with unknown size. | 
 |  * It reallocates the internal buffer on demand. | 
 |  * It allows fast adding of path elements on the right side (normal path) and | 
 |  * fast adding to the left side (reversed path). A reversed path can also be | 
 |  * unreversed if needed. | 
 |  */ | 
 | struct fs_path { | 
 | 	union { | 
 | 		struct { | 
 | 			char *start; | 
 | 			char *end; | 
 |  | 
 | 			char *buf; | 
 | 			unsigned short buf_len:15; | 
 | 			unsigned short reversed:1; | 
 | 			char inline_buf[]; | 
 | 		}; | 
 | 		/* | 
 | 		 * Average path length does not exceed 200 bytes, we'll have | 
 | 		 * better packing in the slab and higher chance to satisfy | 
 | 		 * a allocation later during send. | 
 | 		 */ | 
 | 		char pad[256]; | 
 | 	}; | 
 | }; | 
 | #define FS_PATH_INLINE_SIZE \ | 
 | 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) | 
 |  | 
 |  | 
 | /* reused for each extent */ | 
 | struct clone_root { | 
 | 	struct btrfs_root *root; | 
 | 	u64 ino; | 
 | 	u64 offset; | 
 |  | 
 | 	u64 found_refs; | 
 | }; | 
 |  | 
 | #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 | 
 | #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) | 
 |  | 
 | struct send_ctx { | 
 | 	struct file *send_filp; | 
 | 	loff_t send_off; | 
 | 	char *send_buf; | 
 | 	u32 send_size; | 
 | 	u32 send_max_size; | 
 | 	u64 total_send_size; | 
 | 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; | 
 | 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */ | 
 |  | 
 | 	struct btrfs_root *send_root; | 
 | 	struct btrfs_root *parent_root; | 
 | 	struct clone_root *clone_roots; | 
 | 	int clone_roots_cnt; | 
 |  | 
 | 	/* current state of the compare_tree call */ | 
 | 	struct btrfs_path *left_path; | 
 | 	struct btrfs_path *right_path; | 
 | 	struct btrfs_key *cmp_key; | 
 |  | 
 | 	/* | 
 | 	 * Keep track of the generation of the last transaction that was used | 
 | 	 * for relocating a block group. This is periodically checked in order | 
 | 	 * to detect if a relocation happened since the last check, so that we | 
 | 	 * don't operate on stale extent buffers for nodes (level >= 1) or on | 
 | 	 * stale disk_bytenr values of file extent items. | 
 | 	 */ | 
 | 	u64 last_reloc_trans; | 
 |  | 
 | 	/* | 
 | 	 * infos of the currently processed inode. In case of deleted inodes, | 
 | 	 * these are the values from the deleted inode. | 
 | 	 */ | 
 | 	u64 cur_ino; | 
 | 	u64 cur_inode_gen; | 
 | 	int cur_inode_new; | 
 | 	int cur_inode_new_gen; | 
 | 	int cur_inode_deleted; | 
 | 	u64 cur_inode_size; | 
 | 	u64 cur_inode_mode; | 
 | 	u64 cur_inode_rdev; | 
 | 	u64 cur_inode_last_extent; | 
 | 	u64 cur_inode_next_write_offset; | 
 | 	bool ignore_cur_inode; | 
 |  | 
 | 	u64 send_progress; | 
 |  | 
 | 	struct list_head new_refs; | 
 | 	struct list_head deleted_refs; | 
 |  | 
 | 	struct radix_tree_root name_cache; | 
 | 	struct list_head name_cache_list; | 
 | 	int name_cache_size; | 
 |  | 
 | 	struct file_ra_state ra; | 
 |  | 
 | 	/* | 
 | 	 * We process inodes by their increasing order, so if before an | 
 | 	 * incremental send we reverse the parent/child relationship of | 
 | 	 * directories such that a directory with a lower inode number was | 
 | 	 * the parent of a directory with a higher inode number, and the one | 
 | 	 * becoming the new parent got renamed too, we can't rename/move the | 
 | 	 * directory with lower inode number when we finish processing it - we | 
 | 	 * must process the directory with higher inode number first, then | 
 | 	 * rename/move it and then rename/move the directory with lower inode | 
 | 	 * number. Example follows. | 
 | 	 * | 
 | 	 * Tree state when the first send was performed: | 
 | 	 * | 
 | 	 * . | 
 | 	 * |-- a                   (ino 257) | 
 | 	 *     |-- b               (ino 258) | 
 | 	 *         | | 
 | 	 *         | | 
 | 	 *         |-- c           (ino 259) | 
 | 	 *         |   |-- d       (ino 260) | 
 | 	 *         | | 
 | 	 *         |-- c2          (ino 261) | 
 | 	 * | 
 | 	 * Tree state when the second (incremental) send is performed: | 
 | 	 * | 
 | 	 * . | 
 | 	 * |-- a                   (ino 257) | 
 | 	 *     |-- b               (ino 258) | 
 | 	 *         |-- c2          (ino 261) | 
 | 	 *             |-- d2      (ino 260) | 
 | 	 *                 |-- cc  (ino 259) | 
 | 	 * | 
 | 	 * The sequence of steps that lead to the second state was: | 
 | 	 * | 
 | 	 * mv /a/b/c/d /a/b/c2/d2 | 
 | 	 * mv /a/b/c /a/b/c2/d2/cc | 
 | 	 * | 
 | 	 * "c" has lower inode number, but we can't move it (2nd mv operation) | 
 | 	 * before we move "d", which has higher inode number. | 
 | 	 * | 
 | 	 * So we just memorize which move/rename operations must be performed | 
 | 	 * later when their respective parent is processed and moved/renamed. | 
 | 	 */ | 
 |  | 
 | 	/* Indexed by parent directory inode number. */ | 
 | 	struct rb_root pending_dir_moves; | 
 |  | 
 | 	/* | 
 | 	 * Reverse index, indexed by the inode number of a directory that | 
 | 	 * is waiting for the move/rename of its immediate parent before its | 
 | 	 * own move/rename can be performed. | 
 | 	 */ | 
 | 	struct rb_root waiting_dir_moves; | 
 |  | 
 | 	/* | 
 | 	 * A directory that is going to be rm'ed might have a child directory | 
 | 	 * which is in the pending directory moves index above. In this case, | 
 | 	 * the directory can only be removed after the move/rename of its child | 
 | 	 * is performed. Example: | 
 | 	 * | 
 | 	 * Parent snapshot: | 
 | 	 * | 
 | 	 * .                        (ino 256) | 
 | 	 * |-- a/                   (ino 257) | 
 | 	 *     |-- b/               (ino 258) | 
 | 	 *         |-- c/           (ino 259) | 
 | 	 *         |   |-- x/       (ino 260) | 
 | 	 *         | | 
 | 	 *         |-- y/           (ino 261) | 
 | 	 * | 
 | 	 * Send snapshot: | 
 | 	 * | 
 | 	 * .                        (ino 256) | 
 | 	 * |-- a/                   (ino 257) | 
 | 	 *     |-- b/               (ino 258) | 
 | 	 *         |-- YY/          (ino 261) | 
 | 	 *              |-- x/      (ino 260) | 
 | 	 * | 
 | 	 * Sequence of steps that lead to the send snapshot: | 
 | 	 * rm -f /a/b/c/foo.txt | 
 | 	 * mv /a/b/y /a/b/YY | 
 | 	 * mv /a/b/c/x /a/b/YY | 
 | 	 * rmdir /a/b/c | 
 | 	 * | 
 | 	 * When the child is processed, its move/rename is delayed until its | 
 | 	 * parent is processed (as explained above), but all other operations | 
 | 	 * like update utimes, chown, chgrp, etc, are performed and the paths | 
 | 	 * that it uses for those operations must use the orphanized name of | 
 | 	 * its parent (the directory we're going to rm later), so we need to | 
 | 	 * memorize that name. | 
 | 	 * | 
 | 	 * Indexed by the inode number of the directory to be deleted. | 
 | 	 */ | 
 | 	struct rb_root orphan_dirs; | 
 | }; | 
 |  | 
 | struct pending_dir_move { | 
 | 	struct rb_node node; | 
 | 	struct list_head list; | 
 | 	u64 parent_ino; | 
 | 	u64 ino; | 
 | 	u64 gen; | 
 | 	struct list_head update_refs; | 
 | }; | 
 |  | 
 | struct waiting_dir_move { | 
 | 	struct rb_node node; | 
 | 	u64 ino; | 
 | 	/* | 
 | 	 * There might be some directory that could not be removed because it | 
 | 	 * was waiting for this directory inode to be moved first. Therefore | 
 | 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino. | 
 | 	 */ | 
 | 	u64 rmdir_ino; | 
 | 	u64 rmdir_gen; | 
 | 	bool orphanized; | 
 | }; | 
 |  | 
 | struct orphan_dir_info { | 
 | 	struct rb_node node; | 
 | 	u64 ino; | 
 | 	u64 gen; | 
 | 	u64 last_dir_index_offset; | 
 | }; | 
 |  | 
 | struct name_cache_entry { | 
 | 	struct list_head list; | 
 | 	/* | 
 | 	 * radix_tree has only 32bit entries but we need to handle 64bit inums. | 
 | 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If | 
 | 	 * more then one inum would fall into the same entry, we use radix_list | 
 | 	 * to store the additional entries. radix_list is also used to store | 
 | 	 * entries where two entries have the same inum but different | 
 | 	 * generations. | 
 | 	 */ | 
 | 	struct list_head radix_list; | 
 | 	u64 ino; | 
 | 	u64 gen; | 
 | 	u64 parent_ino; | 
 | 	u64 parent_gen; | 
 | 	int ret; | 
 | 	int need_later_update; | 
 | 	int name_len; | 
 | 	char name[]; | 
 | }; | 
 |  | 
 | #define ADVANCE							1 | 
 | #define ADVANCE_ONLY_NEXT					-1 | 
 |  | 
 | enum btrfs_compare_tree_result { | 
 | 	BTRFS_COMPARE_TREE_NEW, | 
 | 	BTRFS_COMPARE_TREE_DELETED, | 
 | 	BTRFS_COMPARE_TREE_CHANGED, | 
 | 	BTRFS_COMPARE_TREE_SAME, | 
 | }; | 
 |  | 
 | __cold | 
 | static void inconsistent_snapshot_error(struct send_ctx *sctx, | 
 | 					enum btrfs_compare_tree_result result, | 
 | 					const char *what) | 
 | { | 
 | 	const char *result_string; | 
 |  | 
 | 	switch (result) { | 
 | 	case BTRFS_COMPARE_TREE_NEW: | 
 | 		result_string = "new"; | 
 | 		break; | 
 | 	case BTRFS_COMPARE_TREE_DELETED: | 
 | 		result_string = "deleted"; | 
 | 		break; | 
 | 	case BTRFS_COMPARE_TREE_CHANGED: | 
 | 		result_string = "updated"; | 
 | 		break; | 
 | 	case BTRFS_COMPARE_TREE_SAME: | 
 | 		ASSERT(0); | 
 | 		result_string = "unchanged"; | 
 | 		break; | 
 | 	default: | 
 | 		ASSERT(0); | 
 | 		result_string = "unexpected"; | 
 | 	} | 
 |  | 
 | 	btrfs_err(sctx->send_root->fs_info, | 
 | 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", | 
 | 		  result_string, what, sctx->cmp_key->objectid, | 
 | 		  sctx->send_root->root_key.objectid, | 
 | 		  (sctx->parent_root ? | 
 | 		   sctx->parent_root->root_key.objectid : 0)); | 
 | } | 
 |  | 
 | static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); | 
 |  | 
 | static struct waiting_dir_move * | 
 | get_waiting_dir_move(struct send_ctx *sctx, u64 ino); | 
 |  | 
 | static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); | 
 |  | 
 | static int need_send_hole(struct send_ctx *sctx) | 
 | { | 
 | 	return (sctx->parent_root && !sctx->cur_inode_new && | 
 | 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && | 
 | 		S_ISREG(sctx->cur_inode_mode)); | 
 | } | 
 |  | 
 | static void fs_path_reset(struct fs_path *p) | 
 | { | 
 | 	if (p->reversed) { | 
 | 		p->start = p->buf + p->buf_len - 1; | 
 | 		p->end = p->start; | 
 | 		*p->start = 0; | 
 | 	} else { | 
 | 		p->start = p->buf; | 
 | 		p->end = p->start; | 
 | 		*p->start = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static struct fs_path *fs_path_alloc(void) | 
 | { | 
 | 	struct fs_path *p; | 
 |  | 
 | 	p = kmalloc(sizeof(*p), GFP_KERNEL); | 
 | 	if (!p) | 
 | 		return NULL; | 
 | 	p->reversed = 0; | 
 | 	p->buf = p->inline_buf; | 
 | 	p->buf_len = FS_PATH_INLINE_SIZE; | 
 | 	fs_path_reset(p); | 
 | 	return p; | 
 | } | 
 |  | 
 | static struct fs_path *fs_path_alloc_reversed(void) | 
 | { | 
 | 	struct fs_path *p; | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return NULL; | 
 | 	p->reversed = 1; | 
 | 	fs_path_reset(p); | 
 | 	return p; | 
 | } | 
 |  | 
 | static void fs_path_free(struct fs_path *p) | 
 | { | 
 | 	if (!p) | 
 | 		return; | 
 | 	if (p->buf != p->inline_buf) | 
 | 		kfree(p->buf); | 
 | 	kfree(p); | 
 | } | 
 |  | 
 | static int fs_path_len(struct fs_path *p) | 
 | { | 
 | 	return p->end - p->start; | 
 | } | 
 |  | 
 | static int fs_path_ensure_buf(struct fs_path *p, int len) | 
 | { | 
 | 	char *tmp_buf; | 
 | 	int path_len; | 
 | 	int old_buf_len; | 
 |  | 
 | 	len++; | 
 |  | 
 | 	if (p->buf_len >= len) | 
 | 		return 0; | 
 |  | 
 | 	if (len > PATH_MAX) { | 
 | 		WARN_ON(1); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	path_len = p->end - p->start; | 
 | 	old_buf_len = p->buf_len; | 
 |  | 
 | 	/* | 
 | 	 * First time the inline_buf does not suffice | 
 | 	 */ | 
 | 	if (p->buf == p->inline_buf) { | 
 | 		tmp_buf = kmalloc(len, GFP_KERNEL); | 
 | 		if (tmp_buf) | 
 | 			memcpy(tmp_buf, p->buf, old_buf_len); | 
 | 	} else { | 
 | 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL); | 
 | 	} | 
 | 	if (!tmp_buf) | 
 | 		return -ENOMEM; | 
 | 	p->buf = tmp_buf; | 
 | 	/* | 
 | 	 * The real size of the buffer is bigger, this will let the fast path | 
 | 	 * happen most of the time | 
 | 	 */ | 
 | 	p->buf_len = ksize(p->buf); | 
 |  | 
 | 	if (p->reversed) { | 
 | 		tmp_buf = p->buf + old_buf_len - path_len - 1; | 
 | 		p->end = p->buf + p->buf_len - 1; | 
 | 		p->start = p->end - path_len; | 
 | 		memmove(p->start, tmp_buf, path_len + 1); | 
 | 	} else { | 
 | 		p->start = p->buf; | 
 | 		p->end = p->start + path_len; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fs_path_prepare_for_add(struct fs_path *p, int name_len, | 
 | 				   char **prepared) | 
 | { | 
 | 	int ret; | 
 | 	int new_len; | 
 |  | 
 | 	new_len = p->end - p->start + name_len; | 
 | 	if (p->start != p->end) | 
 | 		new_len++; | 
 | 	ret = fs_path_ensure_buf(p, new_len); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (p->reversed) { | 
 | 		if (p->start != p->end) | 
 | 			*--p->start = '/'; | 
 | 		p->start -= name_len; | 
 | 		*prepared = p->start; | 
 | 	} else { | 
 | 		if (p->start != p->end) | 
 | 			*p->end++ = '/'; | 
 | 		*prepared = p->end; | 
 | 		p->end += name_len; | 
 | 		*p->end = 0; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int fs_path_add(struct fs_path *p, const char *name, int name_len) | 
 | { | 
 | 	int ret; | 
 | 	char *prepared; | 
 |  | 
 | 	ret = fs_path_prepare_for_add(p, name_len, &prepared); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	memcpy(prepared, name, name_len); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) | 
 | { | 
 | 	int ret; | 
 | 	char *prepared; | 
 |  | 
 | 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	memcpy(prepared, p2->start, p2->end - p2->start); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int fs_path_add_from_extent_buffer(struct fs_path *p, | 
 | 					  struct extent_buffer *eb, | 
 | 					  unsigned long off, int len) | 
 | { | 
 | 	int ret; | 
 | 	char *prepared; | 
 |  | 
 | 	ret = fs_path_prepare_for_add(p, len, &prepared); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	read_extent_buffer(eb, prepared, off, len); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int fs_path_copy(struct fs_path *p, struct fs_path *from) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	p->reversed = from->reversed; | 
 | 	fs_path_reset(p); | 
 |  | 
 | 	ret = fs_path_add_path(p, from); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | static void fs_path_unreverse(struct fs_path *p) | 
 | { | 
 | 	char *tmp; | 
 | 	int len; | 
 |  | 
 | 	if (!p->reversed) | 
 | 		return; | 
 |  | 
 | 	tmp = p->start; | 
 | 	len = p->end - p->start; | 
 | 	p->start = p->buf; | 
 | 	p->end = p->start + len; | 
 | 	memmove(p->start, tmp, len + 1); | 
 | 	p->reversed = 0; | 
 | } | 
 |  | 
 | static struct btrfs_path *alloc_path_for_send(void) | 
 | { | 
 | 	struct btrfs_path *path; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return NULL; | 
 | 	path->search_commit_root = 1; | 
 | 	path->skip_locking = 1; | 
 | 	path->need_commit_sem = 1; | 
 | 	return path; | 
 | } | 
 |  | 
 | static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) | 
 | { | 
 | 	int ret; | 
 | 	u32 pos = 0; | 
 |  | 
 | 	while (pos < len) { | 
 | 		ret = kernel_write(filp, buf + pos, len - pos, off); | 
 | 		/* TODO handle that correctly */ | 
 | 		/*if (ret == -ERESTARTSYS) { | 
 | 			continue; | 
 | 		}*/ | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		if (ret == 0) { | 
 | 			return -EIO; | 
 | 		} | 
 | 		pos += ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) | 
 | { | 
 | 	struct btrfs_tlv_header *hdr; | 
 | 	int total_len = sizeof(*hdr) + len; | 
 | 	int left = sctx->send_max_size - sctx->send_size; | 
 |  | 
 | 	if (unlikely(left < total_len)) | 
 | 		return -EOVERFLOW; | 
 |  | 
 | 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); | 
 | 	put_unaligned_le16(attr, &hdr->tlv_type); | 
 | 	put_unaligned_le16(len, &hdr->tlv_len); | 
 | 	memcpy(hdr + 1, data, len); | 
 | 	sctx->send_size += total_len; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define TLV_PUT_DEFINE_INT(bits) \ | 
 | 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\ | 
 | 			u##bits attr, u##bits value)			\ | 
 | 	{								\ | 
 | 		__le##bits __tmp = cpu_to_le##bits(value);		\ | 
 | 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\ | 
 | 	} | 
 |  | 
 | TLV_PUT_DEFINE_INT(64) | 
 |  | 
 | static int tlv_put_string(struct send_ctx *sctx, u16 attr, | 
 | 			  const char *str, int len) | 
 | { | 
 | 	if (len == -1) | 
 | 		len = strlen(str); | 
 | 	return tlv_put(sctx, attr, str, len); | 
 | } | 
 |  | 
 | static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, | 
 | 			const u8 *uuid) | 
 | { | 
 | 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); | 
 | } | 
 |  | 
 | static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, | 
 | 				  struct extent_buffer *eb, | 
 | 				  struct btrfs_timespec *ts) | 
 | { | 
 | 	struct btrfs_timespec bts; | 
 | 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); | 
 | 	return tlv_put(sctx, attr, &bts, sizeof(bts)); | 
 | } | 
 |  | 
 |  | 
 | #define TLV_PUT(sctx, attrtype, data, attrlen) \ | 
 | 	do { \ | 
 | 		ret = tlv_put(sctx, attrtype, data, attrlen); \ | 
 | 		if (ret < 0) \ | 
 | 			goto tlv_put_failure; \ | 
 | 	} while (0) | 
 |  | 
 | #define TLV_PUT_INT(sctx, attrtype, bits, value) \ | 
 | 	do { \ | 
 | 		ret = tlv_put_u##bits(sctx, attrtype, value); \ | 
 | 		if (ret < 0) \ | 
 | 			goto tlv_put_failure; \ | 
 | 	} while (0) | 
 |  | 
 | #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) | 
 | #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) | 
 | #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) | 
 | #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) | 
 | #define TLV_PUT_STRING(sctx, attrtype, str, len) \ | 
 | 	do { \ | 
 | 		ret = tlv_put_string(sctx, attrtype, str, len); \ | 
 | 		if (ret < 0) \ | 
 | 			goto tlv_put_failure; \ | 
 | 	} while (0) | 
 | #define TLV_PUT_PATH(sctx, attrtype, p) \ | 
 | 	do { \ | 
 | 		ret = tlv_put_string(sctx, attrtype, p->start, \ | 
 | 			p->end - p->start); \ | 
 | 		if (ret < 0) \ | 
 | 			goto tlv_put_failure; \ | 
 | 	} while(0) | 
 | #define TLV_PUT_UUID(sctx, attrtype, uuid) \ | 
 | 	do { \ | 
 | 		ret = tlv_put_uuid(sctx, attrtype, uuid); \ | 
 | 		if (ret < 0) \ | 
 | 			goto tlv_put_failure; \ | 
 | 	} while (0) | 
 | #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ | 
 | 	do { \ | 
 | 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ | 
 | 		if (ret < 0) \ | 
 | 			goto tlv_put_failure; \ | 
 | 	} while (0) | 
 |  | 
 | static int send_header(struct send_ctx *sctx) | 
 | { | 
 | 	struct btrfs_stream_header hdr; | 
 |  | 
 | 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); | 
 | 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); | 
 |  | 
 | 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr), | 
 | 					&sctx->send_off); | 
 | } | 
 |  | 
 | /* | 
 |  * For each command/item we want to send to userspace, we call this function. | 
 |  */ | 
 | static int begin_cmd(struct send_ctx *sctx, int cmd) | 
 | { | 
 | 	struct btrfs_cmd_header *hdr; | 
 |  | 
 | 	if (WARN_ON(!sctx->send_buf)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (unlikely(sctx->send_size != 0)) { | 
 | 		btrfs_err(sctx->send_root->fs_info, | 
 | 			  "send: command header buffer not empty cmd %d offset %llu", | 
 | 			  cmd, sctx->send_off); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	sctx->send_size += sizeof(*hdr); | 
 | 	hdr = (struct btrfs_cmd_header *)sctx->send_buf; | 
 | 	put_unaligned_le16(cmd, &hdr->cmd); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int send_cmd(struct send_ctx *sctx) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_cmd_header *hdr; | 
 | 	u32 crc; | 
 |  | 
 | 	hdr = (struct btrfs_cmd_header *)sctx->send_buf; | 
 | 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); | 
 | 	put_unaligned_le32(0, &hdr->crc); | 
 |  | 
 | 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); | 
 | 	put_unaligned_le32(crc, &hdr->crc); | 
 |  | 
 | 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, | 
 | 					&sctx->send_off); | 
 |  | 
 | 	sctx->total_send_size += sctx->send_size; | 
 | 	sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size; | 
 | 	sctx->send_size = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Sends a move instruction to user space | 
 |  */ | 
 | static int send_rename(struct send_ctx *sctx, | 
 | 		     struct fs_path *from, struct fs_path *to) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Sends a link instruction to user space | 
 |  */ | 
 | static int send_link(struct send_ctx *sctx, | 
 | 		     struct fs_path *path, struct fs_path *lnk) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Sends an unlink instruction to user space | 
 |  */ | 
 | static int send_unlink(struct send_ctx *sctx, struct fs_path *path) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	btrfs_debug(fs_info, "send_unlink %s", path->start); | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Sends a rmdir instruction to user space | 
 |  */ | 
 | static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	btrfs_debug(fs_info, "send_rmdir %s", path->start); | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function to retrieve some fields from an inode item. | 
 |  */ | 
 | static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, | 
 | 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, | 
 | 			  u64 *gid, u64 *rdev) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_inode_item *ii; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret) { | 
 | 		if (ret > 0) | 
 | 			ret = -ENOENT; | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			struct btrfs_inode_item); | 
 | 	if (size) | 
 | 		*size = btrfs_inode_size(path->nodes[0], ii); | 
 | 	if (gen) | 
 | 		*gen = btrfs_inode_generation(path->nodes[0], ii); | 
 | 	if (mode) | 
 | 		*mode = btrfs_inode_mode(path->nodes[0], ii); | 
 | 	if (uid) | 
 | 		*uid = btrfs_inode_uid(path->nodes[0], ii); | 
 | 	if (gid) | 
 | 		*gid = btrfs_inode_gid(path->nodes[0], ii); | 
 | 	if (rdev) | 
 | 		*rdev = btrfs_inode_rdev(path->nodes[0], ii); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int get_inode_info(struct btrfs_root *root, | 
 | 			  u64 ino, u64 *size, u64 *gen, | 
 | 			  u64 *mode, u64 *uid, u64 *gid, | 
 | 			  u64 *rdev) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, | 
 | 			       rdev); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, | 
 | 				   struct fs_path *p, | 
 | 				   void *ctx); | 
 |  | 
 | /* | 
 |  * Helper function to iterate the entries in ONE btrfs_inode_ref or | 
 |  * btrfs_inode_extref. | 
 |  * The iterate callback may return a non zero value to stop iteration. This can | 
 |  * be a negative value for error codes or 1 to simply stop it. | 
 |  * | 
 |  * path must point to the INODE_REF or INODE_EXTREF when called. | 
 |  */ | 
 | static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, | 
 | 			     struct btrfs_key *found_key, int resolve, | 
 | 			     iterate_inode_ref_t iterate, void *ctx) | 
 | { | 
 | 	struct extent_buffer *eb = path->nodes[0]; | 
 | 	struct btrfs_item *item; | 
 | 	struct btrfs_inode_ref *iref; | 
 | 	struct btrfs_inode_extref *extref; | 
 | 	struct btrfs_path *tmp_path; | 
 | 	struct fs_path *p; | 
 | 	u32 cur = 0; | 
 | 	u32 total; | 
 | 	int slot = path->slots[0]; | 
 | 	u32 name_len; | 
 | 	char *start; | 
 | 	int ret = 0; | 
 | 	int num = 0; | 
 | 	int index; | 
 | 	u64 dir; | 
 | 	unsigned long name_off; | 
 | 	unsigned long elem_size; | 
 | 	unsigned long ptr; | 
 |  | 
 | 	p = fs_path_alloc_reversed(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	tmp_path = alloc_path_for_send(); | 
 | 	if (!tmp_path) { | 
 | 		fs_path_free(p); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 |  | 
 | 	if (found_key->type == BTRFS_INODE_REF_KEY) { | 
 | 		ptr = (unsigned long)btrfs_item_ptr(eb, slot, | 
 | 						    struct btrfs_inode_ref); | 
 | 		item = btrfs_item_nr(slot); | 
 | 		total = btrfs_item_size(eb, item); | 
 | 		elem_size = sizeof(*iref); | 
 | 	} else { | 
 | 		ptr = btrfs_item_ptr_offset(eb, slot); | 
 | 		total = btrfs_item_size_nr(eb, slot); | 
 | 		elem_size = sizeof(*extref); | 
 | 	} | 
 |  | 
 | 	while (cur < total) { | 
 | 		fs_path_reset(p); | 
 |  | 
 | 		if (found_key->type == BTRFS_INODE_REF_KEY) { | 
 | 			iref = (struct btrfs_inode_ref *)(ptr + cur); | 
 | 			name_len = btrfs_inode_ref_name_len(eb, iref); | 
 | 			name_off = (unsigned long)(iref + 1); | 
 | 			index = btrfs_inode_ref_index(eb, iref); | 
 | 			dir = found_key->offset; | 
 | 		} else { | 
 | 			extref = (struct btrfs_inode_extref *)(ptr + cur); | 
 | 			name_len = btrfs_inode_extref_name_len(eb, extref); | 
 | 			name_off = (unsigned long)&extref->name; | 
 | 			index = btrfs_inode_extref_index(eb, extref); | 
 | 			dir = btrfs_inode_extref_parent(eb, extref); | 
 | 		} | 
 |  | 
 | 		if (resolve) { | 
 | 			start = btrfs_ref_to_path(root, tmp_path, name_len, | 
 | 						  name_off, eb, dir, | 
 | 						  p->buf, p->buf_len); | 
 | 			if (IS_ERR(start)) { | 
 | 				ret = PTR_ERR(start); | 
 | 				goto out; | 
 | 			} | 
 | 			if (start < p->buf) { | 
 | 				/* overflow , try again with larger buffer */ | 
 | 				ret = fs_path_ensure_buf(p, | 
 | 						p->buf_len + p->buf - start); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 				start = btrfs_ref_to_path(root, tmp_path, | 
 | 							  name_len, name_off, | 
 | 							  eb, dir, | 
 | 							  p->buf, p->buf_len); | 
 | 				if (IS_ERR(start)) { | 
 | 					ret = PTR_ERR(start); | 
 | 					goto out; | 
 | 				} | 
 | 				if (unlikely(start < p->buf)) { | 
 | 					btrfs_err(root->fs_info, | 
 | 			"send: path ref buffer underflow for key (%llu %u %llu)", | 
 | 						  found_key->objectid, | 
 | 						  found_key->type, | 
 | 						  found_key->offset); | 
 | 					ret = -EINVAL; | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 | 			p->start = start; | 
 | 		} else { | 
 | 			ret = fs_path_add_from_extent_buffer(p, eb, name_off, | 
 | 							     name_len); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		cur += elem_size + name_len; | 
 | 		ret = iterate(num, dir, index, p, ctx); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		num++; | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(tmp_path); | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, | 
 | 				  const char *name, int name_len, | 
 | 				  const char *data, int data_len, | 
 | 				  u8 type, void *ctx); | 
 |  | 
 | /* | 
 |  * Helper function to iterate the entries in ONE btrfs_dir_item. | 
 |  * The iterate callback may return a non zero value to stop iteration. This can | 
 |  * be a negative value for error codes or 1 to simply stop it. | 
 |  * | 
 |  * path must point to the dir item when called. | 
 |  */ | 
 | static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, | 
 | 			    iterate_dir_item_t iterate, void *ctx) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_item *item; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key di_key; | 
 | 	char *buf = NULL; | 
 | 	int buf_len; | 
 | 	u32 name_len; | 
 | 	u32 data_len; | 
 | 	u32 cur; | 
 | 	u32 len; | 
 | 	u32 total; | 
 | 	int slot; | 
 | 	int num; | 
 | 	u8 type; | 
 |  | 
 | 	/* | 
 | 	 * Start with a small buffer (1 page). If later we end up needing more | 
 | 	 * space, which can happen for xattrs on a fs with a leaf size greater | 
 | 	 * then the page size, attempt to increase the buffer. Typically xattr | 
 | 	 * values are small. | 
 | 	 */ | 
 | 	buf_len = PATH_MAX; | 
 | 	buf = kmalloc(buf_len, GFP_KERNEL); | 
 | 	if (!buf) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	eb = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	item = btrfs_item_nr(slot); | 
 | 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); | 
 | 	cur = 0; | 
 | 	len = 0; | 
 | 	total = btrfs_item_size(eb, item); | 
 |  | 
 | 	num = 0; | 
 | 	while (cur < total) { | 
 | 		name_len = btrfs_dir_name_len(eb, di); | 
 | 		data_len = btrfs_dir_data_len(eb, di); | 
 | 		type = btrfs_dir_type(eb, di); | 
 | 		btrfs_dir_item_key_to_cpu(eb, di, &di_key); | 
 |  | 
 | 		if (type == BTRFS_FT_XATTR) { | 
 | 			if (name_len > XATTR_NAME_MAX) { | 
 | 				ret = -ENAMETOOLONG; | 
 | 				goto out; | 
 | 			} | 
 | 			if (name_len + data_len > | 
 | 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) { | 
 | 				ret = -E2BIG; | 
 | 				goto out; | 
 | 			} | 
 | 		} else { | 
 | 			/* | 
 | 			 * Path too long | 
 | 			 */ | 
 | 			if (name_len + data_len > PATH_MAX) { | 
 | 				ret = -ENAMETOOLONG; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (name_len + data_len > buf_len) { | 
 | 			buf_len = name_len + data_len; | 
 | 			if (is_vmalloc_addr(buf)) { | 
 | 				vfree(buf); | 
 | 				buf = NULL; | 
 | 			} else { | 
 | 				char *tmp = krealloc(buf, buf_len, | 
 | 						GFP_KERNEL | __GFP_NOWARN); | 
 |  | 
 | 				if (!tmp) | 
 | 					kfree(buf); | 
 | 				buf = tmp; | 
 | 			} | 
 | 			if (!buf) { | 
 | 				buf = kvmalloc(buf_len, GFP_KERNEL); | 
 | 				if (!buf) { | 
 | 					ret = -ENOMEM; | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		read_extent_buffer(eb, buf, (unsigned long)(di + 1), | 
 | 				name_len + data_len); | 
 |  | 
 | 		len = sizeof(*di) + name_len + data_len; | 
 | 		di = (struct btrfs_dir_item *)((char *)di + len); | 
 | 		cur += len; | 
 |  | 
 | 		ret = iterate(num, &di_key, buf, name_len, buf + name_len, | 
 | 				data_len, type, ctx); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		num++; | 
 | 	} | 
 |  | 
 | out: | 
 | 	kvfree(buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __copy_first_ref(int num, u64 dir, int index, | 
 | 			    struct fs_path *p, void *ctx) | 
 | { | 
 | 	int ret; | 
 | 	struct fs_path *pt = ctx; | 
 |  | 
 | 	ret = fs_path_copy(pt, p); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* we want the first only */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Retrieve the first path of an inode. If an inode has more then one | 
 |  * ref/hardlink, this is ignored. | 
 |  */ | 
 | static int get_inode_path(struct btrfs_root *root, | 
 | 			  u64 ino, struct fs_path *path) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key, found_key; | 
 | 	struct btrfs_path *p; | 
 |  | 
 | 	p = alloc_path_for_send(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	fs_path_reset(path); | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_INODE_REF_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 | 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); | 
 | 	if (found_key.objectid != ino || | 
 | 	    (found_key.type != BTRFS_INODE_REF_KEY && | 
 | 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = iterate_inode_ref(root, p, &found_key, 1, | 
 | 				__copy_first_ref, path); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	btrfs_free_path(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct backref_ctx { | 
 | 	struct send_ctx *sctx; | 
 |  | 
 | 	/* number of total found references */ | 
 | 	u64 found; | 
 |  | 
 | 	/* | 
 | 	 * used for clones found in send_root. clones found behind cur_objectid | 
 | 	 * and cur_offset are not considered as allowed clones. | 
 | 	 */ | 
 | 	u64 cur_objectid; | 
 | 	u64 cur_offset; | 
 |  | 
 | 	/* may be truncated in case it's the last extent in a file */ | 
 | 	u64 extent_len; | 
 |  | 
 | 	/* Just to check for bugs in backref resolving */ | 
 | 	int found_itself; | 
 | }; | 
 |  | 
 | static int __clone_root_cmp_bsearch(const void *key, const void *elt) | 
 | { | 
 | 	u64 root = (u64)(uintptr_t)key; | 
 | 	const struct clone_root *cr = elt; | 
 |  | 
 | 	if (root < cr->root->root_key.objectid) | 
 | 		return -1; | 
 | 	if (root > cr->root->root_key.objectid) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __clone_root_cmp_sort(const void *e1, const void *e2) | 
 | { | 
 | 	const struct clone_root *cr1 = e1; | 
 | 	const struct clone_root *cr2 = e2; | 
 |  | 
 | 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) | 
 | 		return -1; | 
 | 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Called for every backref that is found for the current extent. | 
 |  * Results are collected in sctx->clone_roots->ino/offset/found_refs | 
 |  */ | 
 | static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) | 
 | { | 
 | 	struct backref_ctx *bctx = ctx_; | 
 | 	struct clone_root *found; | 
 |  | 
 | 	/* First check if the root is in the list of accepted clone sources */ | 
 | 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, | 
 | 			bctx->sctx->clone_roots_cnt, | 
 | 			sizeof(struct clone_root), | 
 | 			__clone_root_cmp_bsearch); | 
 | 	if (!found) | 
 | 		return 0; | 
 |  | 
 | 	if (found->root == bctx->sctx->send_root && | 
 | 	    ino == bctx->cur_objectid && | 
 | 	    offset == bctx->cur_offset) { | 
 | 		bctx->found_itself = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Make sure we don't consider clones from send_root that are | 
 | 	 * behind the current inode/offset. | 
 | 	 */ | 
 | 	if (found->root == bctx->sctx->send_root) { | 
 | 		/* | 
 | 		 * If the source inode was not yet processed we can't issue a | 
 | 		 * clone operation, as the source extent does not exist yet at | 
 | 		 * the destination of the stream. | 
 | 		 */ | 
 | 		if (ino > bctx->cur_objectid) | 
 | 			return 0; | 
 | 		/* | 
 | 		 * We clone from the inode currently being sent as long as the | 
 | 		 * source extent is already processed, otherwise we could try | 
 | 		 * to clone from an extent that does not exist yet at the | 
 | 		 * destination of the stream. | 
 | 		 */ | 
 | 		if (ino == bctx->cur_objectid && | 
 | 		    offset + bctx->extent_len > | 
 | 		    bctx->sctx->cur_inode_next_write_offset) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	bctx->found++; | 
 | 	found->found_refs++; | 
 | 	if (ino < found->ino) { | 
 | 		found->ino = ino; | 
 | 		found->offset = offset; | 
 | 	} else if (found->ino == ino) { | 
 | 		/* | 
 | 		 * same extent found more then once in the same file. | 
 | 		 */ | 
 | 		if (found->offset > offset + bctx->extent_len) | 
 | 			found->offset = offset; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Given an inode, offset and extent item, it finds a good clone for a clone | 
 |  * instruction. Returns -ENOENT when none could be found. The function makes | 
 |  * sure that the returned clone is usable at the point where sending is at the | 
 |  * moment. This means, that no clones are accepted which lie behind the current | 
 |  * inode+offset. | 
 |  * | 
 |  * path must point to the extent item when called. | 
 |  */ | 
 | static int find_extent_clone(struct send_ctx *sctx, | 
 | 			     struct btrfs_path *path, | 
 | 			     u64 ino, u64 data_offset, | 
 | 			     u64 ino_size, | 
 | 			     struct clone_root **found) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret; | 
 | 	int extent_type; | 
 | 	u64 logical; | 
 | 	u64 disk_byte; | 
 | 	u64 num_bytes; | 
 | 	u64 extent_item_pos; | 
 | 	u64 flags = 0; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct extent_buffer *eb = path->nodes[0]; | 
 | 	struct backref_ctx backref_ctx = {0}; | 
 | 	struct clone_root *cur_clone_root; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_path *tmp_path; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	int compressed; | 
 | 	u32 i; | 
 |  | 
 | 	tmp_path = alloc_path_for_send(); | 
 | 	if (!tmp_path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* We only use this path under the commit sem */ | 
 | 	tmp_path->need_commit_sem = 0; | 
 |  | 
 | 	if (data_offset >= ino_size) { | 
 | 		/* | 
 | 		 * There may be extents that lie behind the file's size. | 
 | 		 * I at least had this in combination with snapshotting while | 
 | 		 * writing large files. | 
 | 		 */ | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	fi = btrfs_item_ptr(eb, path->slots[0], | 
 | 			struct btrfs_file_extent_item); | 
 | 	extent_type = btrfs_file_extent_type(eb, fi); | 
 | 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	compressed = btrfs_file_extent_compression(eb, fi); | 
 |  | 
 | 	num_bytes = btrfs_file_extent_num_bytes(eb, fi); | 
 | 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); | 
 | 	if (disk_byte == 0) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	logical = disk_byte + btrfs_file_extent_offset(eb, fi); | 
 |  | 
 | 	down_read(&fs_info->commit_root_sem); | 
 | 	ret = extent_from_logical(fs_info, disk_byte, tmp_path, | 
 | 				  &found_key, &flags); | 
 | 	up_read(&fs_info->commit_root_sem); | 
 |  | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], | 
 | 			    struct btrfs_extent_item); | 
 | 	/* | 
 | 	 * Backreference walking (iterate_extent_inodes() below) is currently | 
 | 	 * too expensive when an extent has a large number of references, both | 
 | 	 * in time spent and used memory. So for now just fallback to write | 
 | 	 * operations instead of clone operations when an extent has more than | 
 | 	 * a certain amount of references. | 
 | 	 */ | 
 | 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	btrfs_release_path(tmp_path); | 
 |  | 
 | 	/* | 
 | 	 * Setup the clone roots. | 
 | 	 */ | 
 | 	for (i = 0; i < sctx->clone_roots_cnt; i++) { | 
 | 		cur_clone_root = sctx->clone_roots + i; | 
 | 		cur_clone_root->ino = (u64)-1; | 
 | 		cur_clone_root->offset = 0; | 
 | 		cur_clone_root->found_refs = 0; | 
 | 	} | 
 |  | 
 | 	backref_ctx.sctx = sctx; | 
 | 	backref_ctx.found = 0; | 
 | 	backref_ctx.cur_objectid = ino; | 
 | 	backref_ctx.cur_offset = data_offset; | 
 | 	backref_ctx.found_itself = 0; | 
 | 	backref_ctx.extent_len = num_bytes; | 
 |  | 
 | 	/* | 
 | 	 * The last extent of a file may be too large due to page alignment. | 
 | 	 * We need to adjust extent_len in this case so that the checks in | 
 | 	 * __iterate_backrefs work. | 
 | 	 */ | 
 | 	if (data_offset + num_bytes >= ino_size) | 
 | 		backref_ctx.extent_len = ino_size - data_offset; | 
 |  | 
 | 	/* | 
 | 	 * Now collect all backrefs. | 
 | 	 */ | 
 | 	if (compressed == BTRFS_COMPRESS_NONE) | 
 | 		extent_item_pos = logical - found_key.objectid; | 
 | 	else | 
 | 		extent_item_pos = 0; | 
 | 	ret = iterate_extent_inodes(fs_info, found_key.objectid, | 
 | 				    extent_item_pos, 1, __iterate_backrefs, | 
 | 				    &backref_ctx, false); | 
 |  | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	down_read(&fs_info->commit_root_sem); | 
 | 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { | 
 | 		/* | 
 | 		 * A transaction commit for a transaction in which block group | 
 | 		 * relocation was done just happened. | 
 | 		 * The disk_bytenr of the file extent item we processed is | 
 | 		 * possibly stale, referring to the extent's location before | 
 | 		 * relocation. So act as if we haven't found any clone sources | 
 | 		 * and fallback to write commands, which will read the correct | 
 | 		 * data from the new extent location. Otherwise we will fail | 
 | 		 * below because we haven't found our own back reference or we | 
 | 		 * could be getting incorrect sources in case the old extent | 
 | 		 * was already reallocated after the relocation. | 
 | 		 */ | 
 | 		up_read(&fs_info->commit_root_sem); | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	up_read(&fs_info->commit_root_sem); | 
 |  | 
 | 	if (!backref_ctx.found_itself) { | 
 | 		/* found a bug in backref code? */ | 
 | 		ret = -EIO; | 
 | 		btrfs_err(fs_info, | 
 | 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", | 
 | 			  ino, data_offset, disk_byte, found_key.objectid); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	btrfs_debug(fs_info, | 
 | 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", | 
 | 		    data_offset, ino, num_bytes, logical); | 
 |  | 
 | 	if (!backref_ctx.found) | 
 | 		btrfs_debug(fs_info, "no clones found"); | 
 |  | 
 | 	cur_clone_root = NULL; | 
 | 	for (i = 0; i < sctx->clone_roots_cnt; i++) { | 
 | 		if (sctx->clone_roots[i].found_refs) { | 
 | 			if (!cur_clone_root) | 
 | 				cur_clone_root = sctx->clone_roots + i; | 
 | 			else if (sctx->clone_roots[i].root == sctx->send_root) | 
 | 				/* prefer clones from send_root over others */ | 
 | 				cur_clone_root = sctx->clone_roots + i; | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	if (cur_clone_root) { | 
 | 		*found = cur_clone_root; | 
 | 		ret = 0; | 
 | 	} else { | 
 | 		ret = -ENOENT; | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(tmp_path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int read_symlink(struct btrfs_root *root, | 
 | 			u64 ino, | 
 | 			struct fs_path *dest) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_file_extent_item *ei; | 
 | 	u8 type; | 
 | 	u8 compression; | 
 | 	unsigned long off; | 
 | 	int len; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret) { | 
 | 		/* | 
 | 		 * An empty symlink inode. Can happen in rare error paths when | 
 | 		 * creating a symlink (transaction committed before the inode | 
 | 		 * eviction handler removed the symlink inode items and a crash | 
 | 		 * happened in between or the subvol was snapshoted in between). | 
 | 		 * Print an informative message to dmesg/syslog so that the user | 
 | 		 * can delete the symlink. | 
 | 		 */ | 
 | 		btrfs_err(root->fs_info, | 
 | 			  "Found empty symlink inode %llu at root %llu", | 
 | 			  ino, root->root_key.objectid); | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 			struct btrfs_file_extent_item); | 
 | 	type = btrfs_file_extent_type(path->nodes[0], ei); | 
 | 	compression = btrfs_file_extent_compression(path->nodes[0], ei); | 
 | 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); | 
 | 	BUG_ON(compression); | 
 |  | 
 | 	off = btrfs_file_extent_inline_start(ei); | 
 | 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); | 
 |  | 
 | 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function to generate a file name that is unique in the root of | 
 |  * send_root and parent_root. This is used to generate names for orphan inodes. | 
 |  */ | 
 | static int gen_unique_name(struct send_ctx *sctx, | 
 | 			   u64 ino, u64 gen, | 
 | 			   struct fs_path *dest) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_dir_item *di; | 
 | 	char tmp[64]; | 
 | 	int len; | 
 | 	u64 idx = 0; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	while (1) { | 
 | 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", | 
 | 				ino, gen, idx); | 
 | 		ASSERT(len < sizeof(tmp)); | 
 |  | 
 | 		di = btrfs_lookup_dir_item(NULL, sctx->send_root, | 
 | 				path, BTRFS_FIRST_FREE_OBJECTID, | 
 | 				tmp, strlen(tmp), 0); | 
 | 		btrfs_release_path(path); | 
 | 		if (IS_ERR(di)) { | 
 | 			ret = PTR_ERR(di); | 
 | 			goto out; | 
 | 		} | 
 | 		if (di) { | 
 | 			/* not unique, try again */ | 
 | 			idx++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!sctx->parent_root) { | 
 | 			/* unique */ | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root, | 
 | 				path, BTRFS_FIRST_FREE_OBJECTID, | 
 | 				tmp, strlen(tmp), 0); | 
 | 		btrfs_release_path(path); | 
 | 		if (IS_ERR(di)) { | 
 | 			ret = PTR_ERR(di); | 
 | 			goto out; | 
 | 		} | 
 | 		if (di) { | 
 | 			/* not unique, try again */ | 
 | 			idx++; | 
 | 			continue; | 
 | 		} | 
 | 		/* unique */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	ret = fs_path_add(dest, tmp, strlen(tmp)); | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | enum inode_state { | 
 | 	inode_state_no_change, | 
 | 	inode_state_will_create, | 
 | 	inode_state_did_create, | 
 | 	inode_state_will_delete, | 
 | 	inode_state_did_delete, | 
 | }; | 
 |  | 
 | static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) | 
 | { | 
 | 	int ret; | 
 | 	int left_ret; | 
 | 	int right_ret; | 
 | 	u64 left_gen; | 
 | 	u64 right_gen; | 
 |  | 
 | 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, | 
 | 			NULL, NULL); | 
 | 	if (ret < 0 && ret != -ENOENT) | 
 | 		goto out; | 
 | 	left_ret = ret; | 
 |  | 
 | 	if (!sctx->parent_root) { | 
 | 		right_ret = -ENOENT; | 
 | 	} else { | 
 | 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, | 
 | 				NULL, NULL, NULL, NULL); | 
 | 		if (ret < 0 && ret != -ENOENT) | 
 | 			goto out; | 
 | 		right_ret = ret; | 
 | 	} | 
 |  | 
 | 	if (!left_ret && !right_ret) { | 
 | 		if (left_gen == gen && right_gen == gen) { | 
 | 			ret = inode_state_no_change; | 
 | 		} else if (left_gen == gen) { | 
 | 			if (ino < sctx->send_progress) | 
 | 				ret = inode_state_did_create; | 
 | 			else | 
 | 				ret = inode_state_will_create; | 
 | 		} else if (right_gen == gen) { | 
 | 			if (ino < sctx->send_progress) | 
 | 				ret = inode_state_did_delete; | 
 | 			else | 
 | 				ret = inode_state_will_delete; | 
 | 		} else  { | 
 | 			ret = -ENOENT; | 
 | 		} | 
 | 	} else if (!left_ret) { | 
 | 		if (left_gen == gen) { | 
 | 			if (ino < sctx->send_progress) | 
 | 				ret = inode_state_did_create; | 
 | 			else | 
 | 				ret = inode_state_will_create; | 
 | 		} else { | 
 | 			ret = -ENOENT; | 
 | 		} | 
 | 	} else if (!right_ret) { | 
 | 		if (right_gen == gen) { | 
 | 			if (ino < sctx->send_progress) | 
 | 				ret = inode_state_did_delete; | 
 | 			else | 
 | 				ret = inode_state_will_delete; | 
 | 		} else { | 
 | 			ret = -ENOENT; | 
 | 		} | 
 | 	} else { | 
 | 		ret = -ENOENT; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (ino == BTRFS_FIRST_FREE_OBJECTID) | 
 | 		return 1; | 
 |  | 
 | 	ret = get_cur_inode_state(sctx, ino, gen); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (ret == inode_state_no_change || | 
 | 	    ret == inode_state_did_create || | 
 | 	    ret == inode_state_will_delete) | 
 | 		ret = 1; | 
 | 	else | 
 | 		ret = 0; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper function to lookup a dir item in a dir. | 
 |  */ | 
 | static int lookup_dir_item_inode(struct btrfs_root *root, | 
 | 				 u64 dir, const char *name, int name_len, | 
 | 				 u64 *found_inode, | 
 | 				 u8 *found_type) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_path *path; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	di = btrfs_lookup_dir_item(NULL, root, path, | 
 | 			dir, name, name_len, 0); | 
 | 	if (IS_ERR_OR_NULL(di)) { | 
 | 		ret = di ? PTR_ERR(di) : -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); | 
 | 	if (key.type == BTRFS_ROOT_ITEM_KEY) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	*found_inode = key.objectid; | 
 | 	*found_type = btrfs_dir_type(path->nodes[0], di); | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, | 
 |  * generation of the parent dir and the name of the dir entry. | 
 |  */ | 
 | static int get_first_ref(struct btrfs_root *root, u64 ino, | 
 | 			 u64 *dir, u64 *dir_gen, struct fs_path *name) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_path *path; | 
 | 	int len; | 
 | 	u64 parent_dir; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_INODE_REF_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (!ret) | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				path->slots[0]); | 
 | 	if (ret || found_key.objectid != ino || | 
 | 	    (found_key.type != BTRFS_INODE_REF_KEY && | 
 | 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (found_key.type == BTRFS_INODE_REF_KEY) { | 
 | 		struct btrfs_inode_ref *iref; | 
 | 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				      struct btrfs_inode_ref); | 
 | 		len = btrfs_inode_ref_name_len(path->nodes[0], iref); | 
 | 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0], | 
 | 						     (unsigned long)(iref + 1), | 
 | 						     len); | 
 | 		parent_dir = found_key.offset; | 
 | 	} else { | 
 | 		struct btrfs_inode_extref *extref; | 
 | 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 					struct btrfs_inode_extref); | 
 | 		len = btrfs_inode_extref_name_len(path->nodes[0], extref); | 
 | 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0], | 
 | 					(unsigned long)&extref->name, len); | 
 | 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); | 
 | 	} | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (dir_gen) { | 
 | 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, | 
 | 				     NULL, NULL, NULL); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	*dir = parent_dir; | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int is_first_ref(struct btrfs_root *root, | 
 | 			u64 ino, u64 dir, | 
 | 			const char *name, int name_len) | 
 | { | 
 | 	int ret; | 
 | 	struct fs_path *tmp_name; | 
 | 	u64 tmp_dir; | 
 |  | 
 | 	tmp_name = fs_path_alloc(); | 
 | 	if (!tmp_name) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = !memcmp(tmp_name->start, name, name_len); | 
 |  | 
 | out: | 
 | 	fs_path_free(tmp_name); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Used by process_recorded_refs to determine if a new ref would overwrite an | 
 |  * already existing ref. In case it detects an overwrite, it returns the | 
 |  * inode/gen in who_ino/who_gen. | 
 |  * When an overwrite is detected, process_recorded_refs does proper orphanizing | 
 |  * to make sure later references to the overwritten inode are possible. | 
 |  * Orphanizing is however only required for the first ref of an inode. | 
 |  * process_recorded_refs does an additional is_first_ref check to see if | 
 |  * orphanizing is really required. | 
 |  */ | 
 | static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, | 
 | 			      const char *name, int name_len, | 
 | 			      u64 *who_ino, u64 *who_gen, u64 *who_mode) | 
 | { | 
 | 	int ret = 0; | 
 | 	u64 gen; | 
 | 	u64 other_inode = 0; | 
 | 	u8 other_type = 0; | 
 |  | 
 | 	if (!sctx->parent_root) | 
 | 		goto out; | 
 |  | 
 | 	ret = is_inode_existent(sctx, dir, dir_gen); | 
 | 	if (ret <= 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If we have a parent root we need to verify that the parent dir was | 
 | 	 * not deleted and then re-created, if it was then we have no overwrite | 
 | 	 * and we can just unlink this entry. | 
 | 	 */ | 
 | 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, | 
 | 				     NULL, NULL, NULL); | 
 | 		if (ret < 0 && ret != -ENOENT) | 
 | 			goto out; | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if (gen != dir_gen) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, | 
 | 			&other_inode, &other_type); | 
 | 	if (ret < 0 && ret != -ENOENT) | 
 | 		goto out; | 
 | 	if (ret) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if the overwritten ref was already processed. If yes, the ref | 
 | 	 * was already unlinked/moved, so we can safely assume that we will not | 
 | 	 * overwrite anything at this point in time. | 
 | 	 */ | 
 | 	if (other_inode > sctx->send_progress || | 
 | 	    is_waiting_for_move(sctx, other_inode)) { | 
 | 		ret = get_inode_info(sctx->parent_root, other_inode, NULL, | 
 | 				who_gen, who_mode, NULL, NULL, NULL); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		ret = 1; | 
 | 		*who_ino = other_inode; | 
 | 	} else { | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Checks if the ref was overwritten by an already processed inode. This is | 
 |  * used by __get_cur_name_and_parent to find out if the ref was orphanized and | 
 |  * thus the orphan name needs be used. | 
 |  * process_recorded_refs also uses it to avoid unlinking of refs that were | 
 |  * overwritten. | 
 |  */ | 
 | static int did_overwrite_ref(struct send_ctx *sctx, | 
 | 			    u64 dir, u64 dir_gen, | 
 | 			    u64 ino, u64 ino_gen, | 
 | 			    const char *name, int name_len) | 
 | { | 
 | 	int ret = 0; | 
 | 	u64 gen; | 
 | 	u64 ow_inode; | 
 | 	u8 other_type; | 
 |  | 
 | 	if (!sctx->parent_root) | 
 | 		goto out; | 
 |  | 
 | 	ret = is_inode_existent(sctx, dir, dir_gen); | 
 | 	if (ret <= 0) | 
 | 		goto out; | 
 |  | 
 | 	if (dir != BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, | 
 | 				     NULL, NULL, NULL); | 
 | 		if (ret < 0 && ret != -ENOENT) | 
 | 			goto out; | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if (gen != dir_gen) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* check if the ref was overwritten by another ref */ | 
 | 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, | 
 | 			&ow_inode, &other_type); | 
 | 	if (ret < 0 && ret != -ENOENT) | 
 | 		goto out; | 
 | 	if (ret) { | 
 | 		/* was never and will never be overwritten */ | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, | 
 | 			NULL, NULL); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (ow_inode == ino && gen == ino_gen) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We know that it is or will be overwritten. Check this now. | 
 | 	 * The current inode being processed might have been the one that caused | 
 | 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches | 
 | 	 * the current inode being processed. | 
 | 	 */ | 
 | 	if ((ow_inode < sctx->send_progress) || | 
 | 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && | 
 | 	     gen == sctx->cur_inode_gen)) | 
 | 		ret = 1; | 
 | 	else | 
 | 		ret = 0; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode | 
 |  * that got overwritten. This is used by process_recorded_refs to determine | 
 |  * if it has to use the path as returned by get_cur_path or the orphan name. | 
 |  */ | 
 | static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct fs_path *name = NULL; | 
 | 	u64 dir; | 
 | 	u64 dir_gen; | 
 |  | 
 | 	if (!sctx->parent_root) | 
 | 		goto out; | 
 |  | 
 | 	name = fs_path_alloc(); | 
 | 	if (!name) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, | 
 | 			name->start, fs_path_len(name)); | 
 |  | 
 | out: | 
 | 	fs_path_free(name); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, | 
 |  * so we need to do some special handling in case we have clashes. This function | 
 |  * takes care of this with the help of name_cache_entry::radix_list. | 
 |  * In case of error, nce is kfreed. | 
 |  */ | 
 | static int name_cache_insert(struct send_ctx *sctx, | 
 | 			     struct name_cache_entry *nce) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct list_head *nce_head; | 
 |  | 
 | 	nce_head = radix_tree_lookup(&sctx->name_cache, | 
 | 			(unsigned long)nce->ino); | 
 | 	if (!nce_head) { | 
 | 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); | 
 | 		if (!nce_head) { | 
 | 			kfree(nce); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		INIT_LIST_HEAD(nce_head); | 
 |  | 
 | 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); | 
 | 		if (ret < 0) { | 
 | 			kfree(nce_head); | 
 | 			kfree(nce); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 | 	list_add_tail(&nce->radix_list, nce_head); | 
 | 	list_add_tail(&nce->list, &sctx->name_cache_list); | 
 | 	sctx->name_cache_size++; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void name_cache_delete(struct send_ctx *sctx, | 
 | 			      struct name_cache_entry *nce) | 
 | { | 
 | 	struct list_head *nce_head; | 
 |  | 
 | 	nce_head = radix_tree_lookup(&sctx->name_cache, | 
 | 			(unsigned long)nce->ino); | 
 | 	if (!nce_head) { | 
 | 		btrfs_err(sctx->send_root->fs_info, | 
 | 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", | 
 | 			nce->ino, sctx->name_cache_size); | 
 | 	} | 
 |  | 
 | 	list_del(&nce->radix_list); | 
 | 	list_del(&nce->list); | 
 | 	sctx->name_cache_size--; | 
 |  | 
 | 	/* | 
 | 	 * We may not get to the final release of nce_head if the lookup fails | 
 | 	 */ | 
 | 	if (nce_head && list_empty(nce_head)) { | 
 | 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); | 
 | 		kfree(nce_head); | 
 | 	} | 
 | } | 
 |  | 
 | static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, | 
 | 						    u64 ino, u64 gen) | 
 | { | 
 | 	struct list_head *nce_head; | 
 | 	struct name_cache_entry *cur; | 
 |  | 
 | 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); | 
 | 	if (!nce_head) | 
 | 		return NULL; | 
 |  | 
 | 	list_for_each_entry(cur, nce_head, radix_list) { | 
 | 		if (cur->ino == ino && cur->gen == gen) | 
 | 			return cur; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove some entries from the beginning of name_cache_list. | 
 |  */ | 
 | static void name_cache_clean_unused(struct send_ctx *sctx) | 
 | { | 
 | 	struct name_cache_entry *nce; | 
 |  | 
 | 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) | 
 | 		return; | 
 |  | 
 | 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { | 
 | 		nce = list_entry(sctx->name_cache_list.next, | 
 | 				struct name_cache_entry, list); | 
 | 		name_cache_delete(sctx, nce); | 
 | 		kfree(nce); | 
 | 	} | 
 | } | 
 |  | 
 | static void name_cache_free(struct send_ctx *sctx) | 
 | { | 
 | 	struct name_cache_entry *nce; | 
 |  | 
 | 	while (!list_empty(&sctx->name_cache_list)) { | 
 | 		nce = list_entry(sctx->name_cache_list.next, | 
 | 				struct name_cache_entry, list); | 
 | 		name_cache_delete(sctx, nce); | 
 | 		kfree(nce); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Used by get_cur_path for each ref up to the root. | 
 |  * Returns 0 if it succeeded. | 
 |  * Returns 1 if the inode is not existent or got overwritten. In that case, the | 
 |  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 | 
 |  * is returned, parent_ino/parent_gen are not guaranteed to be valid. | 
 |  * Returns <0 in case of error. | 
 |  */ | 
 | static int __get_cur_name_and_parent(struct send_ctx *sctx, | 
 | 				     u64 ino, u64 gen, | 
 | 				     u64 *parent_ino, | 
 | 				     u64 *parent_gen, | 
 | 				     struct fs_path *dest) | 
 | { | 
 | 	int ret; | 
 | 	int nce_ret; | 
 | 	struct name_cache_entry *nce = NULL; | 
 |  | 
 | 	/* | 
 | 	 * First check if we already did a call to this function with the same | 
 | 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes | 
 | 	 * return the cached result. | 
 | 	 */ | 
 | 	nce = name_cache_search(sctx, ino, gen); | 
 | 	if (nce) { | 
 | 		if (ino < sctx->send_progress && nce->need_later_update) { | 
 | 			name_cache_delete(sctx, nce); | 
 | 			kfree(nce); | 
 | 			nce = NULL; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Removes the entry from the list and adds it back to | 
 | 			 * the end.  This marks the entry as recently used so | 
 | 			 * that name_cache_clean_unused does not remove it. | 
 | 			 */ | 
 | 			list_move_tail(&nce->list, &sctx->name_cache_list); | 
 |  | 
 | 			*parent_ino = nce->parent_ino; | 
 | 			*parent_gen = nce->parent_gen; | 
 | 			ret = fs_path_add(dest, nce->name, nce->name_len); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			ret = nce->ret; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the inode is not existent yet, add the orphan name and return 1. | 
 | 	 * This should only happen for the parent dir that we determine in | 
 | 	 * __record_new_ref | 
 | 	 */ | 
 | 	ret = is_inode_existent(sctx, ino, gen); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (!ret) { | 
 | 		ret = gen_unique_name(sctx, ino, gen, dest); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		ret = 1; | 
 | 		goto out_cache; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Depending on whether the inode was already processed or not, use | 
 | 	 * send_root or parent_root for ref lookup. | 
 | 	 */ | 
 | 	if (ino < sctx->send_progress) | 
 | 		ret = get_first_ref(sctx->send_root, ino, | 
 | 				    parent_ino, parent_gen, dest); | 
 | 	else | 
 | 		ret = get_first_ref(sctx->parent_root, ino, | 
 | 				    parent_ino, parent_gen, dest); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Check if the ref was overwritten by an inode's ref that was processed | 
 | 	 * earlier. If yes, treat as orphan and return 1. | 
 | 	 */ | 
 | 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, | 
 | 			dest->start, dest->end - dest->start); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret) { | 
 | 		fs_path_reset(dest); | 
 | 		ret = gen_unique_name(sctx, ino, gen, dest); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | out_cache: | 
 | 	/* | 
 | 	 * Store the result of the lookup in the name cache. | 
 | 	 */ | 
 | 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); | 
 | 	if (!nce) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	nce->ino = ino; | 
 | 	nce->gen = gen; | 
 | 	nce->parent_ino = *parent_ino; | 
 | 	nce->parent_gen = *parent_gen; | 
 | 	nce->name_len = fs_path_len(dest); | 
 | 	nce->ret = ret; | 
 | 	strcpy(nce->name, dest->start); | 
 |  | 
 | 	if (ino < sctx->send_progress) | 
 | 		nce->need_later_update = 0; | 
 | 	else | 
 | 		nce->need_later_update = 1; | 
 |  | 
 | 	nce_ret = name_cache_insert(sctx, nce); | 
 | 	if (nce_ret < 0) | 
 | 		ret = nce_ret; | 
 | 	name_cache_clean_unused(sctx); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Magic happens here. This function returns the first ref to an inode as it | 
 |  * would look like while receiving the stream at this point in time. | 
 |  * We walk the path up to the root. For every inode in between, we check if it | 
 |  * was already processed/sent. If yes, we continue with the parent as found | 
 |  * in send_root. If not, we continue with the parent as found in parent_root. | 
 |  * If we encounter an inode that was deleted at this point in time, we use the | 
 |  * inodes "orphan" name instead of the real name and stop. Same with new inodes | 
 |  * that were not created yet and overwritten inodes/refs. | 
 |  * | 
 |  * When do we have orphan inodes: | 
 |  * 1. When an inode is freshly created and thus no valid refs are available yet | 
 |  * 2. When a directory lost all it's refs (deleted) but still has dir items | 
 |  *    inside which were not processed yet (pending for move/delete). If anyone | 
 |  *    tried to get the path to the dir items, it would get a path inside that | 
 |  *    orphan directory. | 
 |  * 3. When an inode is moved around or gets new links, it may overwrite the ref | 
 |  *    of an unprocessed inode. If in that case the first ref would be | 
 |  *    overwritten, the overwritten inode gets "orphanized". Later when we | 
 |  *    process this overwritten inode, it is restored at a new place by moving | 
 |  *    the orphan inode. | 
 |  * | 
 |  * sctx->send_progress tells this function at which point in time receiving | 
 |  * would be. | 
 |  */ | 
 | static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, | 
 | 			struct fs_path *dest) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct fs_path *name = NULL; | 
 | 	u64 parent_inode = 0; | 
 | 	u64 parent_gen = 0; | 
 | 	int stop = 0; | 
 |  | 
 | 	name = fs_path_alloc(); | 
 | 	if (!name) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dest->reversed = 1; | 
 | 	fs_path_reset(dest); | 
 |  | 
 | 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		struct waiting_dir_move *wdm; | 
 |  | 
 | 		fs_path_reset(name); | 
 |  | 
 | 		if (is_waiting_for_rm(sctx, ino, gen)) { | 
 | 			ret = gen_unique_name(sctx, ino, gen, name); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			ret = fs_path_add_path(dest, name); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		wdm = get_waiting_dir_move(sctx, ino); | 
 | 		if (wdm && wdm->orphanized) { | 
 | 			ret = gen_unique_name(sctx, ino, gen, name); | 
 | 			stop = 1; | 
 | 		} else if (wdm) { | 
 | 			ret = get_first_ref(sctx->parent_root, ino, | 
 | 					    &parent_inode, &parent_gen, name); | 
 | 		} else { | 
 | 			ret = __get_cur_name_and_parent(sctx, ino, gen, | 
 | 							&parent_inode, | 
 | 							&parent_gen, name); | 
 | 			if (ret) | 
 | 				stop = 1; | 
 | 		} | 
 |  | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		ret = fs_path_add_path(dest, name); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		ino = parent_inode; | 
 | 		gen = parent_gen; | 
 | 	} | 
 |  | 
 | out: | 
 | 	fs_path_free(name); | 
 | 	if (!ret) | 
 | 		fs_path_unreverse(dest); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace | 
 |  */ | 
 | static int send_subvol_begin(struct send_ctx *sctx) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *send_root = sctx->send_root; | 
 | 	struct btrfs_root *parent_root = sctx->parent_root; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root_ref *ref; | 
 | 	struct extent_buffer *leaf; | 
 | 	char *name = NULL; | 
 | 	int namelen; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); | 
 | 	if (!name) { | 
 | 		btrfs_free_path(path); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	key.objectid = send_root->root_key.objectid; | 
 | 	key.type = BTRFS_ROOT_BACKREF_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, | 
 | 				&key, path, 1, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 	if (key.type != BTRFS_ROOT_BACKREF_KEY || | 
 | 	    key.objectid != send_root->root_key.objectid) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); | 
 | 	namelen = btrfs_root_ref_name_len(leaf, ref); | 
 | 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (parent_root) { | 
 | 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} else { | 
 | 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); | 
 |  | 
 | 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) | 
 | 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, | 
 | 			    sctx->send_root->root_item.received_uuid); | 
 | 	else | 
 | 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, | 
 | 			    sctx->send_root->root_item.uuid); | 
 |  | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, | 
 | 		    btrfs_root_ctransid(&sctx->send_root->root_item)); | 
 | 	if (parent_root) { | 
 | 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) | 
 | 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, | 
 | 				     parent_root->root_item.received_uuid); | 
 | 		else | 
 | 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, | 
 | 				     parent_root->root_item.uuid); | 
 | 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, | 
 | 			    btrfs_root_ctransid(&sctx->parent_root->root_item)); | 
 | 	} | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	kfree(name); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret = 0; | 
 | 	struct fs_path *p; | 
 |  | 
 | 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = get_cur_path(sctx, ino, gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret = 0; | 
 | 	struct fs_path *p; | 
 |  | 
 | 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = get_cur_path(sctx, ino, gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret = 0; | 
 | 	struct fs_path *p; | 
 |  | 
 | 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", | 
 | 		    ino, uid, gid); | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = get_cur_path(sctx, ino, gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret = 0; | 
 | 	struct fs_path *p = NULL; | 
 | 	struct btrfs_inode_item *ii; | 
 | 	struct btrfs_path *path = NULL; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_key key; | 
 | 	int slot; | 
 |  | 
 | 	btrfs_debug(fs_info, "send_utimes %llu", ino); | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); | 
 | 	if (ret > 0) | 
 | 		ret = -ENOENT; | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	eb = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = get_cur_path(sctx, ino, gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
 | 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); | 
 | 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); | 
 | 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); | 
 | 	/* TODO Add otime support when the otime patches get into upstream */ | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	fs_path_free(p); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have | 
 |  * a valid path yet because we did not process the refs yet. So, the inode | 
 |  * is created as orphan. | 
 |  */ | 
 | static int send_create_inode(struct send_ctx *sctx, u64 ino) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret = 0; | 
 | 	struct fs_path *p; | 
 | 	int cmd; | 
 | 	u64 gen; | 
 | 	u64 mode; | 
 | 	u64 rdev; | 
 |  | 
 | 	btrfs_debug(fs_info, "send_create_inode %llu", ino); | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (ino != sctx->cur_ino) { | 
 | 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, | 
 | 				     NULL, NULL, &rdev); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} else { | 
 | 		gen = sctx->cur_inode_gen; | 
 | 		mode = sctx->cur_inode_mode; | 
 | 		rdev = sctx->cur_inode_rdev; | 
 | 	} | 
 |  | 
 | 	if (S_ISREG(mode)) { | 
 | 		cmd = BTRFS_SEND_C_MKFILE; | 
 | 	} else if (S_ISDIR(mode)) { | 
 | 		cmd = BTRFS_SEND_C_MKDIR; | 
 | 	} else if (S_ISLNK(mode)) { | 
 | 		cmd = BTRFS_SEND_C_SYMLINK; | 
 | 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) { | 
 | 		cmd = BTRFS_SEND_C_MKNOD; | 
 | 	} else if (S_ISFIFO(mode)) { | 
 | 		cmd = BTRFS_SEND_C_MKFIFO; | 
 | 	} else if (S_ISSOCK(mode)) { | 
 | 		cmd = BTRFS_SEND_C_MKSOCK; | 
 | 	} else { | 
 | 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", | 
 | 				(int)(mode & S_IFMT)); | 
 | 		ret = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = begin_cmd(sctx, cmd); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = gen_unique_name(sctx, ino, gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); | 
 |  | 
 | 	if (S_ISLNK(mode)) { | 
 | 		fs_path_reset(p); | 
 | 		ret = read_symlink(sctx->send_root, ino, p); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); | 
 | 	} else if (S_ISCHR(mode) || S_ISBLK(mode) || | 
 | 		   S_ISFIFO(mode) || S_ISSOCK(mode)) { | 
 | 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); | 
 | 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); | 
 | 	} | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * We need some special handling for inodes that get processed before the parent | 
 |  * directory got created. See process_recorded_refs for details. | 
 |  * This function does the check if we already created the dir out of order. | 
 |  */ | 
 | static int did_create_dir(struct send_ctx *sctx, u64 dir) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_path *path = NULL; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_key di_key; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_dir_item *di; | 
 | 	int slot; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	key.objectid = dir; | 
 | 	key.type = BTRFS_DIR_INDEX_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		eb = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(eb)) { | 
 | 			ret = btrfs_next_leaf(sctx->send_root, path); | 
 | 			if (ret < 0) { | 
 | 				goto out; | 
 | 			} else if (ret > 0) { | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(eb, &found_key, slot); | 
 | 		if (found_key.objectid != key.objectid || | 
 | 		    found_key.type != key.type) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); | 
 | 		btrfs_dir_item_key_to_cpu(eb, di, &di_key); | 
 |  | 
 | 		if (di_key.type != BTRFS_ROOT_ITEM_KEY && | 
 | 		    di_key.objectid < sctx->send_progress) { | 
 | 			ret = 1; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		path->slots[0]++; | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Only creates the inode if it is: | 
 |  * 1. Not a directory | 
 |  * 2. Or a directory which was not created already due to out of order | 
 |  *    directories. See did_create_dir and process_recorded_refs for details. | 
 |  */ | 
 | static int send_create_inode_if_needed(struct send_ctx *sctx) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (S_ISDIR(sctx->cur_inode_mode)) { | 
 | 		ret = did_create_dir(sctx, sctx->cur_ino); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = send_create_inode(sctx, sctx->cur_ino); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct recorded_ref { | 
 | 	struct list_head list; | 
 | 	char *name; | 
 | 	struct fs_path *full_path; | 
 | 	u64 dir; | 
 | 	u64 dir_gen; | 
 | 	int name_len; | 
 | }; | 
 |  | 
 | static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) | 
 | { | 
 | 	ref->full_path = path; | 
 | 	ref->name = (char *)kbasename(ref->full_path->start); | 
 | 	ref->name_len = ref->full_path->end - ref->name; | 
 | } | 
 |  | 
 | /* | 
 |  * We need to process new refs before deleted refs, but compare_tree gives us | 
 |  * everything mixed. So we first record all refs and later process them. | 
 |  * This function is a helper to record one ref. | 
 |  */ | 
 | static int __record_ref(struct list_head *head, u64 dir, | 
 | 		      u64 dir_gen, struct fs_path *path) | 
 | { | 
 | 	struct recorded_ref *ref; | 
 |  | 
 | 	ref = kmalloc(sizeof(*ref), GFP_KERNEL); | 
 | 	if (!ref) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ref->dir = dir; | 
 | 	ref->dir_gen = dir_gen; | 
 | 	set_ref_path(ref, path); | 
 | 	list_add_tail(&ref->list, head); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int dup_ref(struct recorded_ref *ref, struct list_head *list) | 
 | { | 
 | 	struct recorded_ref *new; | 
 |  | 
 | 	new = kmalloc(sizeof(*ref), GFP_KERNEL); | 
 | 	if (!new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	new->dir = ref->dir; | 
 | 	new->dir_gen = ref->dir_gen; | 
 | 	new->full_path = NULL; | 
 | 	INIT_LIST_HEAD(&new->list); | 
 | 	list_add_tail(&new->list, list); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __free_recorded_refs(struct list_head *head) | 
 | { | 
 | 	struct recorded_ref *cur; | 
 |  | 
 | 	while (!list_empty(head)) { | 
 | 		cur = list_entry(head->next, struct recorded_ref, list); | 
 | 		fs_path_free(cur->full_path); | 
 | 		list_del(&cur->list); | 
 | 		kfree(cur); | 
 | 	} | 
 | } | 
 |  | 
 | static void free_recorded_refs(struct send_ctx *sctx) | 
 | { | 
 | 	__free_recorded_refs(&sctx->new_refs); | 
 | 	__free_recorded_refs(&sctx->deleted_refs); | 
 | } | 
 |  | 
 | /* | 
 |  * Renames/moves a file/dir to its orphan name. Used when the first | 
 |  * ref of an unprocessed inode gets overwritten and for all non empty | 
 |  * directories. | 
 |  */ | 
 | static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, | 
 | 			  struct fs_path *path) | 
 | { | 
 | 	int ret; | 
 | 	struct fs_path *orphan; | 
 |  | 
 | 	orphan = fs_path_alloc(); | 
 | 	if (!orphan) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = gen_unique_name(sctx, ino, gen, orphan); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = send_rename(sctx, path, orphan); | 
 |  | 
 | out: | 
 | 	fs_path_free(orphan); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, | 
 | 						   u64 dir_ino, u64 dir_gen) | 
 | { | 
 | 	struct rb_node **p = &sctx->orphan_dirs.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct orphan_dir_info *entry, *odi; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct orphan_dir_info, node); | 
 | 		if (dir_ino < entry->ino) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (dir_ino > entry->ino) | 
 | 			p = &(*p)->rb_right; | 
 | 		else if (dir_gen < entry->gen) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (dir_gen > entry->gen) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			return entry; | 
 | 	} | 
 |  | 
 | 	odi = kmalloc(sizeof(*odi), GFP_KERNEL); | 
 | 	if (!odi) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	odi->ino = dir_ino; | 
 | 	odi->gen = dir_gen; | 
 | 	odi->last_dir_index_offset = 0; | 
 |  | 
 | 	rb_link_node(&odi->node, parent, p); | 
 | 	rb_insert_color(&odi->node, &sctx->orphan_dirs); | 
 | 	return odi; | 
 | } | 
 |  | 
 | static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, | 
 | 						   u64 dir_ino, u64 gen) | 
 | { | 
 | 	struct rb_node *n = sctx->orphan_dirs.rb_node; | 
 | 	struct orphan_dir_info *entry; | 
 |  | 
 | 	while (n) { | 
 | 		entry = rb_entry(n, struct orphan_dir_info, node); | 
 | 		if (dir_ino < entry->ino) | 
 | 			n = n->rb_left; | 
 | 		else if (dir_ino > entry->ino) | 
 | 			n = n->rb_right; | 
 | 		else if (gen < entry->gen) | 
 | 			n = n->rb_left; | 
 | 		else if (gen > entry->gen) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			return entry; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) | 
 | { | 
 | 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); | 
 |  | 
 | 	return odi != NULL; | 
 | } | 
 |  | 
 | static void free_orphan_dir_info(struct send_ctx *sctx, | 
 | 				 struct orphan_dir_info *odi) | 
 | { | 
 | 	if (!odi) | 
 | 		return; | 
 | 	rb_erase(&odi->node, &sctx->orphan_dirs); | 
 | 	kfree(odi); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns 1 if a directory can be removed at this point in time. | 
 |  * We check this by iterating all dir items and checking if the inode behind | 
 |  * the dir item was already processed. | 
 |  */ | 
 | static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, | 
 | 		     u64 send_progress) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_root *root = sctx->parent_root; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_key loc; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct orphan_dir_info *odi = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Don't try to rmdir the top/root subvolume dir. | 
 | 	 */ | 
 | 	if (dir == BTRFS_FIRST_FREE_OBJECTID) | 
 | 		return 0; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = dir; | 
 | 	key.type = BTRFS_DIR_INDEX_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	odi = get_orphan_dir_info(sctx, dir, dir_gen); | 
 | 	if (odi) | 
 | 		key.offset = odi->last_dir_index_offset; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		struct waiting_dir_move *dm; | 
 |  | 
 | 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, | 
 | 				      path->slots[0]); | 
 | 		if (found_key.objectid != key.objectid || | 
 | 		    found_key.type != key.type) | 
 | 			break; | 
 |  | 
 | 		di = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				struct btrfs_dir_item); | 
 | 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); | 
 |  | 
 | 		dm = get_waiting_dir_move(sctx, loc.objectid); | 
 | 		if (dm) { | 
 | 			odi = add_orphan_dir_info(sctx, dir, dir_gen); | 
 | 			if (IS_ERR(odi)) { | 
 | 				ret = PTR_ERR(odi); | 
 | 				goto out; | 
 | 			} | 
 | 			odi->gen = dir_gen; | 
 | 			odi->last_dir_index_offset = found_key.offset; | 
 | 			dm->rmdir_ino = dir; | 
 | 			dm->rmdir_gen = dir_gen; | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (loc.objectid > send_progress) { | 
 | 			odi = add_orphan_dir_info(sctx, dir, dir_gen); | 
 | 			if (IS_ERR(odi)) { | 
 | 				ret = PTR_ERR(odi); | 
 | 				goto out; | 
 | 			} | 
 | 			odi->gen = dir_gen; | 
 | 			odi->last_dir_index_offset = found_key.offset; | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	free_orphan_dir_info(sctx, odi); | 
 |  | 
 | 	ret = 1; | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) | 
 | { | 
 | 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); | 
 |  | 
 | 	return entry != NULL; | 
 | } | 
 |  | 
 | static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) | 
 | { | 
 | 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct waiting_dir_move *entry, *dm; | 
 |  | 
 | 	dm = kmalloc(sizeof(*dm), GFP_KERNEL); | 
 | 	if (!dm) | 
 | 		return -ENOMEM; | 
 | 	dm->ino = ino; | 
 | 	dm->rmdir_ino = 0; | 
 | 	dm->rmdir_gen = 0; | 
 | 	dm->orphanized = orphanized; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct waiting_dir_move, node); | 
 | 		if (ino < entry->ino) { | 
 | 			p = &(*p)->rb_left; | 
 | 		} else if (ino > entry->ino) { | 
 | 			p = &(*p)->rb_right; | 
 | 		} else { | 
 | 			kfree(dm); | 
 | 			return -EEXIST; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb_link_node(&dm->node, parent, p); | 
 | 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct waiting_dir_move * | 
 | get_waiting_dir_move(struct send_ctx *sctx, u64 ino) | 
 | { | 
 | 	struct rb_node *n = sctx->waiting_dir_moves.rb_node; | 
 | 	struct waiting_dir_move *entry; | 
 |  | 
 | 	while (n) { | 
 | 		entry = rb_entry(n, struct waiting_dir_move, node); | 
 | 		if (ino < entry->ino) | 
 | 			n = n->rb_left; | 
 | 		else if (ino > entry->ino) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			return entry; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void free_waiting_dir_move(struct send_ctx *sctx, | 
 | 				  struct waiting_dir_move *dm) | 
 | { | 
 | 	if (!dm) | 
 | 		return; | 
 | 	rb_erase(&dm->node, &sctx->waiting_dir_moves); | 
 | 	kfree(dm); | 
 | } | 
 |  | 
 | static int add_pending_dir_move(struct send_ctx *sctx, | 
 | 				u64 ino, | 
 | 				u64 ino_gen, | 
 | 				u64 parent_ino, | 
 | 				struct list_head *new_refs, | 
 | 				struct list_head *deleted_refs, | 
 | 				const bool is_orphan) | 
 | { | 
 | 	struct rb_node **p = &sctx->pending_dir_moves.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct pending_dir_move *entry = NULL, *pm; | 
 | 	struct recorded_ref *cur; | 
 | 	int exists = 0; | 
 | 	int ret; | 
 |  | 
 | 	pm = kmalloc(sizeof(*pm), GFP_KERNEL); | 
 | 	if (!pm) | 
 | 		return -ENOMEM; | 
 | 	pm->parent_ino = parent_ino; | 
 | 	pm->ino = ino; | 
 | 	pm->gen = ino_gen; | 
 | 	INIT_LIST_HEAD(&pm->list); | 
 | 	INIT_LIST_HEAD(&pm->update_refs); | 
 | 	RB_CLEAR_NODE(&pm->node); | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct pending_dir_move, node); | 
 | 		if (parent_ino < entry->parent_ino) { | 
 | 			p = &(*p)->rb_left; | 
 | 		} else if (parent_ino > entry->parent_ino) { | 
 | 			p = &(*p)->rb_right; | 
 | 		} else { | 
 | 			exists = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(cur, deleted_refs, list) { | 
 | 		ret = dup_ref(cur, &pm->update_refs); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 | 	list_for_each_entry(cur, new_refs, list) { | 
 | 		ret = dup_ref(cur, &pm->update_refs); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (exists) { | 
 | 		list_add_tail(&pm->list, &entry->list); | 
 | 	} else { | 
 | 		rb_link_node(&pm->node, parent, p); | 
 | 		rb_insert_color(&pm->node, &sctx->pending_dir_moves); | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	if (ret) { | 
 | 		__free_recorded_refs(&pm->update_refs); | 
 | 		kfree(pm); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, | 
 | 						      u64 parent_ino) | 
 | { | 
 | 	struct rb_node *n = sctx->pending_dir_moves.rb_node; | 
 | 	struct pending_dir_move *entry; | 
 |  | 
 | 	while (n) { | 
 | 		entry = rb_entry(n, struct pending_dir_move, node); | 
 | 		if (parent_ino < entry->parent_ino) | 
 | 			n = n->rb_left; | 
 | 		else if (parent_ino > entry->parent_ino) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			return entry; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int path_loop(struct send_ctx *sctx, struct fs_path *name, | 
 | 		     u64 ino, u64 gen, u64 *ancestor_ino) | 
 | { | 
 | 	int ret = 0; | 
 | 	u64 parent_inode = 0; | 
 | 	u64 parent_gen = 0; | 
 | 	u64 start_ino = ino; | 
 |  | 
 | 	*ancestor_ino = 0; | 
 | 	while (ino != BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		fs_path_reset(name); | 
 |  | 
 | 		if (is_waiting_for_rm(sctx, ino, gen)) | 
 | 			break; | 
 | 		if (is_waiting_for_move(sctx, ino)) { | 
 | 			if (*ancestor_ino == 0) | 
 | 				*ancestor_ino = ino; | 
 | 			ret = get_first_ref(sctx->parent_root, ino, | 
 | 					    &parent_inode, &parent_gen, name); | 
 | 		} else { | 
 | 			ret = __get_cur_name_and_parent(sctx, ino, gen, | 
 | 							&parent_inode, | 
 | 							&parent_gen, name); | 
 | 			if (ret > 0) { | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (parent_inode == start_ino) { | 
 | 			ret = 1; | 
 | 			if (*ancestor_ino == 0) | 
 | 				*ancestor_ino = ino; | 
 | 			break; | 
 | 		} | 
 | 		ino = parent_inode; | 
 | 		gen = parent_gen; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) | 
 | { | 
 | 	struct fs_path *from_path = NULL; | 
 | 	struct fs_path *to_path = NULL; | 
 | 	struct fs_path *name = NULL; | 
 | 	u64 orig_progress = sctx->send_progress; | 
 | 	struct recorded_ref *cur; | 
 | 	u64 parent_ino, parent_gen; | 
 | 	struct waiting_dir_move *dm = NULL; | 
 | 	u64 rmdir_ino = 0; | 
 | 	u64 rmdir_gen; | 
 | 	u64 ancestor; | 
 | 	bool is_orphan; | 
 | 	int ret; | 
 |  | 
 | 	name = fs_path_alloc(); | 
 | 	from_path = fs_path_alloc(); | 
 | 	if (!name || !from_path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dm = get_waiting_dir_move(sctx, pm->ino); | 
 | 	ASSERT(dm); | 
 | 	rmdir_ino = dm->rmdir_ino; | 
 | 	rmdir_gen = dm->rmdir_gen; | 
 | 	is_orphan = dm->orphanized; | 
 | 	free_waiting_dir_move(sctx, dm); | 
 |  | 
 | 	if (is_orphan) { | 
 | 		ret = gen_unique_name(sctx, pm->ino, | 
 | 				      pm->gen, from_path); | 
 | 	} else { | 
 | 		ret = get_first_ref(sctx->parent_root, pm->ino, | 
 | 				    &parent_ino, &parent_gen, name); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		ret = get_cur_path(sctx, parent_ino, parent_gen, | 
 | 				   from_path); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		ret = fs_path_add_path(from_path, name); | 
 | 	} | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	sctx->send_progress = sctx->cur_ino + 1; | 
 | 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret) { | 
 | 		LIST_HEAD(deleted_refs); | 
 | 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); | 
 | 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, | 
 | 					   &pm->update_refs, &deleted_refs, | 
 | 					   is_orphan); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (rmdir_ino) { | 
 | 			dm = get_waiting_dir_move(sctx, pm->ino); | 
 | 			ASSERT(dm); | 
 | 			dm->rmdir_ino = rmdir_ino; | 
 | 			dm->rmdir_gen = rmdir_gen; | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 | 	fs_path_reset(name); | 
 | 	to_path = name; | 
 | 	name = NULL; | 
 | 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = send_rename(sctx, from_path, to_path); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (rmdir_ino) { | 
 | 		struct orphan_dir_info *odi; | 
 | 		u64 gen; | 
 |  | 
 | 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); | 
 | 		if (!odi) { | 
 | 			/* already deleted */ | 
 | 			goto finish; | 
 | 		} | 
 | 		gen = odi->gen; | 
 |  | 
 | 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (!ret) | 
 | 			goto finish; | 
 |  | 
 | 		name = fs_path_alloc(); | 
 | 		if (!name) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		ret = get_cur_path(sctx, rmdir_ino, gen, name); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		ret = send_rmdir(sctx, name); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | finish: | 
 | 	ret = send_utimes(sctx, pm->ino, pm->gen); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * After rename/move, need to update the utimes of both new parent(s) | 
 | 	 * and old parent(s). | 
 | 	 */ | 
 | 	list_for_each_entry(cur, &pm->update_refs, list) { | 
 | 		/* | 
 | 		 * The parent inode might have been deleted in the send snapshot | 
 | 		 */ | 
 | 		ret = get_inode_info(sctx->send_root, cur->dir, NULL, | 
 | 				     NULL, NULL, NULL, NULL, NULL); | 
 | 		if (ret == -ENOENT) { | 
 | 			ret = 0; | 
 | 			continue; | 
 | 		} | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		ret = send_utimes(sctx, cur->dir, cur->dir_gen); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	fs_path_free(name); | 
 | 	fs_path_free(from_path); | 
 | 	fs_path_free(to_path); | 
 | 	sctx->send_progress = orig_progress; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) | 
 | { | 
 | 	if (!list_empty(&m->list)) | 
 | 		list_del(&m->list); | 
 | 	if (!RB_EMPTY_NODE(&m->node)) | 
 | 		rb_erase(&m->node, &sctx->pending_dir_moves); | 
 | 	__free_recorded_refs(&m->update_refs); | 
 | 	kfree(m); | 
 | } | 
 |  | 
 | static void tail_append_pending_moves(struct send_ctx *sctx, | 
 | 				      struct pending_dir_move *moves, | 
 | 				      struct list_head *stack) | 
 | { | 
 | 	if (list_empty(&moves->list)) { | 
 | 		list_add_tail(&moves->list, stack); | 
 | 	} else { | 
 | 		LIST_HEAD(list); | 
 | 		list_splice_init(&moves->list, &list); | 
 | 		list_add_tail(&moves->list, stack); | 
 | 		list_splice_tail(&list, stack); | 
 | 	} | 
 | 	if (!RB_EMPTY_NODE(&moves->node)) { | 
 | 		rb_erase(&moves->node, &sctx->pending_dir_moves); | 
 | 		RB_CLEAR_NODE(&moves->node); | 
 | 	} | 
 | } | 
 |  | 
 | static int apply_children_dir_moves(struct send_ctx *sctx) | 
 | { | 
 | 	struct pending_dir_move *pm; | 
 | 	struct list_head stack; | 
 | 	u64 parent_ino = sctx->cur_ino; | 
 | 	int ret = 0; | 
 |  | 
 | 	pm = get_pending_dir_moves(sctx, parent_ino); | 
 | 	if (!pm) | 
 | 		return 0; | 
 |  | 
 | 	INIT_LIST_HEAD(&stack); | 
 | 	tail_append_pending_moves(sctx, pm, &stack); | 
 |  | 
 | 	while (!list_empty(&stack)) { | 
 | 		pm = list_first_entry(&stack, struct pending_dir_move, list); | 
 | 		parent_ino = pm->ino; | 
 | 		ret = apply_dir_move(sctx, pm); | 
 | 		free_pending_move(sctx, pm); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		pm = get_pending_dir_moves(sctx, parent_ino); | 
 | 		if (pm) | 
 | 			tail_append_pending_moves(sctx, pm, &stack); | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	while (!list_empty(&stack)) { | 
 | 		pm = list_first_entry(&stack, struct pending_dir_move, list); | 
 | 		free_pending_move(sctx, pm); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * We might need to delay a directory rename even when no ancestor directory | 
 |  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was | 
 |  * renamed. This happens when we rename a directory to the old name (the name | 
 |  * in the parent root) of some other unrelated directory that got its rename | 
 |  * delayed due to some ancestor with higher number that got renamed. | 
 |  * | 
 |  * Example: | 
 |  * | 
 |  * Parent snapshot: | 
 |  * .                                       (ino 256) | 
 |  * |---- a/                                (ino 257) | 
 |  * |     |---- file                        (ino 260) | 
 |  * | | 
 |  * |---- b/                                (ino 258) | 
 |  * |---- c/                                (ino 259) | 
 |  * | 
 |  * Send snapshot: | 
 |  * .                                       (ino 256) | 
 |  * |---- a/                                (ino 258) | 
 |  * |---- x/                                (ino 259) | 
 |  *       |---- y/                          (ino 257) | 
 |  *             |----- file                 (ino 260) | 
 |  * | 
 |  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 | 
 |  * from 'a' to 'x/y' happening first, which in turn depends on the rename of | 
 |  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream | 
 |  * must issue is: | 
 |  * | 
 |  * 1 - rename 259 from 'c' to 'x' | 
 |  * 2 - rename 257 from 'a' to 'x/y' | 
 |  * 3 - rename 258 from 'b' to 'a' | 
 |  * | 
 |  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can | 
 |  * be done right away and < 0 on error. | 
 |  */ | 
 | static int wait_for_dest_dir_move(struct send_ctx *sctx, | 
 | 				  struct recorded_ref *parent_ref, | 
 | 				  const bool is_orphan) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key di_key; | 
 | 	struct btrfs_dir_item *di; | 
 | 	u64 left_gen; | 
 | 	u64 right_gen; | 
 | 	int ret = 0; | 
 | 	struct waiting_dir_move *wdm; | 
 |  | 
 | 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) | 
 | 		return 0; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = parent_ref->dir; | 
 | 	key.type = BTRFS_DIR_ITEM_KEY; | 
 | 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); | 
 | 	if (ret < 0) { | 
 | 		goto out; | 
 | 	} else if (ret > 0) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, | 
 | 				       parent_ref->name_len); | 
 | 	if (!di) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * di_key.objectid has the number of the inode that has a dentry in the | 
 | 	 * parent directory with the same name that sctx->cur_ino is being | 
 | 	 * renamed to. We need to check if that inode is in the send root as | 
 | 	 * well and if it is currently marked as an inode with a pending rename, | 
 | 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so | 
 | 	 * that it happens after that other inode is renamed. | 
 | 	 */ | 
 | 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); | 
 | 	if (di_key.type != BTRFS_INODE_ITEM_KEY) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, | 
 | 			     &left_gen, NULL, NULL, NULL, NULL); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, | 
 | 			     &right_gen, NULL, NULL, NULL, NULL); | 
 | 	if (ret < 0) { | 
 | 		if (ret == -ENOENT) | 
 | 			ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Different inode, no need to delay the rename of sctx->cur_ino */ | 
 | 	if (right_gen != left_gen) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	wdm = get_waiting_dir_move(sctx, di_key.objectid); | 
 | 	if (wdm && !wdm->orphanized) { | 
 | 		ret = add_pending_dir_move(sctx, | 
 | 					   sctx->cur_ino, | 
 | 					   sctx->cur_inode_gen, | 
 | 					   di_key.objectid, | 
 | 					   &sctx->new_refs, | 
 | 					   &sctx->deleted_refs, | 
 | 					   is_orphan); | 
 | 		if (!ret) | 
 | 			ret = 1; | 
 | 	} | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if inode ino2, or any of its ancestors, is inode ino1. | 
 |  * Return 1 if true, 0 if false and < 0 on error. | 
 |  */ | 
 | static int check_ino_in_path(struct btrfs_root *root, | 
 | 			     const u64 ino1, | 
 | 			     const u64 ino1_gen, | 
 | 			     const u64 ino2, | 
 | 			     const u64 ino2_gen, | 
 | 			     struct fs_path *fs_path) | 
 | { | 
 | 	u64 ino = ino2; | 
 |  | 
 | 	if (ino1 == ino2) | 
 | 		return ino1_gen == ino2_gen; | 
 |  | 
 | 	while (ino > BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		u64 parent; | 
 | 		u64 parent_gen; | 
 | 		int ret; | 
 |  | 
 | 		fs_path_reset(fs_path); | 
 | 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		if (parent == ino1) | 
 | 			return parent_gen == ino1_gen; | 
 | 		ino = parent; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any | 
 |  * possible path (in case ino2 is not a directory and has multiple hard links). | 
 |  * Return 1 if true, 0 if false and < 0 on error. | 
 |  */ | 
 | static int is_ancestor(struct btrfs_root *root, | 
 | 		       const u64 ino1, | 
 | 		       const u64 ino1_gen, | 
 | 		       const u64 ino2, | 
 | 		       struct fs_path *fs_path) | 
 | { | 
 | 	bool free_fs_path = false; | 
 | 	int ret = 0; | 
 | 	struct btrfs_path *path = NULL; | 
 | 	struct btrfs_key key; | 
 |  | 
 | 	if (!fs_path) { | 
 | 		fs_path = fs_path_alloc(); | 
 | 		if (!fs_path) | 
 | 			return -ENOMEM; | 
 | 		free_fs_path = true; | 
 | 	} | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	key.objectid = ino2; | 
 | 	key.type = BTRFS_INODE_REF_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (true) { | 
 | 		struct extent_buffer *leaf = path->nodes[0]; | 
 | 		int slot = path->slots[0]; | 
 | 		u32 cur_offset = 0; | 
 | 		u32 item_size; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 		if (key.objectid != ino2) | 
 | 			break; | 
 | 		if (key.type != BTRFS_INODE_REF_KEY && | 
 | 		    key.type != BTRFS_INODE_EXTREF_KEY) | 
 | 			break; | 
 |  | 
 | 		item_size = btrfs_item_size_nr(leaf, slot); | 
 | 		while (cur_offset < item_size) { | 
 | 			u64 parent; | 
 | 			u64 parent_gen; | 
 |  | 
 | 			if (key.type == BTRFS_INODE_EXTREF_KEY) { | 
 | 				unsigned long ptr; | 
 | 				struct btrfs_inode_extref *extref; | 
 |  | 
 | 				ptr = btrfs_item_ptr_offset(leaf, slot); | 
 | 				extref = (struct btrfs_inode_extref *) | 
 | 					(ptr + cur_offset); | 
 | 				parent = btrfs_inode_extref_parent(leaf, | 
 | 								   extref); | 
 | 				cur_offset += sizeof(*extref); | 
 | 				cur_offset += btrfs_inode_extref_name_len(leaf, | 
 | 								  extref); | 
 | 			} else { | 
 | 				parent = key.offset; | 
 | 				cur_offset = item_size; | 
 | 			} | 
 |  | 
 | 			ret = get_inode_info(root, parent, NULL, &parent_gen, | 
 | 					     NULL, NULL, NULL, NULL); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			ret = check_ino_in_path(root, ino1, ino1_gen, | 
 | 						parent, parent_gen, fs_path); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	ret = 0; | 
 |  out: | 
 | 	btrfs_free_path(path); | 
 | 	if (free_fs_path) | 
 | 		fs_path_free(fs_path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int wait_for_parent_move(struct send_ctx *sctx, | 
 | 				struct recorded_ref *parent_ref, | 
 | 				const bool is_orphan) | 
 | { | 
 | 	int ret = 0; | 
 | 	u64 ino = parent_ref->dir; | 
 | 	u64 ino_gen = parent_ref->dir_gen; | 
 | 	u64 parent_ino_before, parent_ino_after; | 
 | 	struct fs_path *path_before = NULL; | 
 | 	struct fs_path *path_after = NULL; | 
 | 	int len1, len2; | 
 |  | 
 | 	path_after = fs_path_alloc(); | 
 | 	path_before = fs_path_alloc(); | 
 | 	if (!path_after || !path_before) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Our current directory inode may not yet be renamed/moved because some | 
 | 	 * ancestor (immediate or not) has to be renamed/moved first. So find if | 
 | 	 * such ancestor exists and make sure our own rename/move happens after | 
 | 	 * that ancestor is processed to avoid path build infinite loops (done | 
 | 	 * at get_cur_path()). | 
 | 	 */ | 
 | 	while (ino > BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		u64 parent_ino_after_gen; | 
 |  | 
 | 		if (is_waiting_for_move(sctx, ino)) { | 
 | 			/* | 
 | 			 * If the current inode is an ancestor of ino in the | 
 | 			 * parent root, we need to delay the rename of the | 
 | 			 * current inode, otherwise don't delayed the rename | 
 | 			 * because we can end up with a circular dependency | 
 | 			 * of renames, resulting in some directories never | 
 | 			 * getting the respective rename operations issued in | 
 | 			 * the send stream or getting into infinite path build | 
 | 			 * loops. | 
 | 			 */ | 
 | 			ret = is_ancestor(sctx->parent_root, | 
 | 					  sctx->cur_ino, sctx->cur_inode_gen, | 
 | 					  ino, path_before); | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		fs_path_reset(path_before); | 
 | 		fs_path_reset(path_after); | 
 |  | 
 | 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, | 
 | 				    &parent_ino_after_gen, path_after); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, | 
 | 				    NULL, path_before); | 
 | 		if (ret < 0 && ret != -ENOENT) { | 
 | 			goto out; | 
 | 		} else if (ret == -ENOENT) { | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		len1 = fs_path_len(path_before); | 
 | 		len2 = fs_path_len(path_after); | 
 | 		if (ino > sctx->cur_ino && | 
 | 		    (parent_ino_before != parent_ino_after || len1 != len2 || | 
 | 		     memcmp(path_before->start, path_after->start, len1))) { | 
 | 			u64 parent_ino_gen; | 
 |  | 
 | 			ret = get_inode_info(sctx->parent_root, ino, NULL, | 
 | 					     &parent_ino_gen, NULL, NULL, NULL, | 
 | 					     NULL); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (ino_gen == parent_ino_gen) { | 
 | 				ret = 1; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		ino = parent_ino_after; | 
 | 		ino_gen = parent_ino_after_gen; | 
 | 	} | 
 |  | 
 | out: | 
 | 	fs_path_free(path_before); | 
 | 	fs_path_free(path_after); | 
 |  | 
 | 	if (ret == 1) { | 
 | 		ret = add_pending_dir_move(sctx, | 
 | 					   sctx->cur_ino, | 
 | 					   sctx->cur_inode_gen, | 
 | 					   ino, | 
 | 					   &sctx->new_refs, | 
 | 					   &sctx->deleted_refs, | 
 | 					   is_orphan); | 
 | 		if (!ret) | 
 | 			ret = 1; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) | 
 | { | 
 | 	int ret; | 
 | 	struct fs_path *new_path; | 
 |  | 
 | 	/* | 
 | 	 * Our reference's name member points to its full_path member string, so | 
 | 	 * we use here a new path. | 
 | 	 */ | 
 | 	new_path = fs_path_alloc(); | 
 | 	if (!new_path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); | 
 | 	if (ret < 0) { | 
 | 		fs_path_free(new_path); | 
 | 		return ret; | 
 | 	} | 
 | 	ret = fs_path_add(new_path, ref->name, ref->name_len); | 
 | 	if (ret < 0) { | 
 | 		fs_path_free(new_path); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	fs_path_free(ref->full_path); | 
 | 	set_ref_path(ref, new_path); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * When processing the new references for an inode we may orphanize an existing | 
 |  * directory inode because its old name conflicts with one of the new references | 
 |  * of the current inode. Later, when processing another new reference of our | 
 |  * inode, we might need to orphanize another inode, but the path we have in the | 
 |  * reference reflects the pre-orphanization name of the directory we previously | 
 |  * orphanized. For example: | 
 |  * | 
 |  * parent snapshot looks like: | 
 |  * | 
 |  * .                                     (ino 256) | 
 |  * |----- f1                             (ino 257) | 
 |  * |----- f2                             (ino 258) | 
 |  * |----- d1/                            (ino 259) | 
 |  *        |----- d2/                     (ino 260) | 
 |  * | 
 |  * send snapshot looks like: | 
 |  * | 
 |  * .                                     (ino 256) | 
 |  * |----- d1                             (ino 258) | 
 |  * |----- f2/                            (ino 259) | 
 |  *        |----- f2_link/                (ino 260) | 
 |  *        |       |----- f1              (ino 257) | 
 |  *        | | 
 |  *        |----- d2                      (ino 258) | 
 |  * | 
 |  * When processing inode 257 we compute the name for inode 259 as "d1", and we | 
 |  * cache it in the name cache. Later when we start processing inode 258, when | 
 |  * collecting all its new references we set a full path of "d1/d2" for its new | 
 |  * reference with name "d2". When we start processing the new references we | 
 |  * start by processing the new reference with name "d1", and this results in | 
 |  * orphanizing inode 259, since its old reference causes a conflict. Then we | 
 |  * move on the next new reference, with name "d2", and we find out we must | 
 |  * orphanize inode 260, as its old reference conflicts with ours - but for the | 
 |  * orphanization we use a source path corresponding to the path we stored in the | 
 |  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the | 
 |  * receiver fail since the path component "d1/" no longer exists, it was renamed | 
 |  * to "o259-6-0/" when processing the previous new reference. So in this case we | 
 |  * must recompute the path in the new reference and use it for the new | 
 |  * orphanization operation. | 
 |  */ | 
 | static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) | 
 | { | 
 | 	char *name; | 
 | 	int ret; | 
 |  | 
 | 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); | 
 | 	if (!name) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	fs_path_reset(ref->full_path); | 
 | 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = fs_path_add(ref->full_path, name, ref->name_len); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* Update the reference's base name pointer. */ | 
 | 	set_ref_path(ref, ref->full_path); | 
 | out: | 
 | 	kfree(name); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This does all the move/link/unlink/rmdir magic. | 
 |  */ | 
 | static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret = 0; | 
 | 	struct recorded_ref *cur; | 
 | 	struct recorded_ref *cur2; | 
 | 	struct list_head check_dirs; | 
 | 	struct fs_path *valid_path = NULL; | 
 | 	u64 ow_inode = 0; | 
 | 	u64 ow_gen; | 
 | 	u64 ow_mode; | 
 | 	int did_overwrite = 0; | 
 | 	int is_orphan = 0; | 
 | 	u64 last_dir_ino_rm = 0; | 
 | 	bool can_rename = true; | 
 | 	bool orphanized_dir = false; | 
 | 	bool orphanized_ancestor = false; | 
 |  | 
 | 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); | 
 |  | 
 | 	/* | 
 | 	 * This should never happen as the root dir always has the same ref | 
 | 	 * which is always '..' | 
 | 	 */ | 
 | 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); | 
 | 	INIT_LIST_HEAD(&check_dirs); | 
 |  | 
 | 	valid_path = fs_path_alloc(); | 
 | 	if (!valid_path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First, check if the first ref of the current inode was overwritten | 
 | 	 * before. If yes, we know that the current inode was already orphanized | 
 | 	 * and thus use the orphan name. If not, we can use get_cur_path to | 
 | 	 * get the path of the first ref as it would like while receiving at | 
 | 	 * this point in time. | 
 | 	 * New inodes are always orphan at the beginning, so force to use the | 
 | 	 * orphan name in this case. | 
 | 	 * The first ref is stored in valid_path and will be updated if it | 
 | 	 * gets moved around. | 
 | 	 */ | 
 | 	if (!sctx->cur_inode_new) { | 
 | 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino, | 
 | 				sctx->cur_inode_gen); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret) | 
 | 			did_overwrite = 1; | 
 | 	} | 
 | 	if (sctx->cur_inode_new || did_overwrite) { | 
 | 		ret = gen_unique_name(sctx, sctx->cur_ino, | 
 | 				sctx->cur_inode_gen, valid_path); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		is_orphan = 1; | 
 | 	} else { | 
 | 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, | 
 | 				valid_path); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Before doing any rename and link operations, do a first pass on the | 
 | 	 * new references to orphanize any unprocessed inodes that may have a | 
 | 	 * reference that conflicts with one of the new references of the current | 
 | 	 * inode. This needs to happen first because a new reference may conflict | 
 | 	 * with the old reference of a parent directory, so we must make sure | 
 | 	 * that the path used for link and rename commands don't use an | 
 | 	 * orphanized name when an ancestor was not yet orphanized. | 
 | 	 * | 
 | 	 * Example: | 
 | 	 * | 
 | 	 * Parent snapshot: | 
 | 	 * | 
 | 	 * .                                                      (ino 256) | 
 | 	 * |----- testdir/                                        (ino 259) | 
 | 	 * |          |----- a                                    (ino 257) | 
 | 	 * | | 
 | 	 * |----- b                                               (ino 258) | 
 | 	 * | 
 | 	 * Send snapshot: | 
 | 	 * | 
 | 	 * .                                                      (ino 256) | 
 | 	 * |----- testdir_2/                                      (ino 259) | 
 | 	 * |          |----- a                                    (ino 260) | 
 | 	 * | | 
 | 	 * |----- testdir                                         (ino 257) | 
 | 	 * |----- b                                               (ino 257) | 
 | 	 * |----- b2                                              (ino 258) | 
 | 	 * | 
 | 	 * Processing the new reference for inode 257 with name "b" may happen | 
 | 	 * before processing the new reference with name "testdir". If so, we | 
 | 	 * must make sure that by the time we send a link command to create the | 
 | 	 * hard link "b", inode 259 was already orphanized, since the generated | 
 | 	 * path in "valid_path" already contains the orphanized name for 259. | 
 | 	 * We are processing inode 257, so only later when processing 259 we do | 
 | 	 * the rename operation to change its temporary (orphanized) name to | 
 | 	 * "testdir_2". | 
 | 	 */ | 
 | 	list_for_each_entry(cur, &sctx->new_refs, list) { | 
 | 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret == inode_state_will_create) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Check if this new ref would overwrite the first ref of another | 
 | 		 * unprocessed inode. If yes, orphanize the overwritten inode. | 
 | 		 * If we find an overwritten ref that is not the first ref, | 
 | 		 * simply unlink it. | 
 | 		 */ | 
 | 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, | 
 | 				cur->name, cur->name_len, | 
 | 				&ow_inode, &ow_gen, &ow_mode); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret) { | 
 | 			ret = is_first_ref(sctx->parent_root, | 
 | 					   ow_inode, cur->dir, cur->name, | 
 | 					   cur->name_len); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (ret) { | 
 | 				struct name_cache_entry *nce; | 
 | 				struct waiting_dir_move *wdm; | 
 |  | 
 | 				if (orphanized_dir) { | 
 | 					ret = refresh_ref_path(sctx, cur); | 
 | 					if (ret < 0) | 
 | 						goto out; | 
 | 				} | 
 |  | 
 | 				ret = orphanize_inode(sctx, ow_inode, ow_gen, | 
 | 						cur->full_path); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 				if (S_ISDIR(ow_mode)) | 
 | 					orphanized_dir = true; | 
 |  | 
 | 				/* | 
 | 				 * If ow_inode has its rename operation delayed | 
 | 				 * make sure that its orphanized name is used in | 
 | 				 * the source path when performing its rename | 
 | 				 * operation. | 
 | 				 */ | 
 | 				if (is_waiting_for_move(sctx, ow_inode)) { | 
 | 					wdm = get_waiting_dir_move(sctx, | 
 | 								   ow_inode); | 
 | 					ASSERT(wdm); | 
 | 					wdm->orphanized = true; | 
 | 				} | 
 |  | 
 | 				/* | 
 | 				 * Make sure we clear our orphanized inode's | 
 | 				 * name from the name cache. This is because the | 
 | 				 * inode ow_inode might be an ancestor of some | 
 | 				 * other inode that will be orphanized as well | 
 | 				 * later and has an inode number greater than | 
 | 				 * sctx->send_progress. We need to prevent | 
 | 				 * future name lookups from using the old name | 
 | 				 * and get instead the orphan name. | 
 | 				 */ | 
 | 				nce = name_cache_search(sctx, ow_inode, ow_gen); | 
 | 				if (nce) { | 
 | 					name_cache_delete(sctx, nce); | 
 | 					kfree(nce); | 
 | 				} | 
 |  | 
 | 				/* | 
 | 				 * ow_inode might currently be an ancestor of | 
 | 				 * cur_ino, therefore compute valid_path (the | 
 | 				 * current path of cur_ino) again because it | 
 | 				 * might contain the pre-orphanization name of | 
 | 				 * ow_inode, which is no longer valid. | 
 | 				 */ | 
 | 				ret = is_ancestor(sctx->parent_root, | 
 | 						  ow_inode, ow_gen, | 
 | 						  sctx->cur_ino, NULL); | 
 | 				if (ret > 0) { | 
 | 					orphanized_ancestor = true; | 
 | 					fs_path_reset(valid_path); | 
 | 					ret = get_cur_path(sctx, sctx->cur_ino, | 
 | 							   sctx->cur_inode_gen, | 
 | 							   valid_path); | 
 | 				} | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 			} else { | 
 | 				/* | 
 | 				 * If we previously orphanized a directory that | 
 | 				 * collided with a new reference that we already | 
 | 				 * processed, recompute the current path because | 
 | 				 * that directory may be part of the path. | 
 | 				 */ | 
 | 				if (orphanized_dir) { | 
 | 					ret = refresh_ref_path(sctx, cur); | 
 | 					if (ret < 0) | 
 | 						goto out; | 
 | 				} | 
 | 				ret = send_unlink(sctx, cur->full_path); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(cur, &sctx->new_refs, list) { | 
 | 		/* | 
 | 		 * We may have refs where the parent directory does not exist | 
 | 		 * yet. This happens if the parent directories inum is higher | 
 | 		 * than the current inum. To handle this case, we create the | 
 | 		 * parent directory out of order. But we need to check if this | 
 | 		 * did already happen before due to other refs in the same dir. | 
 | 		 */ | 
 | 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret == inode_state_will_create) { | 
 | 			ret = 0; | 
 | 			/* | 
 | 			 * First check if any of the current inodes refs did | 
 | 			 * already create the dir. | 
 | 			 */ | 
 | 			list_for_each_entry(cur2, &sctx->new_refs, list) { | 
 | 				if (cur == cur2) | 
 | 					break; | 
 | 				if (cur2->dir == cur->dir) { | 
 | 					ret = 1; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * If that did not happen, check if a previous inode | 
 | 			 * did already create the dir. | 
 | 			 */ | 
 | 			if (!ret) | 
 | 				ret = did_create_dir(sctx, cur->dir); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (!ret) { | 
 | 				ret = send_create_inode(sctx, cur->dir); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { | 
 | 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (ret == 1) { | 
 | 				can_rename = false; | 
 | 				*pending_move = 1; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && | 
 | 		    can_rename) { | 
 | 			ret = wait_for_parent_move(sctx, cur, is_orphan); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (ret == 1) { | 
 | 				can_rename = false; | 
 | 				*pending_move = 1; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * link/move the ref to the new place. If we have an orphan | 
 | 		 * inode, move it and update valid_path. If not, link or move | 
 | 		 * it depending on the inode mode. | 
 | 		 */ | 
 | 		if (is_orphan && can_rename) { | 
 | 			ret = send_rename(sctx, valid_path, cur->full_path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			is_orphan = 0; | 
 | 			ret = fs_path_copy(valid_path, cur->full_path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} else if (can_rename) { | 
 | 			if (S_ISDIR(sctx->cur_inode_mode)) { | 
 | 				/* | 
 | 				 * Dirs can't be linked, so move it. For moved | 
 | 				 * dirs, we always have one new and one deleted | 
 | 				 * ref. The deleted ref is ignored later. | 
 | 				 */ | 
 | 				ret = send_rename(sctx, valid_path, | 
 | 						  cur->full_path); | 
 | 				if (!ret) | 
 | 					ret = fs_path_copy(valid_path, | 
 | 							   cur->full_path); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 			} else { | 
 | 				/* | 
 | 				 * We might have previously orphanized an inode | 
 | 				 * which is an ancestor of our current inode, | 
 | 				 * so our reference's full path, which was | 
 | 				 * computed before any such orphanizations, must | 
 | 				 * be updated. | 
 | 				 */ | 
 | 				if (orphanized_dir) { | 
 | 					ret = update_ref_path(sctx, cur); | 
 | 					if (ret < 0) | 
 | 						goto out; | 
 | 				} | 
 | 				ret = send_link(sctx, cur->full_path, | 
 | 						valid_path); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 			} | 
 | 		} | 
 | 		ret = dup_ref(cur, &check_dirs); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { | 
 | 		/* | 
 | 		 * Check if we can already rmdir the directory. If not, | 
 | 		 * orphanize it. For every dir item inside that gets deleted | 
 | 		 * later, we do this check again and rmdir it then if possible. | 
 | 		 * See the use of check_dirs for more details. | 
 | 		 */ | 
 | 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, | 
 | 				sctx->cur_ino); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret) { | 
 | 			ret = send_rmdir(sctx, valid_path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} else if (!is_orphan) { | 
 | 			ret = orphanize_inode(sctx, sctx->cur_ino, | 
 | 					sctx->cur_inode_gen, valid_path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			is_orphan = 1; | 
 | 		} | 
 |  | 
 | 		list_for_each_entry(cur, &sctx->deleted_refs, list) { | 
 | 			ret = dup_ref(cur, &check_dirs); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} | 
 | 	} else if (S_ISDIR(sctx->cur_inode_mode) && | 
 | 		   !list_empty(&sctx->deleted_refs)) { | 
 | 		/* | 
 | 		 * We have a moved dir. Add the old parent to check_dirs | 
 | 		 */ | 
 | 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, | 
 | 				list); | 
 | 		ret = dup_ref(cur, &check_dirs); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} else if (!S_ISDIR(sctx->cur_inode_mode)) { | 
 | 		/* | 
 | 		 * We have a non dir inode. Go through all deleted refs and | 
 | 		 * unlink them if they were not already overwritten by other | 
 | 		 * inodes. | 
 | 		 */ | 
 | 		list_for_each_entry(cur, &sctx->deleted_refs, list) { | 
 | 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, | 
 | 					sctx->cur_ino, sctx->cur_inode_gen, | 
 | 					cur->name, cur->name_len); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (!ret) { | 
 | 				/* | 
 | 				 * If we orphanized any ancestor before, we need | 
 | 				 * to recompute the full path for deleted names, | 
 | 				 * since any such path was computed before we | 
 | 				 * processed any references and orphanized any | 
 | 				 * ancestor inode. | 
 | 				 */ | 
 | 				if (orphanized_ancestor) { | 
 | 					ret = update_ref_path(sctx, cur); | 
 | 					if (ret < 0) | 
 | 						goto out; | 
 | 				} | 
 | 				ret = send_unlink(sctx, cur->full_path); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 			} | 
 | 			ret = dup_ref(cur, &check_dirs); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} | 
 | 		/* | 
 | 		 * If the inode is still orphan, unlink the orphan. This may | 
 | 		 * happen when a previous inode did overwrite the first ref | 
 | 		 * of this inode and no new refs were added for the current | 
 | 		 * inode. Unlinking does not mean that the inode is deleted in | 
 | 		 * all cases. There may still be links to this inode in other | 
 | 		 * places. | 
 | 		 */ | 
 | 		if (is_orphan) { | 
 | 			ret = send_unlink(sctx, valid_path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We did collect all parent dirs where cur_inode was once located. We | 
 | 	 * now go through all these dirs and check if they are pending for | 
 | 	 * deletion and if it's finally possible to perform the rmdir now. | 
 | 	 * We also update the inode stats of the parent dirs here. | 
 | 	 */ | 
 | 	list_for_each_entry(cur, &check_dirs, list) { | 
 | 		/* | 
 | 		 * In case we had refs into dirs that were not processed yet, | 
 | 		 * we don't need to do the utime and rmdir logic for these dirs. | 
 | 		 * The dir will be processed later. | 
 | 		 */ | 
 | 		if (cur->dir > sctx->cur_ino) | 
 | 			continue; | 
 |  | 
 | 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		if (ret == inode_state_did_create || | 
 | 		    ret == inode_state_no_change) { | 
 | 			/* TODO delayed utimes */ | 
 | 			ret = send_utimes(sctx, cur->dir, cur->dir_gen); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} else if (ret == inode_state_did_delete && | 
 | 			   cur->dir != last_dir_ino_rm) { | 
 | 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen, | 
 | 					sctx->cur_ino); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (ret) { | 
 | 				ret = get_cur_path(sctx, cur->dir, | 
 | 						   cur->dir_gen, valid_path); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 				ret = send_rmdir(sctx, valid_path); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 				last_dir_ino_rm = cur->dir; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	__free_recorded_refs(&check_dirs); | 
 | 	free_recorded_refs(sctx); | 
 | 	fs_path_free(valid_path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, | 
 | 		      void *ctx, struct list_head *refs) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct send_ctx *sctx = ctx; | 
 | 	struct fs_path *p; | 
 | 	u64 gen; | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, | 
 | 			NULL, NULL); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = get_cur_path(sctx, dir, gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = fs_path_add_path(p, name); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = __record_ref(refs, dir, gen, p); | 
 |  | 
 | out: | 
 | 	if (ret) | 
 | 		fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __record_new_ref(int num, u64 dir, int index, | 
 | 			    struct fs_path *name, | 
 | 			    void *ctx) | 
 | { | 
 | 	struct send_ctx *sctx = ctx; | 
 | 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); | 
 | } | 
 |  | 
 |  | 
 | static int __record_deleted_ref(int num, u64 dir, int index, | 
 | 				struct fs_path *name, | 
 | 				void *ctx) | 
 | { | 
 | 	struct send_ctx *sctx = ctx; | 
 | 	return record_ref(sctx->parent_root, dir, name, ctx, | 
 | 			  &sctx->deleted_refs); | 
 | } | 
 |  | 
 | static int record_new_ref(struct send_ctx *sctx) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path, | 
 | 				sctx->cmp_key, 0, __record_new_ref, sctx); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int record_deleted_ref(struct send_ctx *sctx) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, | 
 | 				sctx->cmp_key, 0, __record_deleted_ref, sctx); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct find_ref_ctx { | 
 | 	u64 dir; | 
 | 	u64 dir_gen; | 
 | 	struct btrfs_root *root; | 
 | 	struct fs_path *name; | 
 | 	int found_idx; | 
 | }; | 
 |  | 
 | static int __find_iref(int num, u64 dir, int index, | 
 | 		       struct fs_path *name, | 
 | 		       void *ctx_) | 
 | { | 
 | 	struct find_ref_ctx *ctx = ctx_; | 
 | 	u64 dir_gen; | 
 | 	int ret; | 
 |  | 
 | 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && | 
 | 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { | 
 | 		/* | 
 | 		 * To avoid doing extra lookups we'll only do this if everything | 
 | 		 * else matches. | 
 | 		 */ | 
 | 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, | 
 | 				     NULL, NULL, NULL); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		if (dir_gen != ctx->dir_gen) | 
 | 			return 0; | 
 | 		ctx->found_idx = num; | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int find_iref(struct btrfs_root *root, | 
 | 		     struct btrfs_path *path, | 
 | 		     struct btrfs_key *key, | 
 | 		     u64 dir, u64 dir_gen, struct fs_path *name) | 
 | { | 
 | 	int ret; | 
 | 	struct find_ref_ctx ctx; | 
 |  | 
 | 	ctx.dir = dir; | 
 | 	ctx.name = name; | 
 | 	ctx.dir_gen = dir_gen; | 
 | 	ctx.found_idx = -1; | 
 | 	ctx.root = root; | 
 |  | 
 | 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (ctx.found_idx == -1) | 
 | 		return -ENOENT; | 
 |  | 
 | 	return ctx.found_idx; | 
 | } | 
 |  | 
 | static int __record_changed_new_ref(int num, u64 dir, int index, | 
 | 				    struct fs_path *name, | 
 | 				    void *ctx) | 
 | { | 
 | 	u64 dir_gen; | 
 | 	int ret; | 
 | 	struct send_ctx *sctx = ctx; | 
 |  | 
 | 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, | 
 | 			     NULL, NULL, NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = find_iref(sctx->parent_root, sctx->right_path, | 
 | 			sctx->cmp_key, dir, dir_gen, name); | 
 | 	if (ret == -ENOENT) | 
 | 		ret = __record_new_ref(num, dir, index, name, sctx); | 
 | 	else if (ret > 0) | 
 | 		ret = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __record_changed_deleted_ref(int num, u64 dir, int index, | 
 | 					struct fs_path *name, | 
 | 					void *ctx) | 
 | { | 
 | 	u64 dir_gen; | 
 | 	int ret; | 
 | 	struct send_ctx *sctx = ctx; | 
 |  | 
 | 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, | 
 | 			     NULL, NULL, NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, | 
 | 			dir, dir_gen, name); | 
 | 	if (ret == -ENOENT) | 
 | 		ret = __record_deleted_ref(num, dir, index, name, sctx); | 
 | 	else if (ret > 0) | 
 | 		ret = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int record_changed_ref(struct send_ctx *sctx) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path, | 
 | 			sctx->cmp_key, 0, __record_changed_new_ref, sctx); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, | 
 | 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Record and process all refs at once. Needed when an inode changes the | 
 |  * generation number, which means that it was deleted and recreated. | 
 |  */ | 
 | static int process_all_refs(struct send_ctx *sctx, | 
 | 			    enum btrfs_compare_tree_result cmd) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *eb; | 
 | 	int slot; | 
 | 	iterate_inode_ref_t cb; | 
 | 	int pending_move = 0; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (cmd == BTRFS_COMPARE_TREE_NEW) { | 
 | 		root = sctx->send_root; | 
 | 		cb = __record_new_ref; | 
 | 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) { | 
 | 		root = sctx->parent_root; | 
 | 		cb = __record_deleted_ref; | 
 | 	} else { | 
 | 		btrfs_err(sctx->send_root->fs_info, | 
 | 				"Wrong command %d in process_all_refs", cmd); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	key.objectid = sctx->cmp_key->objectid; | 
 | 	key.type = BTRFS_INODE_REF_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		eb = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(eb)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(eb, &found_key, slot); | 
 |  | 
 | 		if (found_key.objectid != key.objectid || | 
 | 		    (found_key.type != BTRFS_INODE_REF_KEY && | 
 | 		     found_key.type != BTRFS_INODE_EXTREF_KEY)) | 
 | 			break; | 
 |  | 
 | 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* | 
 | 	 * We don't actually care about pending_move as we are simply | 
 | 	 * re-creating this inode and will be rename'ing it into place once we | 
 | 	 * rename the parent directory. | 
 | 	 */ | 
 | 	ret = process_recorded_refs(sctx, &pending_move); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int send_set_xattr(struct send_ctx *sctx, | 
 | 			  struct fs_path *path, | 
 | 			  const char *name, int name_len, | 
 | 			  const char *data, int data_len) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
 | 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); | 
 | 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int send_remove_xattr(struct send_ctx *sctx, | 
 | 			  struct fs_path *path, | 
 | 			  const char *name, int name_len) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); | 
 | 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __process_new_xattr(int num, struct btrfs_key *di_key, | 
 | 			       const char *name, int name_len, | 
 | 			       const char *data, int data_len, | 
 | 			       u8 type, void *ctx) | 
 | { | 
 | 	int ret; | 
 | 	struct send_ctx *sctx = ctx; | 
 | 	struct fs_path *p; | 
 | 	struct posix_acl_xattr_header dummy_acl; | 
 |  | 
 | 	/* Capabilities are emitted by finish_inode_if_needed */ | 
 | 	if (!strncmp(name, XATTR_NAME_CAPS, name_len)) | 
 | 		return 0; | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * This hack is needed because empty acls are stored as zero byte | 
 | 	 * data in xattrs. Problem with that is, that receiving these zero byte | 
 | 	 * acls will fail later. To fix this, we send a dummy acl list that | 
 | 	 * only contains the version number and no entries. | 
 | 	 */ | 
 | 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || | 
 | 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { | 
 | 		if (data_len == 0) { | 
 | 			dummy_acl.a_version = | 
 | 					cpu_to_le32(POSIX_ACL_XATTR_VERSION); | 
 | 			data = (char *)&dummy_acl; | 
 | 			data_len = sizeof(dummy_acl); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len); | 
 |  | 
 | out: | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __process_deleted_xattr(int num, struct btrfs_key *di_key, | 
 | 				   const char *name, int name_len, | 
 | 				   const char *data, int data_len, | 
 | 				   u8 type, void *ctx) | 
 | { | 
 | 	int ret; | 
 | 	struct send_ctx *sctx = ctx; | 
 | 	struct fs_path *p; | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = send_remove_xattr(sctx, p, name, name_len); | 
 |  | 
 | out: | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int process_new_xattr(struct send_ctx *sctx) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = iterate_dir_item(sctx->send_root, sctx->left_path, | 
 | 			       __process_new_xattr, sctx); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int process_deleted_xattr(struct send_ctx *sctx) | 
 | { | 
 | 	return iterate_dir_item(sctx->parent_root, sctx->right_path, | 
 | 				__process_deleted_xattr, sctx); | 
 | } | 
 |  | 
 | struct find_xattr_ctx { | 
 | 	const char *name; | 
 | 	int name_len; | 
 | 	int found_idx; | 
 | 	char *found_data; | 
 | 	int found_data_len; | 
 | }; | 
 |  | 
 | static int __find_xattr(int num, struct btrfs_key *di_key, | 
 | 			const char *name, int name_len, | 
 | 			const char *data, int data_len, | 
 | 			u8 type, void *vctx) | 
 | { | 
 | 	struct find_xattr_ctx *ctx = vctx; | 
 |  | 
 | 	if (name_len == ctx->name_len && | 
 | 	    strncmp(name, ctx->name, name_len) == 0) { | 
 | 		ctx->found_idx = num; | 
 | 		ctx->found_data_len = data_len; | 
 | 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); | 
 | 		if (!ctx->found_data) | 
 | 			return -ENOMEM; | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int find_xattr(struct btrfs_root *root, | 
 | 		      struct btrfs_path *path, | 
 | 		      struct btrfs_key *key, | 
 | 		      const char *name, int name_len, | 
 | 		      char **data, int *data_len) | 
 | { | 
 | 	int ret; | 
 | 	struct find_xattr_ctx ctx; | 
 |  | 
 | 	ctx.name = name; | 
 | 	ctx.name_len = name_len; | 
 | 	ctx.found_idx = -1; | 
 | 	ctx.found_data = NULL; | 
 | 	ctx.found_data_len = 0; | 
 |  | 
 | 	ret = iterate_dir_item(root, path, __find_xattr, &ctx); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (ctx.found_idx == -1) | 
 | 		return -ENOENT; | 
 | 	if (data) { | 
 | 		*data = ctx.found_data; | 
 | 		*data_len = ctx.found_data_len; | 
 | 	} else { | 
 | 		kfree(ctx.found_data); | 
 | 	} | 
 | 	return ctx.found_idx; | 
 | } | 
 |  | 
 |  | 
 | static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, | 
 | 				       const char *name, int name_len, | 
 | 				       const char *data, int data_len, | 
 | 				       u8 type, void *ctx) | 
 | { | 
 | 	int ret; | 
 | 	struct send_ctx *sctx = ctx; | 
 | 	char *found_data = NULL; | 
 | 	int found_data_len  = 0; | 
 |  | 
 | 	ret = find_xattr(sctx->parent_root, sctx->right_path, | 
 | 			 sctx->cmp_key, name, name_len, &found_data, | 
 | 			 &found_data_len); | 
 | 	if (ret == -ENOENT) { | 
 | 		ret = __process_new_xattr(num, di_key, name, name_len, data, | 
 | 				data_len, type, ctx); | 
 | 	} else if (ret >= 0) { | 
 | 		if (data_len != found_data_len || | 
 | 		    memcmp(data, found_data, data_len)) { | 
 | 			ret = __process_new_xattr(num, di_key, name, name_len, | 
 | 					data, data_len, type, ctx); | 
 | 		} else { | 
 | 			ret = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	kfree(found_data); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, | 
 | 					   const char *name, int name_len, | 
 | 					   const char *data, int data_len, | 
 | 					   u8 type, void *ctx) | 
 | { | 
 | 	int ret; | 
 | 	struct send_ctx *sctx = ctx; | 
 |  | 
 | 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, | 
 | 			 name, name_len, NULL, NULL); | 
 | 	if (ret == -ENOENT) | 
 | 		ret = __process_deleted_xattr(num, di_key, name, name_len, data, | 
 | 				data_len, type, ctx); | 
 | 	else if (ret >= 0) | 
 | 		ret = 0; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int process_changed_xattr(struct send_ctx *sctx) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	ret = iterate_dir_item(sctx->send_root, sctx->left_path, | 
 | 			__process_changed_new_xattr, sctx); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path, | 
 | 			__process_changed_deleted_xattr, sctx); | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int process_all_new_xattrs(struct send_ctx *sctx) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *eb; | 
 | 	int slot; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	root = sctx->send_root; | 
 |  | 
 | 	key.objectid = sctx->cmp_key->objectid; | 
 | 	key.type = BTRFS_XATTR_ITEM_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		eb = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(eb)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) { | 
 | 				goto out; | 
 | 			} else if (ret > 0) { | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(eb, &found_key, slot); | 
 | 		if (found_key.objectid != key.objectid || | 
 | 		    found_key.type != key.type) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		path->slots[0]++; | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline u64 max_send_read_size(const struct send_ctx *sctx) | 
 | { | 
 | 	return sctx->send_max_size - SZ_16K; | 
 | } | 
 |  | 
 | static int put_data_header(struct send_ctx *sctx, u32 len) | 
 | { | 
 | 	struct btrfs_tlv_header *hdr; | 
 |  | 
 | 	if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) | 
 | 		return -EOVERFLOW; | 
 | 	hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); | 
 | 	put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); | 
 | 	put_unaligned_le16(len, &hdr->tlv_len); | 
 | 	sctx->send_size += sizeof(*hdr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) | 
 | { | 
 | 	struct btrfs_root *root = sctx->send_root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct inode *inode; | 
 | 	struct page *page; | 
 | 	pgoff_t index = offset >> PAGE_SHIFT; | 
 | 	pgoff_t last_index; | 
 | 	unsigned pg_offset = offset_in_page(offset); | 
 | 	int ret; | 
 |  | 
 | 	ret = put_data_header(sctx, len); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); | 
 | 	if (IS_ERR(inode)) | 
 | 		return PTR_ERR(inode); | 
 |  | 
 | 	last_index = (offset + len - 1) >> PAGE_SHIFT; | 
 |  | 
 | 	/* initial readahead */ | 
 | 	memset(&sctx->ra, 0, sizeof(struct file_ra_state)); | 
 | 	file_ra_state_init(&sctx->ra, inode->i_mapping); | 
 |  | 
 | 	while (index <= last_index) { | 
 | 		unsigned cur_len = min_t(unsigned, len, | 
 | 					 PAGE_SIZE - pg_offset); | 
 |  | 
 | 		page = find_lock_page(inode->i_mapping, index); | 
 | 		if (!page) { | 
 | 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra, | 
 | 				NULL, index, last_index + 1 - index); | 
 |  | 
 | 			page = find_or_create_page(inode->i_mapping, index, | 
 | 					GFP_KERNEL); | 
 | 			if (!page) { | 
 | 				ret = -ENOMEM; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (PageReadahead(page)) { | 
 | 			page_cache_async_readahead(inode->i_mapping, &sctx->ra, | 
 | 				NULL, page, index, last_index + 1 - index); | 
 | 		} | 
 |  | 
 | 		if (!PageUptodate(page)) { | 
 | 			btrfs_readpage(NULL, page); | 
 | 			lock_page(page); | 
 | 			if (!PageUptodate(page)) { | 
 | 				unlock_page(page); | 
 | 				btrfs_err(fs_info, | 
 | 			"send: IO error at offset %llu for inode %llu root %llu", | 
 | 					page_offset(page), sctx->cur_ino, | 
 | 					sctx->send_root->root_key.objectid); | 
 | 				put_page(page); | 
 | 				ret = -EIO; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		memcpy_from_page(sctx->send_buf + sctx->send_size, page, | 
 | 				 pg_offset, cur_len); | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		index++; | 
 | 		pg_offset = 0; | 
 | 		len -= cur_len; | 
 | 		sctx->send_size += cur_len; | 
 | 	} | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Read some bytes from the current inode/file and send a write command to | 
 |  * user space. | 
 |  */ | 
 | static int send_write(struct send_ctx *sctx, u64 offset, u32 len) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; | 
 | 	int ret = 0; | 
 | 	struct fs_path *p; | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
 | 	ret = put_file_data(sctx, offset, len); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Send a clone command to user space. | 
 |  */ | 
 | static int send_clone(struct send_ctx *sctx, | 
 | 		      u64 offset, u32 len, | 
 | 		      struct clone_root *clone_root) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct fs_path *p; | 
 | 	u64 gen; | 
 |  | 
 | 	btrfs_debug(sctx->send_root->fs_info, | 
 | 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", | 
 | 		    offset, len, clone_root->root->root_key.objectid, | 
 | 		    clone_root->ino, clone_root->offset); | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
 |  | 
 | 	if (clone_root->root == sctx->send_root) { | 
 | 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, | 
 | 				&gen, NULL, NULL, NULL, NULL); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		ret = get_cur_path(sctx, clone_root->ino, gen, p); | 
 | 	} else { | 
 | 		ret = get_inode_path(clone_root->root, clone_root->ino, p); | 
 | 	} | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If the parent we're using has a received_uuid set then use that as | 
 | 	 * our clone source as that is what we will look for when doing a | 
 | 	 * receive. | 
 | 	 * | 
 | 	 * This covers the case that we create a snapshot off of a received | 
 | 	 * subvolume and then use that as the parent and try to receive on a | 
 | 	 * different host. | 
 | 	 */ | 
 | 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) | 
 | 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, | 
 | 			     clone_root->root->root_item.received_uuid); | 
 | 	else | 
 | 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, | 
 | 			     clone_root->root->root_item.uuid); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, | 
 | 		    btrfs_root_ctransid(&clone_root->root->root_item)); | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, | 
 | 			clone_root->offset); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Send an update extent command to user space. | 
 |  */ | 
 | static int send_update_extent(struct send_ctx *sctx, | 
 | 			      u64 offset, u32 len) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct fs_path *p; | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
 | 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); | 
 |  | 
 | 	ret = send_cmd(sctx); | 
 |  | 
 | tlv_put_failure: | 
 | out: | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int send_hole(struct send_ctx *sctx, u64 end) | 
 | { | 
 | 	struct fs_path *p = NULL; | 
 | 	u64 read_size = max_send_read_size(sctx); | 
 | 	u64 offset = sctx->cur_inode_last_extent; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * A hole that starts at EOF or beyond it. Since we do not yet support | 
 | 	 * fallocate (for extent preallocation and hole punching), sending a | 
 | 	 * write of zeroes starting at EOF or beyond would later require issuing | 
 | 	 * a truncate operation which would undo the write and achieve nothing. | 
 | 	 */ | 
 | 	if (offset >= sctx->cur_inode_size) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Don't go beyond the inode's i_size due to prealloc extents that start | 
 | 	 * after the i_size. | 
 | 	 */ | 
 | 	end = min_t(u64, end, sctx->cur_inode_size); | 
 |  | 
 | 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) | 
 | 		return send_update_extent(sctx, offset, end - offset); | 
 |  | 
 | 	p = fs_path_alloc(); | 
 | 	if (!p) | 
 | 		return -ENOMEM; | 
 | 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); | 
 | 	if (ret < 0) | 
 | 		goto tlv_put_failure; | 
 | 	while (offset < end) { | 
 | 		u64 len = min(end - offset, read_size); | 
 |  | 
 | 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); | 
 | 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); | 
 | 		ret = put_data_header(sctx, len); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		memset(sctx->send_buf + sctx->send_size, 0, len); | 
 | 		sctx->send_size += len; | 
 | 		ret = send_cmd(sctx); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		offset += len; | 
 | 	} | 
 | 	sctx->cur_inode_next_write_offset = offset; | 
 | tlv_put_failure: | 
 | 	fs_path_free(p); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int send_extent_data(struct send_ctx *sctx, | 
 | 			    const u64 offset, | 
 | 			    const u64 len) | 
 | { | 
 | 	u64 read_size = max_send_read_size(sctx); | 
 | 	u64 sent = 0; | 
 |  | 
 | 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) | 
 | 		return send_update_extent(sctx, offset, len); | 
 |  | 
 | 	while (sent < len) { | 
 | 		u64 size = min(len - sent, read_size); | 
 | 		int ret; | 
 |  | 
 | 		ret = send_write(sctx, offset + sent, size); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		sent += size; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Search for a capability xattr related to sctx->cur_ino. If the capability is | 
 |  * found, call send_set_xattr function to emit it. | 
 |  * | 
 |  * Return 0 if there isn't a capability, or when the capability was emitted | 
 |  * successfully, or < 0 if an error occurred. | 
 |  */ | 
 | static int send_capabilities(struct send_ctx *sctx) | 
 | { | 
 | 	struct fs_path *fspath = NULL; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct extent_buffer *leaf; | 
 | 	unsigned long data_ptr; | 
 | 	char *buf = NULL; | 
 | 	int buf_len; | 
 | 	int ret = 0; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, | 
 | 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); | 
 | 	if (!di) { | 
 | 		/* There is no xattr for this inode */ | 
 | 		goto out; | 
 | 	} else if (IS_ERR(di)) { | 
 | 		ret = PTR_ERR(di); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	buf_len = btrfs_dir_data_len(leaf, di); | 
 |  | 
 | 	fspath = fs_path_alloc(); | 
 | 	buf = kmalloc(buf_len, GFP_KERNEL); | 
 | 	if (!fspath || !buf) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); | 
 | 	read_extent_buffer(leaf, buf, data_ptr, buf_len); | 
 |  | 
 | 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, | 
 | 			strlen(XATTR_NAME_CAPS), buf, buf_len); | 
 | out: | 
 | 	kfree(buf); | 
 | 	fs_path_free(fspath); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int clone_range(struct send_ctx *sctx, | 
 | 		       struct clone_root *clone_root, | 
 | 		       const u64 disk_byte, | 
 | 		       u64 data_offset, | 
 | 		       u64 offset, | 
 | 		       u64 len) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 | 	u64 clone_src_i_size = 0; | 
 |  | 
 | 	/* | 
 | 	 * Prevent cloning from a zero offset with a length matching the sector | 
 | 	 * size because in some scenarios this will make the receiver fail. | 
 | 	 * | 
 | 	 * For example, if in the source filesystem the extent at offset 0 | 
 | 	 * has a length of sectorsize and it was written using direct IO, then | 
 | 	 * it can never be an inline extent (even if compression is enabled). | 
 | 	 * Then this extent can be cloned in the original filesystem to a non | 
 | 	 * zero file offset, but it may not be possible to clone in the | 
 | 	 * destination filesystem because it can be inlined due to compression | 
 | 	 * on the destination filesystem (as the receiver's write operations are | 
 | 	 * always done using buffered IO). The same happens when the original | 
 | 	 * filesystem does not have compression enabled but the destination | 
 | 	 * filesystem has. | 
 | 	 */ | 
 | 	if (clone_root->offset == 0 && | 
 | 	    len == sctx->send_root->fs_info->sectorsize) | 
 | 		return send_extent_data(sctx, offset, len); | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * There are inodes that have extents that lie behind its i_size. Don't | 
 | 	 * accept clones from these extents. | 
 | 	 */ | 
 | 	ret = __get_inode_info(clone_root->root, path, clone_root->ino, | 
 | 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); | 
 | 	btrfs_release_path(path); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We can't send a clone operation for the entire range if we find | 
 | 	 * extent items in the respective range in the source file that | 
 | 	 * refer to different extents or if we find holes. | 
 | 	 * So check for that and do a mix of clone and regular write/copy | 
 | 	 * operations if needed. | 
 | 	 * | 
 | 	 * Example: | 
 | 	 * | 
 | 	 * mkfs.btrfs -f /dev/sda | 
 | 	 * mount /dev/sda /mnt | 
 | 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo | 
 | 	 * cp --reflink=always /mnt/foo /mnt/bar | 
 | 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo | 
 | 	 * btrfs subvolume snapshot -r /mnt /mnt/snap | 
 | 	 * | 
 | 	 * If when we send the snapshot and we are processing file bar (which | 
 | 	 * has a higher inode number than foo) we blindly send a clone operation | 
 | 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting | 
 | 	 * a file bar that matches the content of file foo - iow, doesn't match | 
 | 	 * the content from bar in the original filesystem. | 
 | 	 */ | 
 | 	key.objectid = clone_root->ino; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = clone_root->offset; | 
 | 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0 && path->slots[0] > 0) { | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); | 
 | 		if (key.objectid == clone_root->ino && | 
 | 		    key.type == BTRFS_EXTENT_DATA_KEY) | 
 | 			path->slots[0]--; | 
 | 	} | 
 |  | 
 | 	while (true) { | 
 | 		struct extent_buffer *leaf = path->nodes[0]; | 
 | 		int slot = path->slots[0]; | 
 | 		struct btrfs_file_extent_item *ei; | 
 | 		u8 type; | 
 | 		u64 ext_len; | 
 | 		u64 clone_len; | 
 | 		u64 clone_data_offset; | 
 | 		bool crossed_src_i_size = false; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(clone_root->root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 |  | 
 | 		/* | 
 | 		 * We might have an implicit trailing hole (NO_HOLES feature | 
 | 		 * enabled). We deal with it after leaving this loop. | 
 | 		 */ | 
 | 		if (key.objectid != clone_root->ino || | 
 | 		    key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 			break; | 
 |  | 
 | 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
 | 		type = btrfs_file_extent_type(leaf, ei); | 
 | 		if (type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei); | 
 | 			ext_len = PAGE_ALIGN(ext_len); | 
 | 		} else { | 
 | 			ext_len = btrfs_file_extent_num_bytes(leaf, ei); | 
 | 		} | 
 |  | 
 | 		if (key.offset + ext_len <= clone_root->offset) | 
 | 			goto next; | 
 |  | 
 | 		if (key.offset > clone_root->offset) { | 
 | 			/* Implicit hole, NO_HOLES feature enabled. */ | 
 | 			u64 hole_len = key.offset - clone_root->offset; | 
 |  | 
 | 			if (hole_len > len) | 
 | 				hole_len = len; | 
 | 			ret = send_extent_data(sctx, offset, hole_len); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 |  | 
 | 			len -= hole_len; | 
 | 			if (len == 0) | 
 | 				break; | 
 | 			offset += hole_len; | 
 | 			clone_root->offset += hole_len; | 
 | 			data_offset += hole_len; | 
 | 		} | 
 |  | 
 | 		if (key.offset >= clone_root->offset + len) | 
 | 			break; | 
 |  | 
 | 		if (key.offset >= clone_src_i_size) | 
 | 			break; | 
 |  | 
 | 		if (key.offset + ext_len > clone_src_i_size) { | 
 | 			ext_len = clone_src_i_size - key.offset; | 
 | 			crossed_src_i_size = true; | 
 | 		} | 
 |  | 
 | 		clone_data_offset = btrfs_file_extent_offset(leaf, ei); | 
 | 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { | 
 | 			clone_root->offset = key.offset; | 
 | 			if (clone_data_offset < data_offset && | 
 | 				clone_data_offset + ext_len > data_offset) { | 
 | 				u64 extent_offset; | 
 |  | 
 | 				extent_offset = data_offset - clone_data_offset; | 
 | 				ext_len -= extent_offset; | 
 | 				clone_data_offset += extent_offset; | 
 | 				clone_root->offset += extent_offset; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		clone_len = min_t(u64, ext_len, len); | 
 |  | 
 | 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && | 
 | 		    clone_data_offset == data_offset) { | 
 | 			const u64 src_end = clone_root->offset + clone_len; | 
 | 			const u64 sectorsize = SZ_64K; | 
 |  | 
 | 			/* | 
 | 			 * We can't clone the last block, when its size is not | 
 | 			 * sector size aligned, into the middle of a file. If we | 
 | 			 * do so, the receiver will get a failure (-EINVAL) when | 
 | 			 * trying to clone or will silently corrupt the data in | 
 | 			 * the destination file if it's on a kernel without the | 
 | 			 * fix introduced by commit ac765f83f1397646 | 
 | 			 * ("Btrfs: fix data corruption due to cloning of eof | 
 | 			 * block). | 
 | 			 * | 
 | 			 * So issue a clone of the aligned down range plus a | 
 | 			 * regular write for the eof block, if we hit that case. | 
 | 			 * | 
 | 			 * Also, we use the maximum possible sector size, 64K, | 
 | 			 * because we don't know what's the sector size of the | 
 | 			 * filesystem that receives the stream, so we have to | 
 | 			 * assume the largest possible sector size. | 
 | 			 */ | 
 | 			if (src_end == clone_src_i_size && | 
 | 			    !IS_ALIGNED(src_end, sectorsize) && | 
 | 			    offset + clone_len < sctx->cur_inode_size) { | 
 | 				u64 slen; | 
 |  | 
 | 				slen = ALIGN_DOWN(src_end - clone_root->offset, | 
 | 						  sectorsize); | 
 | 				if (slen > 0) { | 
 | 					ret = send_clone(sctx, offset, slen, | 
 | 							 clone_root); | 
 | 					if (ret < 0) | 
 | 						goto out; | 
 | 				} | 
 | 				ret = send_extent_data(sctx, offset + slen, | 
 | 						       clone_len - slen); | 
 | 			} else { | 
 | 				ret = send_clone(sctx, offset, clone_len, | 
 | 						 clone_root); | 
 | 			} | 
 | 		} else if (crossed_src_i_size && clone_len < len) { | 
 | 			/* | 
 | 			 * If we are at i_size of the clone source inode and we | 
 | 			 * can not clone from it, terminate the loop. This is | 
 | 			 * to avoid sending two write operations, one with a | 
 | 			 * length matching clone_len and the final one after | 
 | 			 * this loop with a length of len - clone_len. | 
 | 			 * | 
 | 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED | 
 | 			 * was passed to the send ioctl), this helps avoid | 
 | 			 * sending an encoded write for an offset that is not | 
 | 			 * sector size aligned, in case the i_size of the source | 
 | 			 * inode is not sector size aligned. That will make the | 
 | 			 * receiver fallback to decompression of the data and | 
 | 			 * writing it using regular buffered IO, therefore while | 
 | 			 * not incorrect, it's not optimal due decompression and | 
 | 			 * possible re-compression at the receiver. | 
 | 			 */ | 
 | 			break; | 
 | 		} else { | 
 | 			ret = send_extent_data(sctx, offset, clone_len); | 
 | 		} | 
 |  | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		len -= clone_len; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		offset += clone_len; | 
 | 		clone_root->offset += clone_len; | 
 |  | 
 | 		/* | 
 | 		 * If we are cloning from the file we are currently processing, | 
 | 		 * and using the send root as the clone root, we must stop once | 
 | 		 * the current clone offset reaches the current eof of the file | 
 | 		 * at the receiver, otherwise we would issue an invalid clone | 
 | 		 * operation (source range going beyond eof) and cause the | 
 | 		 * receiver to fail. So if we reach the current eof, bail out | 
 | 		 * and fallback to a regular write. | 
 | 		 */ | 
 | 		if (clone_root->root == sctx->send_root && | 
 | 		    clone_root->ino == sctx->cur_ino && | 
 | 		    clone_root->offset >= sctx->cur_inode_next_write_offset) | 
 | 			break; | 
 |  | 
 | 		data_offset += clone_len; | 
 | next: | 
 | 		path->slots[0]++; | 
 | 	} | 
 |  | 
 | 	if (len > 0) | 
 | 		ret = send_extent_data(sctx, offset, len); | 
 | 	else | 
 | 		ret = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int send_write_or_clone(struct send_ctx *sctx, | 
 | 			       struct btrfs_path *path, | 
 | 			       struct btrfs_key *key, | 
 | 			       struct clone_root *clone_root) | 
 | { | 
 | 	int ret = 0; | 
 | 	u64 offset = key->offset; | 
 | 	u64 end; | 
 | 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize; | 
 |  | 
 | 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); | 
 | 	if (offset >= end) | 
 | 		return 0; | 
 |  | 
 | 	if (clone_root && IS_ALIGNED(end, bs)) { | 
 | 		struct btrfs_file_extent_item *ei; | 
 | 		u64 disk_byte; | 
 | 		u64 data_offset; | 
 |  | 
 | 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				    struct btrfs_file_extent_item); | 
 | 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); | 
 | 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei); | 
 | 		ret = clone_range(sctx, clone_root, disk_byte, data_offset, | 
 | 				  offset, end - offset); | 
 | 	} else { | 
 | 		ret = send_extent_data(sctx, offset, end - offset); | 
 | 	} | 
 | 	sctx->cur_inode_next_write_offset = end; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int is_extent_unchanged(struct send_ctx *sctx, | 
 | 			       struct btrfs_path *left_path, | 
 | 			       struct btrfs_key *ekey) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_path *path = NULL; | 
 | 	struct extent_buffer *eb; | 
 | 	int slot; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_file_extent_item *ei; | 
 | 	u64 left_disknr; | 
 | 	u64 right_disknr; | 
 | 	u64 left_offset; | 
 | 	u64 right_offset; | 
 | 	u64 left_offset_fixed; | 
 | 	u64 left_len; | 
 | 	u64 right_len; | 
 | 	u64 left_gen; | 
 | 	u64 right_gen; | 
 | 	u8 left_type; | 
 | 	u8 right_type; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	eb = left_path->nodes[0]; | 
 | 	slot = left_path->slots[0]; | 
 | 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
 | 	left_type = btrfs_file_extent_type(eb, ei); | 
 |  | 
 | 	if (left_type != BTRFS_FILE_EXTENT_REG) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); | 
 | 	left_len = btrfs_file_extent_num_bytes(eb, ei); | 
 | 	left_offset = btrfs_file_extent_offset(eb, ei); | 
 | 	left_gen = btrfs_file_extent_generation(eb, ei); | 
 |  | 
 | 	/* | 
 | 	 * Following comments will refer to these graphics. L is the left | 
 | 	 * extents which we are checking at the moment. 1-8 are the right | 
 | 	 * extents that we iterate. | 
 | 	 * | 
 | 	 *       |-----L-----| | 
 | 	 * |-1-|-2a-|-3-|-4-|-5-|-6-| | 
 | 	 * | 
 | 	 *       |-----L-----| | 
 | 	 * |--1--|-2b-|...(same as above) | 
 | 	 * | 
 | 	 * Alternative situation. Happens on files where extents got split. | 
 | 	 *       |-----L-----| | 
 | 	 * |-----------7-----------|-6-| | 
 | 	 * | 
 | 	 * Alternative situation. Happens on files which got larger. | 
 | 	 *       |-----L-----| | 
 | 	 * |-8-| | 
 | 	 * Nothing follows after 8. | 
 | 	 */ | 
 |  | 
 | 	key.objectid = ekey->objectid; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = ekey->offset; | 
 | 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Handle special case where the right side has no extents at all. | 
 | 	 */ | 
 | 	eb = path->nodes[0]; | 
 | 	slot = path->slots[0]; | 
 | 	btrfs_item_key_to_cpu(eb, &found_key, slot); | 
 | 	if (found_key.objectid != key.objectid || | 
 | 	    found_key.type != key.type) { | 
 | 		/* If we're a hole then just pretend nothing changed */ | 
 | 		ret = (left_disknr) ? 0 : 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're now on 2a, 2b or 7. | 
 | 	 */ | 
 | 	key = found_key; | 
 | 	while (key.offset < ekey->offset + left_len) { | 
 | 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); | 
 | 		right_type = btrfs_file_extent_type(eb, ei); | 
 | 		if (right_type != BTRFS_FILE_EXTENT_REG && | 
 | 		    right_type != BTRFS_FILE_EXTENT_INLINE) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (right_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 			right_len = btrfs_file_extent_ram_bytes(eb, ei); | 
 | 			right_len = PAGE_ALIGN(right_len); | 
 | 		} else { | 
 | 			right_len = btrfs_file_extent_num_bytes(eb, ei); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Are we at extent 8? If yes, we know the extent is changed. | 
 | 		 * This may only happen on the first iteration. | 
 | 		 */ | 
 | 		if (found_key.offset + right_len <= ekey->offset) { | 
 | 			/* If we're a hole just pretend nothing changed */ | 
 | 			ret = (left_disknr) ? 0 : 1; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We just wanted to see if when we have an inline extent, what | 
 | 		 * follows it is a regular extent (wanted to check the above | 
 | 		 * condition for inline extents too). This should normally not | 
 | 		 * happen but it's possible for example when we have an inline | 
 | 		 * compressed extent representing data with a size matching | 
 | 		 * the page size (currently the same as sector size). | 
 | 		 */ | 
 | 		if (right_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); | 
 | 		right_offset = btrfs_file_extent_offset(eb, ei); | 
 | 		right_gen = btrfs_file_extent_generation(eb, ei); | 
 |  | 
 | 		left_offset_fixed = left_offset; | 
 | 		if (key.offset < ekey->offset) { | 
 | 			/* Fix the right offset for 2a and 7. */ | 
 | 			right_offset += ekey->offset - key.offset; | 
 | 		} else { | 
 | 			/* Fix the left offset for all behind 2a and 2b */ | 
 | 			left_offset_fixed += key.offset - ekey->offset; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check if we have the same extent. | 
 | 		 */ | 
 | 		if (left_disknr != right_disknr || | 
 | 		    left_offset_fixed != right_offset || | 
 | 		    left_gen != right_gen) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Go to the next extent. | 
 | 		 */ | 
 | 		ret = btrfs_next_item(sctx->parent_root, path); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (!ret) { | 
 | 			eb = path->nodes[0]; | 
 | 			slot = path->slots[0]; | 
 | 			btrfs_item_key_to_cpu(eb, &found_key, slot); | 
 | 		} | 
 | 		if (ret || found_key.objectid != key.objectid || | 
 | 		    found_key.type != key.type) { | 
 | 			key.offset += right_len; | 
 | 			break; | 
 | 		} | 
 | 		if (found_key.offset != key.offset + right_len) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		key = found_key; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're now behind the left extent (treat as unchanged) or at the end | 
 | 	 * of the right side (treat as changed). | 
 | 	 */ | 
 | 	if (key.offset >= ekey->offset + left_len) | 
 | 		ret = 1; | 
 | 	else | 
 | 		ret = 0; | 
 |  | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int get_last_extent(struct send_ctx *sctx, u64 offset) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = sctx->send_root; | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sctx->cur_inode_last_extent = 0; | 
 |  | 
 | 	key.objectid = sctx->cur_ino; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = offset; | 
 | 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	ret = 0; | 
 | 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 | 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 		goto out; | 
 |  | 
 | 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int range_is_hole_in_parent(struct send_ctx *sctx, | 
 | 				   const u64 start, | 
 | 				   const u64 end) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *root = sctx->parent_root; | 
 | 	u64 search_start = start; | 
 | 	int ret; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = sctx->cur_ino; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = search_start; | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret > 0 && path->slots[0] > 0) | 
 | 		path->slots[0]--; | 
 |  | 
 | 	while (search_start < end) { | 
 | 		struct extent_buffer *leaf = path->nodes[0]; | 
 | 		int slot = path->slots[0]; | 
 | 		struct btrfs_file_extent_item *fi; | 
 | 		u64 extent_end; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 		if (key.objectid < sctx->cur_ino || | 
 | 		    key.type < BTRFS_EXTENT_DATA_KEY) | 
 | 			goto next; | 
 | 		if (key.objectid > sctx->cur_ino || | 
 | 		    key.type > BTRFS_EXTENT_DATA_KEY || | 
 | 		    key.offset >= end) | 
 | 			break; | 
 |  | 
 | 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
 | 		extent_end = btrfs_file_extent_end(path); | 
 | 		if (extent_end <= start) | 
 | 			goto next; | 
 | 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { | 
 | 			search_start = extent_end; | 
 | 			goto next; | 
 | 		} | 
 | 		ret = 0; | 
 | 		goto out; | 
 | next: | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	ret = 1; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, | 
 | 			   struct btrfs_key *key) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) | 
 | 		return 0; | 
 |  | 
 | 	if (sctx->cur_inode_last_extent == (u64)-1) { | 
 | 		ret = get_last_extent(sctx, key->offset - 1); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (path->slots[0] == 0 && | 
 | 	    sctx->cur_inode_last_extent < key->offset) { | 
 | 		/* | 
 | 		 * We might have skipped entire leafs that contained only | 
 | 		 * file extent items for our current inode. These leafs have | 
 | 		 * a generation number smaller (older) than the one in the | 
 | 		 * current leaf and the leaf our last extent came from, and | 
 | 		 * are located between these 2 leafs. | 
 | 		 */ | 
 | 		ret = get_last_extent(sctx, key->offset - 1); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (sctx->cur_inode_last_extent < key->offset) { | 
 | 		ret = range_is_hole_in_parent(sctx, | 
 | 					      sctx->cur_inode_last_extent, | 
 | 					      key->offset); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		else if (ret == 0) | 
 | 			ret = send_hole(sctx, key->offset); | 
 | 		else | 
 | 			ret = 0; | 
 | 	} | 
 | 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int process_extent(struct send_ctx *sctx, | 
 | 			  struct btrfs_path *path, | 
 | 			  struct btrfs_key *key) | 
 | { | 
 | 	struct clone_root *found_clone = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (S_ISLNK(sctx->cur_inode_mode)) | 
 | 		return 0; | 
 |  | 
 | 	if (sctx->parent_root && !sctx->cur_inode_new) { | 
 | 		ret = is_extent_unchanged(sctx, path, key); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret) { | 
 | 			ret = 0; | 
 | 			goto out_hole; | 
 | 		} | 
 | 	} else { | 
 | 		struct btrfs_file_extent_item *ei; | 
 | 		u8 type; | 
 |  | 
 | 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				    struct btrfs_file_extent_item); | 
 | 		type = btrfs_file_extent_type(path->nodes[0], ei); | 
 | 		if (type == BTRFS_FILE_EXTENT_PREALLOC || | 
 | 		    type == BTRFS_FILE_EXTENT_REG) { | 
 | 			/* | 
 | 			 * The send spec does not have a prealloc command yet, | 
 | 			 * so just leave a hole for prealloc'ed extents until | 
 | 			 * we have enough commands queued up to justify rev'ing | 
 | 			 * the send spec. | 
 | 			 */ | 
 | 			if (type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 				ret = 0; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			/* Have a hole, just skip it. */ | 
 | 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { | 
 | 				ret = 0; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = find_extent_clone(sctx, path, key->objectid, key->offset, | 
 | 			sctx->cur_inode_size, &found_clone); | 
 | 	if (ret != -ENOENT && ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = send_write_or_clone(sctx, path, key, found_clone); | 
 | 	if (ret) | 
 | 		goto out; | 
 | out_hole: | 
 | 	ret = maybe_send_hole(sctx, path, key); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int process_all_extents(struct send_ctx *sctx) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *eb; | 
 | 	int slot; | 
 |  | 
 | 	root = sctx->send_root; | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = sctx->cmp_key->objectid; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	while (1) { | 
 | 		eb = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(eb)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) { | 
 | 				goto out; | 
 | 			} else if (ret > 0) { | 
 | 				ret = 0; | 
 | 				break; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(eb, &found_key, slot); | 
 |  | 
 | 		if (found_key.objectid != key.objectid || | 
 | 		    found_key.type != key.type) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret = process_extent(sctx, path, &found_key); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		path->slots[0]++; | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, | 
 | 					   int *pending_move, | 
 | 					   int *refs_processed) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (sctx->cur_ino == 0) | 
 | 		goto out; | 
 | 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && | 
 | 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) | 
 | 		goto out; | 
 | 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) | 
 | 		goto out; | 
 |  | 
 | 	ret = process_recorded_refs(sctx, pending_move); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	*refs_processed = 1; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) | 
 | { | 
 | 	int ret = 0; | 
 | 	u64 left_mode; | 
 | 	u64 left_uid; | 
 | 	u64 left_gid; | 
 | 	u64 right_mode; | 
 | 	u64 right_uid; | 
 | 	u64 right_gid; | 
 | 	int need_chmod = 0; | 
 | 	int need_chown = 0; | 
 | 	int need_truncate = 1; | 
 | 	int pending_move = 0; | 
 | 	int refs_processed = 0; | 
 |  | 
 | 	if (sctx->ignore_cur_inode) | 
 | 		return 0; | 
 |  | 
 | 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, | 
 | 					      &refs_processed); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We have processed the refs and thus need to advance send_progress. | 
 | 	 * Now, calls to get_cur_xxx will take the updated refs of the current | 
 | 	 * inode into account. | 
 | 	 * | 
 | 	 * On the other hand, if our current inode is a directory and couldn't | 
 | 	 * be moved/renamed because its parent was renamed/moved too and it has | 
 | 	 * a higher inode number, we can only move/rename our current inode | 
 | 	 * after we moved/renamed its parent. Therefore in this case operate on | 
 | 	 * the old path (pre move/rename) of our current inode, and the | 
 | 	 * move/rename will be performed later. | 
 | 	 */ | 
 | 	if (refs_processed && !pending_move) | 
 | 		sctx->send_progress = sctx->cur_ino + 1; | 
 |  | 
 | 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) | 
 | 		goto out; | 
 | 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) | 
 | 		goto out; | 
 |  | 
 | 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, | 
 | 			&left_mode, &left_uid, &left_gid, NULL); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (!sctx->parent_root || sctx->cur_inode_new) { | 
 | 		need_chown = 1; | 
 | 		if (!S_ISLNK(sctx->cur_inode_mode)) | 
 | 			need_chmod = 1; | 
 | 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) | 
 | 			need_truncate = 0; | 
 | 	} else { | 
 | 		u64 old_size; | 
 |  | 
 | 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, | 
 | 				&old_size, NULL, &right_mode, &right_uid, | 
 | 				&right_gid, NULL); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		if (left_uid != right_uid || left_gid != right_gid) | 
 | 			need_chown = 1; | 
 | 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) | 
 | 			need_chmod = 1; | 
 | 		if ((old_size == sctx->cur_inode_size) || | 
 | 		    (sctx->cur_inode_size > old_size && | 
 | 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) | 
 | 			need_truncate = 0; | 
 | 	} | 
 |  | 
 | 	if (S_ISREG(sctx->cur_inode_mode)) { | 
 | 		if (need_send_hole(sctx)) { | 
 | 			if (sctx->cur_inode_last_extent == (u64)-1 || | 
 | 			    sctx->cur_inode_last_extent < | 
 | 			    sctx->cur_inode_size) { | 
 | 				ret = get_last_extent(sctx, (u64)-1); | 
 | 				if (ret) | 
 | 					goto out; | 
 | 			} | 
 | 			if (sctx->cur_inode_last_extent < | 
 | 			    sctx->cur_inode_size) { | 
 | 				ret = send_hole(sctx, sctx->cur_inode_size); | 
 | 				if (ret) | 
 | 					goto out; | 
 | 			} | 
 | 		} | 
 | 		if (need_truncate) { | 
 | 			ret = send_truncate(sctx, sctx->cur_ino, | 
 | 					    sctx->cur_inode_gen, | 
 | 					    sctx->cur_inode_size); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (need_chown) { | 
 | 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, | 
 | 				left_uid, left_gid); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 | 	if (need_chmod) { | 
 | 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, | 
 | 				left_mode); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ret = send_capabilities(sctx); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If other directory inodes depended on our current directory | 
 | 	 * inode's move/rename, now do their move/rename operations. | 
 | 	 */ | 
 | 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) { | 
 | 		ret = apply_children_dir_moves(sctx); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		/* | 
 | 		 * Need to send that every time, no matter if it actually | 
 | 		 * changed between the two trees as we have done changes to | 
 | 		 * the inode before. If our inode is a directory and it's | 
 | 		 * waiting to be moved/renamed, we will send its utimes when | 
 | 		 * it's moved/renamed, therefore we don't need to do it here. | 
 | 		 */ | 
 | 		sctx->send_progress = sctx->cur_ino + 1; | 
 | 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct parent_paths_ctx { | 
 | 	struct list_head *refs; | 
 | 	struct send_ctx *sctx; | 
 | }; | 
 |  | 
 | static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, | 
 | 			     void *ctx) | 
 | { | 
 | 	struct parent_paths_ctx *ppctx = ctx; | 
 |  | 
 | 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, | 
 | 			  ppctx->refs); | 
 | } | 
 |  | 
 | /* | 
 |  * Issue unlink operations for all paths of the current inode found in the | 
 |  * parent snapshot. | 
 |  */ | 
 | static int btrfs_unlink_all_paths(struct send_ctx *sctx) | 
 | { | 
 | 	LIST_HEAD(deleted_refs); | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct parent_paths_ctx ctx; | 
 | 	int ret; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	key.objectid = sctx->cur_ino; | 
 | 	key.type = BTRFS_INODE_REF_KEY; | 
 | 	key.offset = 0; | 
 | 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	ctx.refs = &deleted_refs; | 
 | 	ctx.sctx = sctx; | 
 |  | 
 | 	while (true) { | 
 | 		struct extent_buffer *eb = path->nodes[0]; | 
 | 		int slot = path->slots[0]; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(eb)) { | 
 | 			ret = btrfs_next_leaf(sctx->parent_root, path); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(eb, &key, slot); | 
 | 		if (key.objectid != sctx->cur_ino) | 
 | 			break; | 
 | 		if (key.type != BTRFS_INODE_REF_KEY && | 
 | 		    key.type != BTRFS_INODE_EXTREF_KEY) | 
 | 			break; | 
 |  | 
 | 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, | 
 | 					record_parent_ref, &ctx); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		path->slots[0]++; | 
 | 	} | 
 |  | 
 | 	while (!list_empty(&deleted_refs)) { | 
 | 		struct recorded_ref *ref; | 
 |  | 
 | 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list); | 
 | 		ret = send_unlink(sctx, ref->full_path); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		fs_path_free(ref->full_path); | 
 | 		list_del(&ref->list); | 
 | 		kfree(ref); | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	if (ret) | 
 | 		__free_recorded_refs(&deleted_refs); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int changed_inode(struct send_ctx *sctx, | 
 | 			 enum btrfs_compare_tree_result result) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_key *key = sctx->cmp_key; | 
 | 	struct btrfs_inode_item *left_ii = NULL; | 
 | 	struct btrfs_inode_item *right_ii = NULL; | 
 | 	u64 left_gen = 0; | 
 | 	u64 right_gen = 0; | 
 |  | 
 | 	sctx->cur_ino = key->objectid; | 
 | 	sctx->cur_inode_new_gen = 0; | 
 | 	sctx->cur_inode_last_extent = (u64)-1; | 
 | 	sctx->cur_inode_next_write_offset = 0; | 
 | 	sctx->ignore_cur_inode = false; | 
 |  | 
 | 	/* | 
 | 	 * Set send_progress to current inode. This will tell all get_cur_xxx | 
 | 	 * functions that the current inode's refs are not updated yet. Later, | 
 | 	 * when process_recorded_refs is finished, it is set to cur_ino + 1. | 
 | 	 */ | 
 | 	sctx->send_progress = sctx->cur_ino; | 
 |  | 
 | 	if (result == BTRFS_COMPARE_TREE_NEW || | 
 | 	    result == BTRFS_COMPARE_TREE_CHANGED) { | 
 | 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], | 
 | 				sctx->left_path->slots[0], | 
 | 				struct btrfs_inode_item); | 
 | 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], | 
 | 				left_ii); | 
 | 	} else { | 
 | 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], | 
 | 				sctx->right_path->slots[0], | 
 | 				struct btrfs_inode_item); | 
 | 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], | 
 | 				right_ii); | 
 | 	} | 
 | 	if (result == BTRFS_COMPARE_TREE_CHANGED) { | 
 | 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], | 
 | 				sctx->right_path->slots[0], | 
 | 				struct btrfs_inode_item); | 
 |  | 
 | 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], | 
 | 				right_ii); | 
 |  | 
 | 		/* | 
 | 		 * The cur_ino = root dir case is special here. We can't treat | 
 | 		 * the inode as deleted+reused because it would generate a | 
 | 		 * stream that tries to delete/mkdir the root dir. | 
 | 		 */ | 
 | 		if (left_gen != right_gen && | 
 | 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) | 
 | 			sctx->cur_inode_new_gen = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Normally we do not find inodes with a link count of zero (orphans) | 
 | 	 * because the most common case is to create a snapshot and use it | 
 | 	 * for a send operation. However other less common use cases involve | 
 | 	 * using a subvolume and send it after turning it to RO mode just | 
 | 	 * after deleting all hard links of a file while holding an open | 
 | 	 * file descriptor against it or turning a RO snapshot into RW mode, | 
 | 	 * keep an open file descriptor against a file, delete it and then | 
 | 	 * turn the snapshot back to RO mode before using it for a send | 
 | 	 * operation. So if we find such cases, ignore the inode and all its | 
 | 	 * items completely if it's a new inode, or if it's a changed inode | 
 | 	 * make sure all its previous paths (from the parent snapshot) are all | 
 | 	 * unlinked and all other the inode items are ignored. | 
 | 	 */ | 
 | 	if (result == BTRFS_COMPARE_TREE_NEW || | 
 | 	    result == BTRFS_COMPARE_TREE_CHANGED) { | 
 | 		u32 nlinks; | 
 |  | 
 | 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); | 
 | 		if (nlinks == 0) { | 
 | 			sctx->ignore_cur_inode = true; | 
 | 			if (result == BTRFS_COMPARE_TREE_CHANGED) | 
 | 				ret = btrfs_unlink_all_paths(sctx); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (result == BTRFS_COMPARE_TREE_NEW) { | 
 | 		sctx->cur_inode_gen = left_gen; | 
 | 		sctx->cur_inode_new = 1; | 
 | 		sctx->cur_inode_deleted = 0; | 
 | 		sctx->cur_inode_size = btrfs_inode_size( | 
 | 				sctx->left_path->nodes[0], left_ii); | 
 | 		sctx->cur_inode_mode = btrfs_inode_mode( | 
 | 				sctx->left_path->nodes[0], left_ii); | 
 | 		sctx->cur_inode_rdev = btrfs_inode_rdev( | 
 | 				sctx->left_path->nodes[0], left_ii); | 
 | 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) | 
 | 			ret = send_create_inode_if_needed(sctx); | 
 | 	} else if (result == BTRFS_COMPARE_TREE_DELETED) { | 
 | 		sctx->cur_inode_gen = right_gen; | 
 | 		sctx->cur_inode_new = 0; | 
 | 		sctx->cur_inode_deleted = 1; | 
 | 		sctx->cur_inode_size = btrfs_inode_size( | 
 | 				sctx->right_path->nodes[0], right_ii); | 
 | 		sctx->cur_inode_mode = btrfs_inode_mode( | 
 | 				sctx->right_path->nodes[0], right_ii); | 
 | 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) { | 
 | 		/* | 
 | 		 * We need to do some special handling in case the inode was | 
 | 		 * reported as changed with a changed generation number. This | 
 | 		 * means that the original inode was deleted and new inode | 
 | 		 * reused the same inum. So we have to treat the old inode as | 
 | 		 * deleted and the new one as new. | 
 | 		 */ | 
 | 		if (sctx->cur_inode_new_gen) { | 
 | 			/* | 
 | 			 * First, process the inode as if it was deleted. | 
 | 			 */ | 
 | 			sctx->cur_inode_gen = right_gen; | 
 | 			sctx->cur_inode_new = 0; | 
 | 			sctx->cur_inode_deleted = 1; | 
 | 			sctx->cur_inode_size = btrfs_inode_size( | 
 | 					sctx->right_path->nodes[0], right_ii); | 
 | 			sctx->cur_inode_mode = btrfs_inode_mode( | 
 | 					sctx->right_path->nodes[0], right_ii); | 
 | 			ret = process_all_refs(sctx, | 
 | 					BTRFS_COMPARE_TREE_DELETED); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 |  | 
 | 			/* | 
 | 			 * Now process the inode as if it was new. | 
 | 			 */ | 
 | 			sctx->cur_inode_gen = left_gen; | 
 | 			sctx->cur_inode_new = 1; | 
 | 			sctx->cur_inode_deleted = 0; | 
 | 			sctx->cur_inode_size = btrfs_inode_size( | 
 | 					sctx->left_path->nodes[0], left_ii); | 
 | 			sctx->cur_inode_mode = btrfs_inode_mode( | 
 | 					sctx->left_path->nodes[0], left_ii); | 
 | 			sctx->cur_inode_rdev = btrfs_inode_rdev( | 
 | 					sctx->left_path->nodes[0], left_ii); | 
 | 			ret = send_create_inode_if_needed(sctx); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 |  | 
 | 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			/* | 
 | 			 * Advance send_progress now as we did not get into | 
 | 			 * process_recorded_refs_if_needed in the new_gen case. | 
 | 			 */ | 
 | 			sctx->send_progress = sctx->cur_ino + 1; | 
 |  | 
 | 			/* | 
 | 			 * Now process all extents and xattrs of the inode as if | 
 | 			 * they were all new. | 
 | 			 */ | 
 | 			ret = process_all_extents(sctx); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			ret = process_all_new_xattrs(sctx); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} else { | 
 | 			sctx->cur_inode_gen = left_gen; | 
 | 			sctx->cur_inode_new = 0; | 
 | 			sctx->cur_inode_new_gen = 0; | 
 | 			sctx->cur_inode_deleted = 0; | 
 | 			sctx->cur_inode_size = btrfs_inode_size( | 
 | 					sctx->left_path->nodes[0], left_ii); | 
 | 			sctx->cur_inode_mode = btrfs_inode_mode( | 
 | 					sctx->left_path->nodes[0], left_ii); | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * We have to process new refs before deleted refs, but compare_trees gives us | 
 |  * the new and deleted refs mixed. To fix this, we record the new/deleted refs | 
 |  * first and later process them in process_recorded_refs. | 
 |  * For the cur_inode_new_gen case, we skip recording completely because | 
 |  * changed_inode did already initiate processing of refs. The reason for this is | 
 |  * that in this case, compare_tree actually compares the refs of 2 different | 
 |  * inodes. To fix this, process_all_refs is used in changed_inode to handle all | 
 |  * refs of the right tree as deleted and all refs of the left tree as new. | 
 |  */ | 
 | static int changed_ref(struct send_ctx *sctx, | 
 | 		       enum btrfs_compare_tree_result result) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (sctx->cur_ino != sctx->cmp_key->objectid) { | 
 | 		inconsistent_snapshot_error(sctx, result, "reference"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (!sctx->cur_inode_new_gen && | 
 | 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		if (result == BTRFS_COMPARE_TREE_NEW) | 
 | 			ret = record_new_ref(sctx); | 
 | 		else if (result == BTRFS_COMPARE_TREE_DELETED) | 
 | 			ret = record_deleted_ref(sctx); | 
 | 		else if (result == BTRFS_COMPARE_TREE_CHANGED) | 
 | 			ret = record_changed_ref(sctx); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Process new/deleted/changed xattrs. We skip processing in the | 
 |  * cur_inode_new_gen case because changed_inode did already initiate processing | 
 |  * of xattrs. The reason is the same as in changed_ref | 
 |  */ | 
 | static int changed_xattr(struct send_ctx *sctx, | 
 | 			 enum btrfs_compare_tree_result result) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (sctx->cur_ino != sctx->cmp_key->objectid) { | 
 | 		inconsistent_snapshot_error(sctx, result, "xattr"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { | 
 | 		if (result == BTRFS_COMPARE_TREE_NEW) | 
 | 			ret = process_new_xattr(sctx); | 
 | 		else if (result == BTRFS_COMPARE_TREE_DELETED) | 
 | 			ret = process_deleted_xattr(sctx); | 
 | 		else if (result == BTRFS_COMPARE_TREE_CHANGED) | 
 | 			ret = process_changed_xattr(sctx); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Process new/deleted/changed extents. We skip processing in the | 
 |  * cur_inode_new_gen case because changed_inode did already initiate processing | 
 |  * of extents. The reason is the same as in changed_ref | 
 |  */ | 
 | static int changed_extent(struct send_ctx *sctx, | 
 | 			  enum btrfs_compare_tree_result result) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * We have found an extent item that changed without the inode item | 
 | 	 * having changed. This can happen either after relocation (where the | 
 | 	 * disk_bytenr of an extent item is replaced at | 
 | 	 * relocation.c:replace_file_extents()) or after deduplication into a | 
 | 	 * file in both the parent and send snapshots (where an extent item can | 
 | 	 * get modified or replaced with a new one). Note that deduplication | 
 | 	 * updates the inode item, but it only changes the iversion (sequence | 
 | 	 * field in the inode item) of the inode, so if a file is deduplicated | 
 | 	 * the same amount of times in both the parent and send snapshots, its | 
 | 	 * iversion becomes the same in both snapshots, whence the inode item is | 
 | 	 * the same on both snapshots. | 
 | 	 */ | 
 | 	if (sctx->cur_ino != sctx->cmp_key->objectid) | 
 | 		return 0; | 
 |  | 
 | 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { | 
 | 		if (result != BTRFS_COMPARE_TREE_DELETED) | 
 | 			ret = process_extent(sctx, sctx->left_path, | 
 | 					sctx->cmp_key); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int dir_changed(struct send_ctx *sctx, u64 dir) | 
 | { | 
 | 	u64 orig_gen, new_gen; | 
 | 	int ret; | 
 |  | 
 | 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, | 
 | 			     NULL, NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, | 
 | 			     NULL, NULL, NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return (orig_gen != new_gen) ? 1 : 0; | 
 | } | 
 |  | 
 | static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, | 
 | 			struct btrfs_key *key) | 
 | { | 
 | 	struct btrfs_inode_extref *extref; | 
 | 	struct extent_buffer *leaf; | 
 | 	u64 dirid = 0, last_dirid = 0; | 
 | 	unsigned long ptr; | 
 | 	u32 item_size; | 
 | 	u32 cur_offset = 0; | 
 | 	int ref_name_len; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Easy case, just check this one dirid */ | 
 | 	if (key->type == BTRFS_INODE_REF_KEY) { | 
 | 		dirid = key->offset; | 
 |  | 
 | 		ret = dir_changed(sctx, dirid); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
 | 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 	while (cur_offset < item_size) { | 
 | 		extref = (struct btrfs_inode_extref *)(ptr + | 
 | 						       cur_offset); | 
 | 		dirid = btrfs_inode_extref_parent(leaf, extref); | 
 | 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref); | 
 | 		cur_offset += ref_name_len + sizeof(*extref); | 
 | 		if (dirid == last_dirid) | 
 | 			continue; | 
 | 		ret = dir_changed(sctx, dirid); | 
 | 		if (ret) | 
 | 			break; | 
 | 		last_dirid = dirid; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Updates compare related fields in sctx and simply forwards to the actual | 
 |  * changed_xxx functions. | 
 |  */ | 
 | static int changed_cb(struct btrfs_path *left_path, | 
 | 		      struct btrfs_path *right_path, | 
 | 		      struct btrfs_key *key, | 
 | 		      enum btrfs_compare_tree_result result, | 
 | 		      struct send_ctx *sctx) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * We can not hold the commit root semaphore here. This is because in | 
 | 	 * the case of sending and receiving to the same filesystem, using a | 
 | 	 * pipe, could result in a deadlock: | 
 | 	 * | 
 | 	 * 1) The task running send blocks on the pipe because it's full; | 
 | 	 * | 
 | 	 * 2) The task running receive, which is the only consumer of the pipe, | 
 | 	 *    is waiting for a transaction commit (for example due to a space | 
 | 	 *    reservation when doing a write or triggering a transaction commit | 
 | 	 *    when creating a subvolume); | 
 | 	 * | 
 | 	 * 3) The transaction is waiting to write lock the commit root semaphore, | 
 | 	 *    but can not acquire it since it's being held at 1). | 
 | 	 * | 
 | 	 * Down this call chain we write to the pipe through kernel_write(). | 
 | 	 * The same type of problem can also happen when sending to a file that | 
 | 	 * is stored in the same filesystem - when reserving space for a write | 
 | 	 * into the file, we can trigger a transaction commit. | 
 | 	 * | 
 | 	 * Our caller has supplied us with clones of leaves from the send and | 
 | 	 * parent roots, so we're safe here from a concurrent relocation and | 
 | 	 * further reallocation of metadata extents while we are here. Below we | 
 | 	 * also assert that the leaves are clones. | 
 | 	 */ | 
 | 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); | 
 |  | 
 | 	/* | 
 | 	 * We always have a send root, so left_path is never NULL. We will not | 
 | 	 * have a leaf when we have reached the end of the send root but have | 
 | 	 * not yet reached the end of the parent root. | 
 | 	 */ | 
 | 	if (left_path->nodes[0]) | 
 | 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, | 
 | 				&left_path->nodes[0]->bflags)); | 
 | 	/* | 
 | 	 * When doing a full send we don't have a parent root, so right_path is | 
 | 	 * NULL. When doing an incremental send, we may have reached the end of | 
 | 	 * the parent root already, so we don't have a leaf at right_path. | 
 | 	 */ | 
 | 	if (right_path && right_path->nodes[0]) | 
 | 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, | 
 | 				&right_path->nodes[0]->bflags)); | 
 |  | 
 | 	if (result == BTRFS_COMPARE_TREE_SAME) { | 
 | 		if (key->type == BTRFS_INODE_REF_KEY || | 
 | 		    key->type == BTRFS_INODE_EXTREF_KEY) { | 
 | 			ret = compare_refs(sctx, left_path, key); | 
 | 			if (!ret) | 
 | 				return 0; | 
 | 			if (ret < 0) | 
 | 				return ret; | 
 | 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) { | 
 | 			return maybe_send_hole(sctx, left_path, key); | 
 | 		} else { | 
 | 			return 0; | 
 | 		} | 
 | 		result = BTRFS_COMPARE_TREE_CHANGED; | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	sctx->left_path = left_path; | 
 | 	sctx->right_path = right_path; | 
 | 	sctx->cmp_key = key; | 
 |  | 
 | 	ret = finish_inode_if_needed(sctx, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* Ignore non-FS objects */ | 
 | 	if (key->objectid == BTRFS_FREE_INO_OBJECTID || | 
 | 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID) | 
 | 		goto out; | 
 |  | 
 | 	if (key->type == BTRFS_INODE_ITEM_KEY) { | 
 | 		ret = changed_inode(sctx, result); | 
 | 	} else if (!sctx->ignore_cur_inode) { | 
 | 		if (key->type == BTRFS_INODE_REF_KEY || | 
 | 		    key->type == BTRFS_INODE_EXTREF_KEY) | 
 | 			ret = changed_ref(sctx, result); | 
 | 		else if (key->type == BTRFS_XATTR_ITEM_KEY) | 
 | 			ret = changed_xattr(sctx, result); | 
 | 		else if (key->type == BTRFS_EXTENT_DATA_KEY) | 
 | 			ret = changed_extent(sctx, result); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int search_key_again(const struct send_ctx *sctx, | 
 | 			    struct btrfs_root *root, | 
 | 			    struct btrfs_path *path, | 
 | 			    const struct btrfs_key *key) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!path->need_commit_sem) | 
 | 		lockdep_assert_held_read(&root->fs_info->commit_root_sem); | 
 |  | 
 | 	/* | 
 | 	 * Roots used for send operations are readonly and no one can add, | 
 | 	 * update or remove keys from them, so we should be able to find our | 
 | 	 * key again. The only exception is deduplication, which can operate on | 
 | 	 * readonly roots and add, update or remove keys to/from them - but at | 
 | 	 * the moment we don't allow it to run in parallel with send. | 
 | 	 */ | 
 | 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
 | 	ASSERT(ret <= 0); | 
 | 	if (ret > 0) { | 
 | 		btrfs_print_tree(path->nodes[path->lowest_level], false); | 
 | 		btrfs_err(root->fs_info, | 
 | "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", | 
 | 			  key->objectid, key->type, key->offset, | 
 | 			  (root == sctx->parent_root ? "parent" : "send"), | 
 | 			  root->root_key.objectid, path->lowest_level, | 
 | 			  path->slots[path->lowest_level]); | 
 | 		return -EUCLEAN; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int full_send_tree(struct send_ctx *sctx) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_root *send_root = sctx->send_root; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_fs_info *fs_info = send_root->fs_info; | 
 | 	struct btrfs_path *path; | 
 |  | 
 | 	path = alloc_path_for_send(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->reada = READA_FORWARD_ALWAYS; | 
 |  | 
 | 	key.objectid = BTRFS_FIRST_FREE_OBJECTID; | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	down_read(&fs_info->commit_root_sem); | 
 | 	sctx->last_reloc_trans = fs_info->last_reloc_trans; | 
 | 	up_read(&fs_info->commit_root_sem); | 
 |  | 
 | 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	if (ret) | 
 | 		goto out_finish; | 
 |  | 
 | 	while (1) { | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 |  | 
 | 		ret = changed_cb(path, NULL, &key, | 
 | 				 BTRFS_COMPARE_TREE_NEW, sctx); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		down_read(&fs_info->commit_root_sem); | 
 | 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { | 
 | 			sctx->last_reloc_trans = fs_info->last_reloc_trans; | 
 | 			up_read(&fs_info->commit_root_sem); | 
 | 			/* | 
 | 			 * A transaction used for relocating a block group was | 
 | 			 * committed or is about to finish its commit. Release | 
 | 			 * our path (leaf) and restart the search, so that we | 
 | 			 * avoid operating on any file extent items that are | 
 | 			 * stale, with a disk_bytenr that reflects a pre | 
 | 			 * relocation value. This way we avoid as much as | 
 | 			 * possible to fallback to regular writes when checking | 
 | 			 * if we can clone file ranges. | 
 | 			 */ | 
 | 			btrfs_release_path(path); | 
 | 			ret = search_key_again(sctx, send_root, path, &key); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 		} else { | 
 | 			up_read(&fs_info->commit_root_sem); | 
 | 		} | 
 |  | 
 | 		ret = btrfs_next_item(send_root, path); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret) { | 
 | 			ret  = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | out_finish: | 
 | 	ret = finish_inode_if_needed(sctx, 1); | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int replace_node_with_clone(struct btrfs_path *path, int level) | 
 | { | 
 | 	struct extent_buffer *clone; | 
 |  | 
 | 	clone = btrfs_clone_extent_buffer(path->nodes[level]); | 
 | 	if (!clone) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	free_extent_buffer(path->nodes[level]); | 
 | 	path->nodes[level] = clone; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) | 
 | { | 
 | 	struct extent_buffer *eb; | 
 | 	struct extent_buffer *parent = path->nodes[*level]; | 
 | 	int slot = path->slots[*level]; | 
 | 	const int nritems = btrfs_header_nritems(parent); | 
 | 	u64 reada_max; | 
 | 	u64 reada_done = 0; | 
 |  | 
 | 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem); | 
 | 	ASSERT(*level != 0); | 
 |  | 
 | 	eb = btrfs_read_node_slot(parent, slot); | 
 | 	if (IS_ERR(eb)) | 
 | 		return PTR_ERR(eb); | 
 |  | 
 | 	/* | 
 | 	 * Trigger readahead for the next leaves we will process, so that it is | 
 | 	 * very likely that when we need them they are already in memory and we | 
 | 	 * will not block on disk IO. For nodes we only do readahead for one, | 
 | 	 * since the time window between processing nodes is typically larger. | 
 | 	 */ | 
 | 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); | 
 |  | 
 | 	for (slot++; slot < nritems && reada_done < reada_max; slot++) { | 
 | 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { | 
 | 			btrfs_readahead_node_child(parent, slot); | 
 | 			reada_done += eb->fs_info->nodesize; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	path->nodes[*level - 1] = eb; | 
 | 	path->slots[*level - 1] = 0; | 
 | 	(*level)--; | 
 |  | 
 | 	if (*level == 0) | 
 | 		return replace_node_with_clone(path, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tree_move_next_or_upnext(struct btrfs_path *path, | 
 | 				    int *level, int root_level) | 
 | { | 
 | 	int ret = 0; | 
 | 	int nritems; | 
 | 	nritems = btrfs_header_nritems(path->nodes[*level]); | 
 |  | 
 | 	path->slots[*level]++; | 
 |  | 
 | 	while (path->slots[*level] >= nritems) { | 
 | 		if (*level == root_level) { | 
 | 			path->slots[*level] = nritems - 1; | 
 | 			return -1; | 
 | 		} | 
 |  | 
 | 		/* move upnext */ | 
 | 		path->slots[*level] = 0; | 
 | 		free_extent_buffer(path->nodes[*level]); | 
 | 		path->nodes[*level] = NULL; | 
 | 		(*level)++; | 
 | 		path->slots[*level]++; | 
 |  | 
 | 		nritems = btrfs_header_nritems(path->nodes[*level]); | 
 | 		ret = 1; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns 1 if it had to move up and next. 0 is returned if it moved only next | 
 |  * or down. | 
 |  */ | 
 | static int tree_advance(struct btrfs_path *path, | 
 | 			int *level, int root_level, | 
 | 			int allow_down, | 
 | 			struct btrfs_key *key, | 
 | 			u64 reada_min_gen) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (*level == 0 || !allow_down) { | 
 | 		ret = tree_move_next_or_upnext(path, level, root_level); | 
 | 	} else { | 
 | 		ret = tree_move_down(path, level, reada_min_gen); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Even if we have reached the end of a tree, ret is -1, update the key | 
 | 	 * anyway, so that in case we need to restart due to a block group | 
 | 	 * relocation, we can assert that the last key of the root node still | 
 | 	 * exists in the tree. | 
 | 	 */ | 
 | 	if (*level == 0) | 
 | 		btrfs_item_key_to_cpu(path->nodes[*level], key, | 
 | 				      path->slots[*level]); | 
 | 	else | 
 | 		btrfs_node_key_to_cpu(path->nodes[*level], key, | 
 | 				      path->slots[*level]); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int tree_compare_item(struct btrfs_path *left_path, | 
 | 			     struct btrfs_path *right_path, | 
 | 			     char *tmp_buf) | 
 | { | 
 | 	int cmp; | 
 | 	int len1, len2; | 
 | 	unsigned long off1, off2; | 
 |  | 
 | 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); | 
 | 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); | 
 | 	if (len1 != len2) | 
 | 		return 1; | 
 |  | 
 | 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); | 
 | 	off2 = btrfs_item_ptr_offset(right_path->nodes[0], | 
 | 				right_path->slots[0]); | 
 |  | 
 | 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); | 
 |  | 
 | 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); | 
 | 	if (cmp) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * A transaction used for relocating a block group was committed or is about to | 
 |  * finish its commit. Release our paths and restart the search, so that we are | 
 |  * not using stale extent buffers: | 
 |  * | 
 |  * 1) For levels > 0, we are only holding references of extent buffers, without | 
 |  *    any locks on them, which does not prevent them from having been relocated | 
 |  *    and reallocated after the last time we released the commit root semaphore. | 
 |  *    The exception are the root nodes, for which we always have a clone, see | 
 |  *    the comment at btrfs_compare_trees(); | 
 |  * | 
 |  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so | 
 |  *    we are safe from the concurrent relocation and reallocation. However they | 
 |  *    can have file extent items with a pre relocation disk_bytenr value, so we | 
 |  *    restart the start from the current commit roots and clone the new leaves so | 
 |  *    that we get the post relocation disk_bytenr values. Not doing so, could | 
 |  *    make us clone the wrong data in case there are new extents using the old | 
 |  *    disk_bytenr that happen to be shared. | 
 |  */ | 
 | static int restart_after_relocation(struct btrfs_path *left_path, | 
 | 				    struct btrfs_path *right_path, | 
 | 				    const struct btrfs_key *left_key, | 
 | 				    const struct btrfs_key *right_key, | 
 | 				    int left_level, | 
 | 				    int right_level, | 
 | 				    const struct send_ctx *sctx) | 
 | { | 
 | 	int root_level; | 
 | 	int ret; | 
 |  | 
 | 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); | 
 |  | 
 | 	btrfs_release_path(left_path); | 
 | 	btrfs_release_path(right_path); | 
 |  | 
 | 	/* | 
 | 	 * Since keys can not be added or removed to/from our roots because they | 
 | 	 * are readonly and we do not allow deduplication to run in parallel | 
 | 	 * (which can add, remove or change keys), the layout of the trees should | 
 | 	 * not change. | 
 | 	 */ | 
 | 	left_path->lowest_level = left_level; | 
 | 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	right_path->lowest_level = right_level; | 
 | 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * If the lowest level nodes are leaves, clone them so that they can be | 
 | 	 * safely used by changed_cb() while not under the protection of the | 
 | 	 * commit root semaphore, even if relocation and reallocation happens in | 
 | 	 * parallel. | 
 | 	 */ | 
 | 	if (left_level == 0) { | 
 | 		ret = replace_node_with_clone(left_path, 0); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (right_level == 0) { | 
 | 		ret = replace_node_with_clone(right_path, 0); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now clone the root nodes (unless they happen to be the leaves we have | 
 | 	 * already cloned). This is to protect against concurrent snapshotting of | 
 | 	 * the send and parent roots (see the comment at btrfs_compare_trees()). | 
 | 	 */ | 
 | 	root_level = btrfs_header_level(sctx->send_root->commit_root); | 
 | 	if (root_level > 0) { | 
 | 		ret = replace_node_with_clone(left_path, root_level); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	root_level = btrfs_header_level(sctx->parent_root->commit_root); | 
 | 	if (root_level > 0) { | 
 | 		ret = replace_node_with_clone(right_path, root_level); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This function compares two trees and calls the provided callback for | 
 |  * every changed/new/deleted item it finds. | 
 |  * If shared tree blocks are encountered, whole subtrees are skipped, making | 
 |  * the compare pretty fast on snapshotted subvolumes. | 
 |  * | 
 |  * This currently works on commit roots only. As commit roots are read only, | 
 |  * we don't do any locking. The commit roots are protected with transactions. | 
 |  * Transactions are ended and rejoined when a commit is tried in between. | 
 |  * | 
 |  * This function checks for modifications done to the trees while comparing. | 
 |  * If it detects a change, it aborts immediately. | 
 |  */ | 
 | static int btrfs_compare_trees(struct btrfs_root *left_root, | 
 | 			struct btrfs_root *right_root, struct send_ctx *sctx) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = left_root->fs_info; | 
 | 	int ret; | 
 | 	int cmp; | 
 | 	struct btrfs_path *left_path = NULL; | 
 | 	struct btrfs_path *right_path = NULL; | 
 | 	struct btrfs_key left_key; | 
 | 	struct btrfs_key right_key; | 
 | 	char *tmp_buf = NULL; | 
 | 	int left_root_level; | 
 | 	int right_root_level; | 
 | 	int left_level; | 
 | 	int right_level; | 
 | 	int left_end_reached = 0; | 
 | 	int right_end_reached = 0; | 
 | 	int advance_left = 0; | 
 | 	int advance_right = 0; | 
 | 	u64 left_blockptr; | 
 | 	u64 right_blockptr; | 
 | 	u64 left_gen; | 
 | 	u64 right_gen; | 
 | 	u64 reada_min_gen; | 
 |  | 
 | 	left_path = btrfs_alloc_path(); | 
 | 	if (!left_path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	right_path = btrfs_alloc_path(); | 
 | 	if (!right_path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); | 
 | 	if (!tmp_buf) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	left_path->search_commit_root = 1; | 
 | 	left_path->skip_locking = 1; | 
 | 	right_path->search_commit_root = 1; | 
 | 	right_path->skip_locking = 1; | 
 |  | 
 | 	/* | 
 | 	 * Strategy: Go to the first items of both trees. Then do | 
 | 	 * | 
 | 	 * If both trees are at level 0 | 
 | 	 *   Compare keys of current items | 
 | 	 *     If left < right treat left item as new, advance left tree | 
 | 	 *       and repeat | 
 | 	 *     If left > right treat right item as deleted, advance right tree | 
 | 	 *       and repeat | 
 | 	 *     If left == right do deep compare of items, treat as changed if | 
 | 	 *       needed, advance both trees and repeat | 
 | 	 * If both trees are at the same level but not at level 0 | 
 | 	 *   Compare keys of current nodes/leafs | 
 | 	 *     If left < right advance left tree and repeat | 
 | 	 *     If left > right advance right tree and repeat | 
 | 	 *     If left == right compare blockptrs of the next nodes/leafs | 
 | 	 *       If they match advance both trees but stay at the same level | 
 | 	 *         and repeat | 
 | 	 *       If they don't match advance both trees while allowing to go | 
 | 	 *         deeper and repeat | 
 | 	 * If tree levels are different | 
 | 	 *   Advance the tree that needs it and repeat | 
 | 	 * | 
 | 	 * Advancing a tree means: | 
 | 	 *   If we are at level 0, try to go to the next slot. If that's not | 
 | 	 *   possible, go one level up and repeat. Stop when we found a level | 
 | 	 *   where we could go to the next slot. We may at this point be on a | 
 | 	 *   node or a leaf. | 
 | 	 * | 
 | 	 *   If we are not at level 0 and not on shared tree blocks, go one | 
 | 	 *   level deeper. | 
 | 	 * | 
 | 	 *   If we are not at level 0 and on shared tree blocks, go one slot to | 
 | 	 *   the right if possible or go up and right. | 
 | 	 */ | 
 |  | 
 | 	down_read(&fs_info->commit_root_sem); | 
 | 	left_level = btrfs_header_level(left_root->commit_root); | 
 | 	left_root_level = left_level; | 
 | 	/* | 
 | 	 * We clone the root node of the send and parent roots to prevent races | 
 | 	 * with snapshot creation of these roots. Snapshot creation COWs the | 
 | 	 * root node of a tree, so after the transaction is committed the old | 
 | 	 * extent can be reallocated while this send operation is still ongoing. | 
 | 	 * So we clone them, under the commit root semaphore, to be race free. | 
 | 	 */ | 
 | 	left_path->nodes[left_level] = | 
 | 			btrfs_clone_extent_buffer(left_root->commit_root); | 
 | 	if (!left_path->nodes[left_level]) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	right_level = btrfs_header_level(right_root->commit_root); | 
 | 	right_root_level = right_level; | 
 | 	right_path->nodes[right_level] = | 
 | 			btrfs_clone_extent_buffer(right_root->commit_root); | 
 | 	if (!right_path->nodes[right_level]) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	/* | 
 | 	 * Our right root is the parent root, while the left root is the "send" | 
 | 	 * root. We know that all new nodes/leaves in the left root must have | 
 | 	 * a generation greater than the right root's generation, so we trigger | 
 | 	 * readahead for those nodes and leaves of the left root, as we know we | 
 | 	 * will need to read them at some point. | 
 | 	 */ | 
 | 	reada_min_gen = btrfs_header_generation(right_root->commit_root); | 
 |  | 
 | 	if (left_level == 0) | 
 | 		btrfs_item_key_to_cpu(left_path->nodes[left_level], | 
 | 				&left_key, left_path->slots[left_level]); | 
 | 	else | 
 | 		btrfs_node_key_to_cpu(left_path->nodes[left_level], | 
 | 				&left_key, left_path->slots[left_level]); | 
 | 	if (right_level == 0) | 
 | 		btrfs_item_key_to_cpu(right_path->nodes[right_level], | 
 | 				&right_key, right_path->slots[right_level]); | 
 | 	else | 
 | 		btrfs_node_key_to_cpu(right_path->nodes[right_level], | 
 | 				&right_key, right_path->slots[right_level]); | 
 |  | 
 | 	sctx->last_reloc_trans = fs_info->last_reloc_trans; | 
 |  | 
 | 	while (1) { | 
 | 		if (need_resched() || | 
 | 		    rwsem_is_contended(&fs_info->commit_root_sem)) { | 
 | 			up_read(&fs_info->commit_root_sem); | 
 | 			cond_resched(); | 
 | 			down_read(&fs_info->commit_root_sem); | 
 | 		} | 
 |  | 
 | 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { | 
 | 			ret = restart_after_relocation(left_path, right_path, | 
 | 						       &left_key, &right_key, | 
 | 						       left_level, right_level, | 
 | 						       sctx); | 
 | 			if (ret < 0) | 
 | 				goto out_unlock; | 
 | 			sctx->last_reloc_trans = fs_info->last_reloc_trans; | 
 | 		} | 
 |  | 
 | 		if (advance_left && !left_end_reached) { | 
 | 			ret = tree_advance(left_path, &left_level, | 
 | 					left_root_level, | 
 | 					advance_left != ADVANCE_ONLY_NEXT, | 
 | 					&left_key, reada_min_gen); | 
 | 			if (ret == -1) | 
 | 				left_end_reached = ADVANCE; | 
 | 			else if (ret < 0) | 
 | 				goto out_unlock; | 
 | 			advance_left = 0; | 
 | 		} | 
 | 		if (advance_right && !right_end_reached) { | 
 | 			ret = tree_advance(right_path, &right_level, | 
 | 					right_root_level, | 
 | 					advance_right != ADVANCE_ONLY_NEXT, | 
 | 					&right_key, reada_min_gen); | 
 | 			if (ret == -1) | 
 | 				right_end_reached = ADVANCE; | 
 | 			else if (ret < 0) | 
 | 				goto out_unlock; | 
 | 			advance_right = 0; | 
 | 		} | 
 |  | 
 | 		if (left_end_reached && right_end_reached) { | 
 | 			ret = 0; | 
 | 			goto out_unlock; | 
 | 		} else if (left_end_reached) { | 
 | 			if (right_level == 0) { | 
 | 				up_read(&fs_info->commit_root_sem); | 
 | 				ret = changed_cb(left_path, right_path, | 
 | 						&right_key, | 
 | 						BTRFS_COMPARE_TREE_DELETED, | 
 | 						sctx); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 				down_read(&fs_info->commit_root_sem); | 
 | 			} | 
 | 			advance_right = ADVANCE; | 
 | 			continue; | 
 | 		} else if (right_end_reached) { | 
 | 			if (left_level == 0) { | 
 | 				up_read(&fs_info->commit_root_sem); | 
 | 				ret = changed_cb(left_path, right_path, | 
 | 						&left_key, | 
 | 						BTRFS_COMPARE_TREE_NEW, | 
 | 						sctx); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 				down_read(&fs_info->commit_root_sem); | 
 | 			} | 
 | 			advance_left = ADVANCE; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (left_level == 0 && right_level == 0) { | 
 | 			up_read(&fs_info->commit_root_sem); | 
 | 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key); | 
 | 			if (cmp < 0) { | 
 | 				ret = changed_cb(left_path, right_path, | 
 | 						&left_key, | 
 | 						BTRFS_COMPARE_TREE_NEW, | 
 | 						sctx); | 
 | 				advance_left = ADVANCE; | 
 | 			} else if (cmp > 0) { | 
 | 				ret = changed_cb(left_path, right_path, | 
 | 						&right_key, | 
 | 						BTRFS_COMPARE_TREE_DELETED, | 
 | 						sctx); | 
 | 				advance_right = ADVANCE; | 
 | 			} else { | 
 | 				enum btrfs_compare_tree_result result; | 
 |  | 
 | 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); | 
 | 				ret = tree_compare_item(left_path, right_path, | 
 | 							tmp_buf); | 
 | 				if (ret) | 
 | 					result = BTRFS_COMPARE_TREE_CHANGED; | 
 | 				else | 
 | 					result = BTRFS_COMPARE_TREE_SAME; | 
 | 				ret = changed_cb(left_path, right_path, | 
 | 						 &left_key, result, sctx); | 
 | 				advance_left = ADVANCE; | 
 | 				advance_right = ADVANCE; | 
 | 			} | 
 |  | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			down_read(&fs_info->commit_root_sem); | 
 | 		} else if (left_level == right_level) { | 
 | 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key); | 
 | 			if (cmp < 0) { | 
 | 				advance_left = ADVANCE; | 
 | 			} else if (cmp > 0) { | 
 | 				advance_right = ADVANCE; | 
 | 			} else { | 
 | 				left_blockptr = btrfs_node_blockptr( | 
 | 						left_path->nodes[left_level], | 
 | 						left_path->slots[left_level]); | 
 | 				right_blockptr = btrfs_node_blockptr( | 
 | 						right_path->nodes[right_level], | 
 | 						right_path->slots[right_level]); | 
 | 				left_gen = btrfs_node_ptr_generation( | 
 | 						left_path->nodes[left_level], | 
 | 						left_path->slots[left_level]); | 
 | 				right_gen = btrfs_node_ptr_generation( | 
 | 						right_path->nodes[right_level], | 
 | 						right_path->slots[right_level]); | 
 | 				if (left_blockptr == right_blockptr && | 
 | 				    left_gen == right_gen) { | 
 | 					/* | 
 | 					 * As we're on a shared block, don't | 
 | 					 * allow to go deeper. | 
 | 					 */ | 
 | 					advance_left = ADVANCE_ONLY_NEXT; | 
 | 					advance_right = ADVANCE_ONLY_NEXT; | 
 | 				} else { | 
 | 					advance_left = ADVANCE; | 
 | 					advance_right = ADVANCE; | 
 | 				} | 
 | 			} | 
 | 		} else if (left_level < right_level) { | 
 | 			advance_right = ADVANCE; | 
 | 		} else { | 
 | 			advance_left = ADVANCE; | 
 | 		} | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	up_read(&fs_info->commit_root_sem); | 
 | out: | 
 | 	btrfs_free_path(left_path); | 
 | 	btrfs_free_path(right_path); | 
 | 	kvfree(tmp_buf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int send_subvol(struct send_ctx *sctx) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { | 
 | 		ret = send_header(sctx); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ret = send_subvol_begin(sctx); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (sctx->parent_root) { | 
 | 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		ret = finish_inode_if_needed(sctx, 1); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} else { | 
 | 		ret = full_send_tree(sctx); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	free_recorded_refs(sctx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * If orphan cleanup did remove any orphans from a root, it means the tree | 
 |  * was modified and therefore the commit root is not the same as the current | 
 |  * root anymore. This is a problem, because send uses the commit root and | 
 |  * therefore can see inode items that don't exist in the current root anymore, | 
 |  * and for example make calls to btrfs_iget, which will do tree lookups based | 
 |  * on the current root and not on the commit root. Those lookups will fail, | 
 |  * returning a -ESTALE error, and making send fail with that error. So make | 
 |  * sure a send does not see any orphans we have just removed, and that it will | 
 |  * see the same inodes regardless of whether a transaction commit happened | 
 |  * before it started (meaning that the commit root will be the same as the | 
 |  * current root) or not. | 
 |  */ | 
 | static int ensure_commit_roots_uptodate(struct send_ctx *sctx) | 
 | { | 
 | 	int i; | 
 | 	struct btrfs_trans_handle *trans = NULL; | 
 |  | 
 | again: | 
 | 	if (sctx->parent_root && | 
 | 	    sctx->parent_root->node != sctx->parent_root->commit_root) | 
 | 		goto commit_trans; | 
 |  | 
 | 	for (i = 0; i < sctx->clone_roots_cnt; i++) | 
 | 		if (sctx->clone_roots[i].root->node != | 
 | 		    sctx->clone_roots[i].root->commit_root) | 
 | 			goto commit_trans; | 
 |  | 
 | 	if (trans) | 
 | 		return btrfs_end_transaction(trans); | 
 |  | 
 | 	return 0; | 
 |  | 
 | commit_trans: | 
 | 	/* Use any root, all fs roots will get their commit roots updated. */ | 
 | 	if (!trans) { | 
 | 		trans = btrfs_join_transaction(sctx->send_root); | 
 | 		if (IS_ERR(trans)) | 
 | 			return PTR_ERR(trans); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return btrfs_commit_transaction(trans); | 
 | } | 
 |  | 
 | /* | 
 |  * Make sure any existing dellaloc is flushed for any root used by a send | 
 |  * operation so that we do not miss any data and we do not race with writeback | 
 |  * finishing and changing a tree while send is using the tree. This could | 
 |  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and | 
 |  * a send operation then uses the subvolume. | 
 |  * After flushing delalloc ensure_commit_roots_uptodate() must be called. | 
 |  */ | 
 | static int flush_delalloc_roots(struct send_ctx *sctx) | 
 | { | 
 | 	struct btrfs_root *root = sctx->parent_root; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	if (root) { | 
 | 		ret = btrfs_start_delalloc_snapshot(root, false); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < sctx->clone_roots_cnt; i++) { | 
 | 		root = sctx->clone_roots[i].root; | 
 | 		ret = btrfs_start_delalloc_snapshot(root, false); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) | 
 | { | 
 | 	spin_lock(&root->root_item_lock); | 
 | 	root->send_in_progress--; | 
 | 	/* | 
 | 	 * Not much left to do, we don't know why it's unbalanced and | 
 | 	 * can't blindly reset it to 0. | 
 | 	 */ | 
 | 	if (root->send_in_progress < 0) | 
 | 		btrfs_err(root->fs_info, | 
 | 			  "send_in_progress unbalanced %d root %llu", | 
 | 			  root->send_in_progress, root->root_key.objectid); | 
 | 	spin_unlock(&root->root_item_lock); | 
 | } | 
 |  | 
 | static void dedupe_in_progress_warn(const struct btrfs_root *root) | 
 | { | 
 | 	btrfs_warn_rl(root->fs_info, | 
 | "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", | 
 | 		      root->root_key.objectid, root->dedupe_in_progress); | 
 | } | 
 |  | 
 | long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; | 
 | 	struct btrfs_fs_info *fs_info = send_root->fs_info; | 
 | 	struct btrfs_root *clone_root; | 
 | 	struct send_ctx *sctx = NULL; | 
 | 	u32 i; | 
 | 	u64 *clone_sources_tmp = NULL; | 
 | 	int clone_sources_to_rollback = 0; | 
 | 	size_t alloc_size; | 
 | 	int sort_clone_roots = 0; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* | 
 | 	 * The subvolume must remain read-only during send, protect against | 
 | 	 * making it RW. This also protects against deletion. | 
 | 	 */ | 
 | 	spin_lock(&send_root->root_item_lock); | 
 | 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { | 
 | 		dedupe_in_progress_warn(send_root); | 
 | 		spin_unlock(&send_root->root_item_lock); | 
 | 		return -EAGAIN; | 
 | 	} | 
 | 	send_root->send_in_progress++; | 
 | 	spin_unlock(&send_root->root_item_lock); | 
 |  | 
 | 	/* | 
 | 	 * Userspace tools do the checks and warn the user if it's | 
 | 	 * not RO. | 
 | 	 */ | 
 | 	if (!btrfs_root_readonly(send_root)) { | 
 | 		ret = -EPERM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check that we don't overflow at later allocations, we request | 
 | 	 * clone_sources_count + 1 items, and compare to unsigned long inside | 
 | 	 * access_ok. Also set an upper limit for allocation size so this can't | 
 | 	 * easily exhaust memory. Max number of clone sources is about 200K. | 
 | 	 */ | 
 | 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { | 
 | 		ret = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); | 
 | 	if (!sctx) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&sctx->new_refs); | 
 | 	INIT_LIST_HEAD(&sctx->deleted_refs); | 
 | 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); | 
 | 	INIT_LIST_HEAD(&sctx->name_cache_list); | 
 |  | 
 | 	sctx->flags = arg->flags; | 
 |  | 
 | 	sctx->send_filp = fget(arg->send_fd); | 
 | 	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { | 
 | 		ret = -EBADF; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	sctx->send_root = send_root; | 
 | 	/* | 
 | 	 * Unlikely but possible, if the subvolume is marked for deletion but | 
 | 	 * is slow to remove the directory entry, send can still be started | 
 | 	 */ | 
 | 	if (btrfs_root_dead(sctx->send_root)) { | 
 | 		ret = -EPERM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	sctx->clone_roots_cnt = arg->clone_sources_count; | 
 |  | 
 | 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE; | 
 | 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); | 
 | 	if (!sctx->send_buf) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	sctx->pending_dir_moves = RB_ROOT; | 
 | 	sctx->waiting_dir_moves = RB_ROOT; | 
 | 	sctx->orphan_dirs = RB_ROOT; | 
 |  | 
 | 	sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, | 
 | 				     sizeof(*sctx->clone_roots), | 
 | 				     GFP_KERNEL); | 
 | 	if (!sctx->clone_roots) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	alloc_size = array_size(sizeof(*arg->clone_sources), | 
 | 				arg->clone_sources_count); | 
 |  | 
 | 	if (arg->clone_sources_count) { | 
 | 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); | 
 | 		if (!clone_sources_tmp) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources, | 
 | 				alloc_size); | 
 | 		if (ret) { | 
 | 			ret = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < arg->clone_sources_count; i++) { | 
 | 			clone_root = btrfs_get_fs_root(fs_info, | 
 | 						clone_sources_tmp[i], true); | 
 | 			if (IS_ERR(clone_root)) { | 
 | 				ret = PTR_ERR(clone_root); | 
 | 				goto out; | 
 | 			} | 
 | 			spin_lock(&clone_root->root_item_lock); | 
 | 			if (!btrfs_root_readonly(clone_root) || | 
 | 			    btrfs_root_dead(clone_root)) { | 
 | 				spin_unlock(&clone_root->root_item_lock); | 
 | 				btrfs_put_root(clone_root); | 
 | 				ret = -EPERM; | 
 | 				goto out; | 
 | 			} | 
 | 			if (clone_root->dedupe_in_progress) { | 
 | 				dedupe_in_progress_warn(clone_root); | 
 | 				spin_unlock(&clone_root->root_item_lock); | 
 | 				btrfs_put_root(clone_root); | 
 | 				ret = -EAGAIN; | 
 | 				goto out; | 
 | 			} | 
 | 			clone_root->send_in_progress++; | 
 | 			spin_unlock(&clone_root->root_item_lock); | 
 |  | 
 | 			sctx->clone_roots[i].root = clone_root; | 
 | 			clone_sources_to_rollback = i + 1; | 
 | 		} | 
 | 		kvfree(clone_sources_tmp); | 
 | 		clone_sources_tmp = NULL; | 
 | 	} | 
 |  | 
 | 	if (arg->parent_root) { | 
 | 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, | 
 | 						      true); | 
 | 		if (IS_ERR(sctx->parent_root)) { | 
 | 			ret = PTR_ERR(sctx->parent_root); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		spin_lock(&sctx->parent_root->root_item_lock); | 
 | 		sctx->parent_root->send_in_progress++; | 
 | 		if (!btrfs_root_readonly(sctx->parent_root) || | 
 | 				btrfs_root_dead(sctx->parent_root)) { | 
 | 			spin_unlock(&sctx->parent_root->root_item_lock); | 
 | 			ret = -EPERM; | 
 | 			goto out; | 
 | 		} | 
 | 		if (sctx->parent_root->dedupe_in_progress) { | 
 | 			dedupe_in_progress_warn(sctx->parent_root); | 
 | 			spin_unlock(&sctx->parent_root->root_item_lock); | 
 | 			ret = -EAGAIN; | 
 | 			goto out; | 
 | 		} | 
 | 		spin_unlock(&sctx->parent_root->root_item_lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Clones from send_root are allowed, but only if the clone source | 
 | 	 * is behind the current send position. This is checked while searching | 
 | 	 * for possible clone sources. | 
 | 	 */ | 
 | 	sctx->clone_roots[sctx->clone_roots_cnt++].root = | 
 | 		btrfs_grab_root(sctx->send_root); | 
 |  | 
 | 	/* We do a bsearch later */ | 
 | 	sort(sctx->clone_roots, sctx->clone_roots_cnt, | 
 | 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort, | 
 | 			NULL); | 
 | 	sort_clone_roots = 1; | 
 |  | 
 | 	ret = flush_delalloc_roots(sctx); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = ensure_commit_roots_uptodate(sctx); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = send_subvol(sctx); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { | 
 | 		ret = begin_cmd(sctx, BTRFS_SEND_C_END); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		ret = send_cmd(sctx); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); | 
 | 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { | 
 | 		struct rb_node *n; | 
 | 		struct pending_dir_move *pm; | 
 |  | 
 | 		n = rb_first(&sctx->pending_dir_moves); | 
 | 		pm = rb_entry(n, struct pending_dir_move, node); | 
 | 		while (!list_empty(&pm->list)) { | 
 | 			struct pending_dir_move *pm2; | 
 |  | 
 | 			pm2 = list_first_entry(&pm->list, | 
 | 					       struct pending_dir_move, list); | 
 | 			free_pending_move(sctx, pm2); | 
 | 		} | 
 | 		free_pending_move(sctx, pm); | 
 | 	} | 
 |  | 
 | 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); | 
 | 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { | 
 | 		struct rb_node *n; | 
 | 		struct waiting_dir_move *dm; | 
 |  | 
 | 		n = rb_first(&sctx->waiting_dir_moves); | 
 | 		dm = rb_entry(n, struct waiting_dir_move, node); | 
 | 		rb_erase(&dm->node, &sctx->waiting_dir_moves); | 
 | 		kfree(dm); | 
 | 	} | 
 |  | 
 | 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); | 
 | 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { | 
 | 		struct rb_node *n; | 
 | 		struct orphan_dir_info *odi; | 
 |  | 
 | 		n = rb_first(&sctx->orphan_dirs); | 
 | 		odi = rb_entry(n, struct orphan_dir_info, node); | 
 | 		free_orphan_dir_info(sctx, odi); | 
 | 	} | 
 |  | 
 | 	if (sort_clone_roots) { | 
 | 		for (i = 0; i < sctx->clone_roots_cnt; i++) { | 
 | 			btrfs_root_dec_send_in_progress( | 
 | 					sctx->clone_roots[i].root); | 
 | 			btrfs_put_root(sctx->clone_roots[i].root); | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) { | 
 | 			btrfs_root_dec_send_in_progress( | 
 | 					sctx->clone_roots[i].root); | 
 | 			btrfs_put_root(sctx->clone_roots[i].root); | 
 | 		} | 
 |  | 
 | 		btrfs_root_dec_send_in_progress(send_root); | 
 | 	} | 
 | 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { | 
 | 		btrfs_root_dec_send_in_progress(sctx->parent_root); | 
 | 		btrfs_put_root(sctx->parent_root); | 
 | 	} | 
 |  | 
 | 	kvfree(clone_sources_tmp); | 
 |  | 
 | 	if (sctx) { | 
 | 		if (sctx->send_filp) | 
 | 			fput(sctx->send_filp); | 
 |  | 
 | 		kvfree(sctx->clone_roots); | 
 | 		kvfree(sctx->send_buf); | 
 |  | 
 | 		name_cache_free(sctx); | 
 |  | 
 | 		kfree(sctx); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } |