|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. | 
|  | * | 
|  | * Authors: | 
|  | *    Alexander Graf <agraf@suse.de> | 
|  | *    Kevin Wolf <mail@kevin-wolf.de> | 
|  | *    Paul Mackerras <paulus@samba.org> | 
|  | * | 
|  | * Description: | 
|  | * Functions relating to running KVM on Book 3S processors where | 
|  | * we don't have access to hypervisor mode, and we run the guest | 
|  | * in problem state (user mode). | 
|  | * | 
|  | * This file is derived from arch/powerpc/kvm/44x.c, | 
|  | * by Hollis Blanchard <hollisb@us.ibm.com>. | 
|  | */ | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/reg.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/interrupt.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/kvm_ppc.h> | 
|  | #include <asm/kvm_book3s.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/switch_to.h> | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/setup.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/miscdevice.h> | 
|  | #include <asm/asm-prototypes.h> | 
|  | #include <asm/tm.h> | 
|  |  | 
|  | #include "book3s.h" | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include "trace_pr.h" | 
|  |  | 
|  | /* #define EXIT_DEBUG */ | 
|  | /* #define DEBUG_EXT */ | 
|  |  | 
|  | static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, | 
|  | ulong msr); | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac); | 
|  | #endif | 
|  |  | 
|  | /* Some compatibility defines */ | 
|  | #ifdef CONFIG_PPC_BOOK3S_32 | 
|  | #define MSR_USER32 MSR_USER | 
|  | #define MSR_USER64 MSR_USER | 
|  | #define HW_PAGE_SIZE PAGE_SIZE | 
|  | #define HPTE_R_M   _PAGE_COHERENT | 
|  | #endif | 
|  |  | 
|  | static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ulong msr = kvmppc_get_msr(vcpu); | 
|  | return (msr & (MSR_IR|MSR_DR)) == MSR_DR; | 
|  | } | 
|  |  | 
|  | static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ulong msr = kvmppc_get_msr(vcpu); | 
|  | ulong pc = kvmppc_get_pc(vcpu); | 
|  |  | 
|  | /* We are in DR only split real mode */ | 
|  | if ((msr & (MSR_IR|MSR_DR)) != MSR_DR) | 
|  | return; | 
|  |  | 
|  | /* We have not fixed up the guest already */ | 
|  | if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) | 
|  | return; | 
|  |  | 
|  | /* The code is in fixupable address space */ | 
|  | if (pc & SPLIT_HACK_MASK) | 
|  | return; | 
|  |  | 
|  | vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK; | 
|  | kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS); | 
|  | } | 
|  |  | 
|  | static void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) { | 
|  | ulong pc = kvmppc_get_pc(vcpu); | 
|  | ulong lr = kvmppc_get_lr(vcpu); | 
|  | if ((pc & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) | 
|  | kvmppc_set_pc(vcpu, pc & ~SPLIT_HACK_MASK); | 
|  | if ((lr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS) | 
|  | kvmppc_set_lr(vcpu, lr & ~SPLIT_HACK_MASK); | 
|  | vcpu->arch.hflags &= ~BOOK3S_HFLAG_SPLIT_HACK; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvmppc_inject_interrupt_pr(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) | 
|  | { | 
|  | unsigned long msr, pc, new_msr, new_pc; | 
|  |  | 
|  | kvmppc_unfixup_split_real(vcpu); | 
|  |  | 
|  | msr = kvmppc_get_msr(vcpu); | 
|  | pc = kvmppc_get_pc(vcpu); | 
|  | new_msr = vcpu->arch.intr_msr; | 
|  | new_pc = to_book3s(vcpu)->hior + vec; | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | /* If transactional, change to suspend mode on IRQ delivery */ | 
|  | if (MSR_TM_TRANSACTIONAL(msr)) | 
|  | new_msr |= MSR_TS_S; | 
|  | else | 
|  | new_msr |= msr & MSR_TS_MASK; | 
|  | #endif | 
|  |  | 
|  | kvmppc_set_srr0(vcpu, pc); | 
|  | kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); | 
|  | kvmppc_set_pc(vcpu, new_pc); | 
|  | kvmppc_set_msr(vcpu, new_msr); | 
|  | } | 
|  |  | 
|  | static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); | 
|  | memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); | 
|  | svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; | 
|  | svcpu->in_use = 0; | 
|  | svcpu_put(svcpu); | 
|  |  | 
|  | /* Disable AIL if supported */ | 
|  | if (cpu_has_feature(CPU_FTR_HVMODE)) { | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_207S)) | 
|  | mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL); | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV)) | 
|  | mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) & ~FSCR_SCV); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | vcpu->cpu = smp_processor_id(); | 
|  | #ifdef CONFIG_PPC_BOOK3S_32 | 
|  | current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu; | 
|  | #endif | 
|  |  | 
|  | if (kvmppc_is_split_real(vcpu)) | 
|  | kvmppc_fixup_split_real(vcpu); | 
|  |  | 
|  | kvmppc_restore_tm_pr(vcpu); | 
|  | } | 
|  |  | 
|  | static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); | 
|  | if (svcpu->in_use) { | 
|  | kvmppc_copy_from_svcpu(vcpu); | 
|  | } | 
|  | memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); | 
|  | to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; | 
|  | svcpu_put(svcpu); | 
|  |  | 
|  | /* Enable AIL if supported */ | 
|  | if (cpu_has_feature(CPU_FTR_HVMODE)) { | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_207S)) | 
|  | mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3); | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300) && (current->thread.fscr & FSCR_SCV)) | 
|  | mtspr(SPRN_FSCR, mfspr(SPRN_FSCR) | FSCR_SCV); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (kvmppc_is_split_real(vcpu)) | 
|  | kvmppc_unfixup_split_real(vcpu); | 
|  |  | 
|  | kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); | 
|  | kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); | 
|  | kvmppc_save_tm_pr(vcpu); | 
|  |  | 
|  | vcpu->cpu = -1; | 
|  | } | 
|  |  | 
|  | /* Copy data needed by real-mode code from vcpu to shadow vcpu */ | 
|  | void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); | 
|  |  | 
|  | svcpu->gpr[0] = vcpu->arch.regs.gpr[0]; | 
|  | svcpu->gpr[1] = vcpu->arch.regs.gpr[1]; | 
|  | svcpu->gpr[2] = vcpu->arch.regs.gpr[2]; | 
|  | svcpu->gpr[3] = vcpu->arch.regs.gpr[3]; | 
|  | svcpu->gpr[4] = vcpu->arch.regs.gpr[4]; | 
|  | svcpu->gpr[5] = vcpu->arch.regs.gpr[5]; | 
|  | svcpu->gpr[6] = vcpu->arch.regs.gpr[6]; | 
|  | svcpu->gpr[7] = vcpu->arch.regs.gpr[7]; | 
|  | svcpu->gpr[8] = vcpu->arch.regs.gpr[8]; | 
|  | svcpu->gpr[9] = vcpu->arch.regs.gpr[9]; | 
|  | svcpu->gpr[10] = vcpu->arch.regs.gpr[10]; | 
|  | svcpu->gpr[11] = vcpu->arch.regs.gpr[11]; | 
|  | svcpu->gpr[12] = vcpu->arch.regs.gpr[12]; | 
|  | svcpu->gpr[13] = vcpu->arch.regs.gpr[13]; | 
|  | svcpu->cr  = vcpu->arch.regs.ccr; | 
|  | svcpu->xer = vcpu->arch.regs.xer; | 
|  | svcpu->ctr = vcpu->arch.regs.ctr; | 
|  | svcpu->lr  = vcpu->arch.regs.link; | 
|  | svcpu->pc  = vcpu->arch.regs.nip; | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | svcpu->shadow_fscr = vcpu->arch.shadow_fscr; | 
|  | #endif | 
|  | /* | 
|  | * Now also save the current time base value. We use this | 
|  | * to find the guest purr and spurr value. | 
|  | */ | 
|  | vcpu->arch.entry_tb = get_tb(); | 
|  | vcpu->arch.entry_vtb = get_vtb(); | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_207S)) | 
|  | vcpu->arch.entry_ic = mfspr(SPRN_IC); | 
|  | svcpu->in_use = true; | 
|  |  | 
|  | svcpu_put(svcpu); | 
|  | } | 
|  |  | 
|  | static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ulong guest_msr = kvmppc_get_msr(vcpu); | 
|  | ulong smsr = guest_msr; | 
|  |  | 
|  | /* Guest MSR values */ | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE | | 
|  | MSR_TM | MSR_TS_MASK; | 
|  | #else | 
|  | smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE; | 
|  | #endif | 
|  | /* Process MSR values */ | 
|  | smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; | 
|  | /* External providers the guest reserved */ | 
|  | smsr |= (guest_msr & vcpu->arch.guest_owned_ext); | 
|  | /* 64-bit Process MSR values */ | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | smsr |= MSR_HV; | 
|  | #endif | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | /* | 
|  | * in guest privileged state, we want to fail all TM transactions. | 
|  | * So disable MSR TM bit so that all tbegin. will be able to be | 
|  | * trapped into host. | 
|  | */ | 
|  | if (!(guest_msr & MSR_PR)) | 
|  | smsr &= ~MSR_TM; | 
|  | #endif | 
|  | vcpu->arch.shadow_msr = smsr; | 
|  | } | 
|  |  | 
|  | /* Copy data touched by real-mode code from shadow vcpu back to vcpu */ | 
|  | void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | ulong old_msr; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Maybe we were already preempted and synced the svcpu from | 
|  | * our preempt notifiers. Don't bother touching this svcpu then. | 
|  | */ | 
|  | if (!svcpu->in_use) | 
|  | goto out; | 
|  |  | 
|  | vcpu->arch.regs.gpr[0] = svcpu->gpr[0]; | 
|  | vcpu->arch.regs.gpr[1] = svcpu->gpr[1]; | 
|  | vcpu->arch.regs.gpr[2] = svcpu->gpr[2]; | 
|  | vcpu->arch.regs.gpr[3] = svcpu->gpr[3]; | 
|  | vcpu->arch.regs.gpr[4] = svcpu->gpr[4]; | 
|  | vcpu->arch.regs.gpr[5] = svcpu->gpr[5]; | 
|  | vcpu->arch.regs.gpr[6] = svcpu->gpr[6]; | 
|  | vcpu->arch.regs.gpr[7] = svcpu->gpr[7]; | 
|  | vcpu->arch.regs.gpr[8] = svcpu->gpr[8]; | 
|  | vcpu->arch.regs.gpr[9] = svcpu->gpr[9]; | 
|  | vcpu->arch.regs.gpr[10] = svcpu->gpr[10]; | 
|  | vcpu->arch.regs.gpr[11] = svcpu->gpr[11]; | 
|  | vcpu->arch.regs.gpr[12] = svcpu->gpr[12]; | 
|  | vcpu->arch.regs.gpr[13] = svcpu->gpr[13]; | 
|  | vcpu->arch.regs.ccr  = svcpu->cr; | 
|  | vcpu->arch.regs.xer = svcpu->xer; | 
|  | vcpu->arch.regs.ctr = svcpu->ctr; | 
|  | vcpu->arch.regs.link  = svcpu->lr; | 
|  | vcpu->arch.regs.nip  = svcpu->pc; | 
|  | vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; | 
|  | vcpu->arch.fault_dar   = svcpu->fault_dar; | 
|  | vcpu->arch.fault_dsisr = svcpu->fault_dsisr; | 
|  | vcpu->arch.last_inst   = svcpu->last_inst; | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | vcpu->arch.shadow_fscr = svcpu->shadow_fscr; | 
|  | #endif | 
|  | /* | 
|  | * Update purr and spurr using time base on exit. | 
|  | */ | 
|  | vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb; | 
|  | vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb; | 
|  | to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb; | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_207S)) | 
|  | vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic; | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | /* | 
|  | * Unlike other MSR bits, MSR[TS]bits can be changed at guest without | 
|  | * notifying host: | 
|  | *  modified by unprivileged instructions like "tbegin"/"tend"/ | 
|  | * "tresume"/"tsuspend" in PR KVM guest. | 
|  | * | 
|  | * It is necessary to sync here to calculate a correct shadow_msr. | 
|  | * | 
|  | * privileged guest's tbegin will be failed at present. So we | 
|  | * only take care of problem state guest. | 
|  | */ | 
|  | old_msr = kvmppc_get_msr(vcpu); | 
|  | if (unlikely((old_msr & MSR_PR) && | 
|  | (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) != | 
|  | (old_msr & (MSR_TS_MASK)))) { | 
|  | old_msr &= ~(MSR_TS_MASK); | 
|  | old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)); | 
|  | kvmppc_set_msr_fast(vcpu, old_msr); | 
|  | kvmppc_recalc_shadow_msr(vcpu); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | svcpu->in_use = false; | 
|  |  | 
|  | out: | 
|  | svcpu_put(svcpu); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | tm_enable(); | 
|  | vcpu->arch.tfhar = mfspr(SPRN_TFHAR); | 
|  | vcpu->arch.texasr = mfspr(SPRN_TEXASR); | 
|  | vcpu->arch.tfiar = mfspr(SPRN_TFIAR); | 
|  | tm_disable(); | 
|  | } | 
|  |  | 
|  | void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | tm_enable(); | 
|  | mtspr(SPRN_TFHAR, vcpu->arch.tfhar); | 
|  | mtspr(SPRN_TEXASR, vcpu->arch.texasr); | 
|  | mtspr(SPRN_TFIAR, vcpu->arch.tfiar); | 
|  | tm_disable(); | 
|  | } | 
|  |  | 
|  | /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at | 
|  | * hardware. | 
|  | */ | 
|  | static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | ulong exit_nr; | 
|  | ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) & | 
|  | (MSR_FP | MSR_VEC | MSR_VSX); | 
|  |  | 
|  | if (!ext_diff) | 
|  | return; | 
|  |  | 
|  | if (ext_diff == MSR_FP) | 
|  | exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL; | 
|  | else if (ext_diff == MSR_VEC) | 
|  | exit_nr = BOOK3S_INTERRUPT_ALTIVEC; | 
|  | else | 
|  | exit_nr = BOOK3S_INTERRUPT_VSX; | 
|  |  | 
|  | kvmppc_handle_ext(vcpu, exit_nr, ext_diff); | 
|  | } | 
|  |  | 
|  | void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) { | 
|  | kvmppc_save_tm_sprs(vcpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); | 
|  | kvmppc_giveup_ext(vcpu, MSR_VSX); | 
|  |  | 
|  | preempt_disable(); | 
|  | _kvmppc_save_tm_pr(vcpu, mfmsr()); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) { | 
|  | kvmppc_restore_tm_sprs(vcpu); | 
|  | if (kvmppc_get_msr(vcpu) & MSR_TM) { | 
|  | kvmppc_handle_lost_math_exts(vcpu); | 
|  | if (vcpu->arch.fscr & FSCR_TAR) | 
|  | kvmppc_handle_fac(vcpu, FSCR_TAR_LG); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | preempt_disable(); | 
|  | _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu)); | 
|  | preempt_enable(); | 
|  |  | 
|  | if (kvmppc_get_msr(vcpu) & MSR_TM) { | 
|  | kvmppc_handle_lost_math_exts(vcpu); | 
|  | if (vcpu->arch.fscr & FSCR_TAR) | 
|  | kvmppc_handle_fac(vcpu, FSCR_TAR_LG); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r = 1; /* Indicate we want to get back into the guest */ | 
|  |  | 
|  | /* We misuse TLB_FLUSH to indicate that we want to clear | 
|  | all shadow cache entries */ | 
|  | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) | 
|  | kvmppc_mmu_pte_flush(vcpu, 0, 0); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /************* MMU Notifiers *************/ | 
|  | static bool do_kvm_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | unsigned long i; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) | 
|  | kvmppc_mmu_pte_pflush(vcpu, range->start << PAGE_SHIFT, | 
|  | range->end << PAGE_SHIFT); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool kvm_unmap_gfn_range_pr(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | return do_kvm_unmap_gfn(kvm, range); | 
|  | } | 
|  |  | 
|  | static bool kvm_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | /* XXX could be more clever ;) */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool kvm_test_age_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | /* XXX could be more clever ;) */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool kvm_set_spte_gfn_pr(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | /* The page will get remapped properly on its next fault */ | 
|  | return do_kvm_unmap_gfn(kvm, range); | 
|  | } | 
|  |  | 
|  | /*****************************************/ | 
|  |  | 
|  | static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr) | 
|  | { | 
|  | ulong old_msr; | 
|  |  | 
|  | /* For PAPR guest, make sure MSR reflects guest mode */ | 
|  | if (vcpu->arch.papr_enabled) | 
|  | msr = (msr & ~MSR_HV) | MSR_ME; | 
|  |  | 
|  | #ifdef EXIT_DEBUG | 
|  | printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | /* We should never target guest MSR to TS=10 && PR=0, | 
|  | * since we always fail transaction for guest privilege | 
|  | * state. | 
|  | */ | 
|  | if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr)) | 
|  | kvmppc_emulate_tabort(vcpu, | 
|  | TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT); | 
|  | #endif | 
|  |  | 
|  | old_msr = kvmppc_get_msr(vcpu); | 
|  | msr &= to_book3s(vcpu)->msr_mask; | 
|  | kvmppc_set_msr_fast(vcpu, msr); | 
|  | kvmppc_recalc_shadow_msr(vcpu); | 
|  |  | 
|  | if (msr & MSR_POW) { | 
|  | if (!vcpu->arch.pending_exceptions) { | 
|  | kvm_vcpu_halt(vcpu); | 
|  | vcpu->stat.generic.halt_wakeup++; | 
|  |  | 
|  | /* Unset POW bit after we woke up */ | 
|  | msr &= ~MSR_POW; | 
|  | kvmppc_set_msr_fast(vcpu, msr); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (kvmppc_is_split_real(vcpu)) | 
|  | kvmppc_fixup_split_real(vcpu); | 
|  | else | 
|  | kvmppc_unfixup_split_real(vcpu); | 
|  |  | 
|  | if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) != | 
|  | (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { | 
|  | kvmppc_mmu_flush_segments(vcpu); | 
|  | kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); | 
|  |  | 
|  | /* Preload magic page segment when in kernel mode */ | 
|  | if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { | 
|  | struct kvm_vcpu_arch *a = &vcpu->arch; | 
|  |  | 
|  | if (msr & MSR_DR) | 
|  | kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); | 
|  | else | 
|  | kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When switching from 32 to 64-bit, we may have a stale 32-bit | 
|  | * magic page around, we need to flush it. Typically 32-bit magic | 
|  | * page will be instantiated when calling into RTAS. Note: We | 
|  | * assume that such transition only happens while in kernel mode, | 
|  | * ie, we never transition from user 32-bit to kernel 64-bit with | 
|  | * a 32-bit magic page around. | 
|  | */ | 
|  | if (vcpu->arch.magic_page_pa && | 
|  | !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { | 
|  | /* going from RTAS to normal kernel code */ | 
|  | kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, | 
|  | ~0xFFFUL); | 
|  | } | 
|  |  | 
|  | /* Preload FPU if it's enabled */ | 
|  | if (kvmppc_get_msr(vcpu) & MSR_FP) | 
|  | kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | if (kvmppc_get_msr(vcpu) & MSR_TM) | 
|  | kvmppc_handle_lost_math_exts(vcpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) | 
|  | { | 
|  | u32 host_pvr; | 
|  |  | 
|  | vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; | 
|  | vcpu->arch.pvr = pvr; | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | if ((pvr >= 0x330000) && (pvr < 0x70330000)) { | 
|  | kvmppc_mmu_book3s_64_init(vcpu); | 
|  | if (!to_book3s(vcpu)->hior_explicit) | 
|  | to_book3s(vcpu)->hior = 0xfff00000; | 
|  | to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; | 
|  | vcpu->arch.cpu_type = KVM_CPU_3S_64; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | kvmppc_mmu_book3s_32_init(vcpu); | 
|  | if (!to_book3s(vcpu)->hior_explicit) | 
|  | to_book3s(vcpu)->hior = 0; | 
|  | to_book3s(vcpu)->msr_mask = 0xffffffffULL; | 
|  | vcpu->arch.cpu_type = KVM_CPU_3S_32; | 
|  | } | 
|  |  | 
|  | kvmppc_sanity_check(vcpu); | 
|  |  | 
|  | /* If we are in hypervisor level on 970, we can tell the CPU to | 
|  | * treat DCBZ as 32 bytes store */ | 
|  | vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; | 
|  | if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && | 
|  | !strcmp(cur_cpu_spec->platform, "ppc970")) | 
|  | vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; | 
|  |  | 
|  | /* Cell performs badly if MSR_FEx are set. So let's hope nobody | 
|  | really needs them in a VM on Cell and force disable them. */ | 
|  | if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) | 
|  | to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); | 
|  |  | 
|  | /* | 
|  | * If they're asking for POWER6 or later, set the flag | 
|  | * indicating that we can do multiple large page sizes | 
|  | * and 1TB segments. | 
|  | * Also set the flag that indicates that tlbie has the large | 
|  | * page bit in the RB operand instead of the instruction. | 
|  | */ | 
|  | switch (PVR_VER(pvr)) { | 
|  | case PVR_POWER6: | 
|  | case PVR_POWER7: | 
|  | case PVR_POWER7p: | 
|  | case PVR_POWER8: | 
|  | case PVR_POWER8E: | 
|  | case PVR_POWER8NVL: | 
|  | case PVR_POWER9: | 
|  | vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | | 
|  | BOOK3S_HFLAG_NEW_TLBIE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_32 | 
|  | /* 32 bit Book3S always has 32 byte dcbz */ | 
|  | vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; | 
|  | #endif | 
|  |  | 
|  | /* On some CPUs we can execute paired single operations natively */ | 
|  | asm ( "mfpvr %0" : "=r"(host_pvr)); | 
|  | switch (host_pvr) { | 
|  | case 0x00080200:	/* lonestar 2.0 */ | 
|  | case 0x00088202:	/* lonestar 2.2 */ | 
|  | case 0x70000100:	/* gekko 1.0 */ | 
|  | case 0x00080100:	/* gekko 2.0 */ | 
|  | case 0x00083203:	/* gekko 2.3a */ | 
|  | case 0x00083213:	/* gekko 2.3b */ | 
|  | case 0x00083204:	/* gekko 2.4 */ | 
|  | case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */ | 
|  | case 0x00087200:	/* broadway */ | 
|  | vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; | 
|  | /* Enable HID2.PSE - in case we need it later */ | 
|  | mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To | 
|  | * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to | 
|  | * emulate 32 bytes dcbz length. | 
|  | * | 
|  | * The Book3s_64 inventors also realized this case and implemented a special bit | 
|  | * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. | 
|  | * | 
|  | * My approach here is to patch the dcbz instruction on executing pages. | 
|  | */ | 
|  | static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) | 
|  | { | 
|  | struct page *hpage; | 
|  | u64 hpage_offset; | 
|  | u32 *page; | 
|  | int i; | 
|  |  | 
|  | hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); | 
|  | if (is_error_page(hpage)) | 
|  | return; | 
|  |  | 
|  | hpage_offset = pte->raddr & ~PAGE_MASK; | 
|  | hpage_offset &= ~0xFFFULL; | 
|  | hpage_offset /= 4; | 
|  |  | 
|  | get_page(hpage); | 
|  | page = kmap_atomic(hpage); | 
|  |  | 
|  | /* patch dcbz into reserved instruction, so we trap */ | 
|  | for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) | 
|  | if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ) | 
|  | page[i] &= cpu_to_be32(0xfffffff7); | 
|  |  | 
|  | kunmap_atomic(page); | 
|  | put_page(hpage); | 
|  | } | 
|  |  | 
|  | static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) | 
|  | { | 
|  | ulong mp_pa = vcpu->arch.magic_page_pa; | 
|  |  | 
|  | if (!(kvmppc_get_msr(vcpu) & MSR_SF)) | 
|  | mp_pa = (uint32_t)mp_pa; | 
|  |  | 
|  | gpa &= ~0xFFFULL; | 
|  | if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static int kvmppc_handle_pagefault(struct kvm_vcpu *vcpu, | 
|  | ulong eaddr, int vec) | 
|  | { | 
|  | bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); | 
|  | bool iswrite = false; | 
|  | int r = RESUME_GUEST; | 
|  | int relocated; | 
|  | int page_found = 0; | 
|  | struct kvmppc_pte pte = { 0 }; | 
|  | bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false; | 
|  | bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false; | 
|  | u64 vsid; | 
|  |  | 
|  | relocated = data ? dr : ir; | 
|  | if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE)) | 
|  | iswrite = true; | 
|  |  | 
|  | /* Resolve real address if translation turned on */ | 
|  | if (relocated) { | 
|  | page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite); | 
|  | } else { | 
|  | pte.may_execute = true; | 
|  | pte.may_read = true; | 
|  | pte.may_write = true; | 
|  | pte.raddr = eaddr & KVM_PAM; | 
|  | pte.eaddr = eaddr; | 
|  | pte.vpage = eaddr >> 12; | 
|  | pte.page_size = MMU_PAGE_64K; | 
|  | pte.wimg = HPTE_R_M; | 
|  | } | 
|  |  | 
|  | switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) { | 
|  | case 0: | 
|  | pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); | 
|  | break; | 
|  | case MSR_DR: | 
|  | if (!data && | 
|  | (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) && | 
|  | ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)) | 
|  | pte.raddr &= ~SPLIT_HACK_MASK; | 
|  | fallthrough; | 
|  | case MSR_IR: | 
|  | vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); | 
|  |  | 
|  | if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR) | 
|  | pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); | 
|  | else | 
|  | pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); | 
|  | pte.vpage |= vsid; | 
|  |  | 
|  | if (vsid == -1) | 
|  | page_found = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (vcpu->arch.mmu.is_dcbz32(vcpu) && | 
|  | (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { | 
|  | /* | 
|  | * If we do the dcbz hack, we have to NX on every execution, | 
|  | * so we can patch the executing code. This renders our guest | 
|  | * NX-less. | 
|  | */ | 
|  | pte.may_execute = !data; | 
|  | } | 
|  |  | 
|  | if (page_found == -ENOENT || page_found == -EPERM) { | 
|  | /* Page not found in guest PTE entries, or protection fault */ | 
|  | u64 flags; | 
|  |  | 
|  | if (page_found == -EPERM) | 
|  | flags = DSISR_PROTFAULT; | 
|  | else | 
|  | flags = DSISR_NOHPTE; | 
|  | if (data) { | 
|  | flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE; | 
|  | kvmppc_core_queue_data_storage(vcpu, eaddr, flags); | 
|  | } else { | 
|  | kvmppc_core_queue_inst_storage(vcpu, flags); | 
|  | } | 
|  | } else if (page_found == -EINVAL) { | 
|  | /* Page not found in guest SLB */ | 
|  | kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); | 
|  | kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); | 
|  | } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) { | 
|  | if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) { | 
|  | /* | 
|  | * There is already a host HPTE there, presumably | 
|  | * a read-only one for a page the guest thinks | 
|  | * is writable, so get rid of it first. | 
|  | */ | 
|  | kvmppc_mmu_unmap_page(vcpu, &pte); | 
|  | } | 
|  | /* The guest's PTE is not mapped yet. Map on the host */ | 
|  | if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) { | 
|  | /* Exit KVM if mapping failed */ | 
|  | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | return RESUME_HOST; | 
|  | } | 
|  | if (data) | 
|  | vcpu->stat.sp_storage++; | 
|  | else if (vcpu->arch.mmu.is_dcbz32(vcpu) && | 
|  | (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) | 
|  | kvmppc_patch_dcbz(vcpu, &pte); | 
|  | } else { | 
|  | /* MMIO */ | 
|  | vcpu->stat.mmio_exits++; | 
|  | vcpu->arch.paddr_accessed = pte.raddr; | 
|  | vcpu->arch.vaddr_accessed = pte.eaddr; | 
|  | r = kvmppc_emulate_mmio(vcpu); | 
|  | if ( r == RESUME_HOST_NV ) | 
|  | r = RESUME_HOST; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* Give up external provider (FPU, Altivec, VSX) */ | 
|  | void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) | 
|  | { | 
|  | struct thread_struct *t = ¤t->thread; | 
|  |  | 
|  | /* | 
|  | * VSX instructions can access FP and vector registers, so if | 
|  | * we are giving up VSX, make sure we give up FP and VMX as well. | 
|  | */ | 
|  | if (msr & MSR_VSX) | 
|  | msr |= MSR_FP | MSR_VEC; | 
|  |  | 
|  | msr &= vcpu->arch.guest_owned_ext; | 
|  | if (!msr) | 
|  | return; | 
|  |  | 
|  | #ifdef DEBUG_EXT | 
|  | printk(KERN_INFO "Giving up ext 0x%lx\n", msr); | 
|  | #endif | 
|  |  | 
|  | if (msr & MSR_FP) { | 
|  | /* | 
|  | * Note that on CPUs with VSX, giveup_fpu stores | 
|  | * both the traditional FP registers and the added VSX | 
|  | * registers into thread.fp_state.fpr[]. | 
|  | */ | 
|  | if (t->regs->msr & MSR_FP) | 
|  | giveup_fpu(current); | 
|  | t->fp_save_area = NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | if (msr & MSR_VEC) { | 
|  | if (current->thread.regs->msr & MSR_VEC) | 
|  | giveup_altivec(current); | 
|  | t->vr_save_area = NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); | 
|  | kvmppc_recalc_shadow_msr(vcpu); | 
|  | } | 
|  |  | 
|  | /* Give up facility (TAR / EBB / DSCR) */ | 
|  | void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac) | 
|  | { | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) { | 
|  | /* Facility not available to the guest, ignore giveup request*/ | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (fac) { | 
|  | case FSCR_TAR_LG: | 
|  | vcpu->arch.tar = mfspr(SPRN_TAR); | 
|  | mtspr(SPRN_TAR, current->thread.tar); | 
|  | vcpu->arch.shadow_fscr &= ~FSCR_TAR; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Handle external providers (FPU, Altivec, VSX) */ | 
|  | static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, | 
|  | ulong msr) | 
|  | { | 
|  | struct thread_struct *t = ¤t->thread; | 
|  |  | 
|  | /* When we have paired singles, we emulate in software */ | 
|  | if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) | 
|  | return RESUME_GUEST; | 
|  |  | 
|  | if (!(kvmppc_get_msr(vcpu) & msr)) { | 
|  | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); | 
|  | return RESUME_GUEST; | 
|  | } | 
|  |  | 
|  | if (msr == MSR_VSX) { | 
|  | /* No VSX?  Give an illegal instruction interrupt */ | 
|  | #ifdef CONFIG_VSX | 
|  | if (!cpu_has_feature(CPU_FTR_VSX)) | 
|  | #endif | 
|  | { | 
|  | kvmppc_core_queue_program(vcpu, SRR1_PROGILL); | 
|  | return RESUME_GUEST; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to load up all the FP and VMX registers before | 
|  | * we can let the guest use VSX instructions. | 
|  | */ | 
|  | msr = MSR_FP | MSR_VEC | MSR_VSX; | 
|  | } | 
|  |  | 
|  | /* See if we already own all the ext(s) needed */ | 
|  | msr &= ~vcpu->arch.guest_owned_ext; | 
|  | if (!msr) | 
|  | return RESUME_GUEST; | 
|  |  | 
|  | #ifdef DEBUG_EXT | 
|  | printk(KERN_INFO "Loading up ext 0x%lx\n", msr); | 
|  | #endif | 
|  |  | 
|  | if (msr & MSR_FP) { | 
|  | preempt_disable(); | 
|  | enable_kernel_fp(); | 
|  | load_fp_state(&vcpu->arch.fp); | 
|  | disable_kernel_fp(); | 
|  | t->fp_save_area = &vcpu->arch.fp; | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | if (msr & MSR_VEC) { | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | preempt_disable(); | 
|  | enable_kernel_altivec(); | 
|  | load_vr_state(&vcpu->arch.vr); | 
|  | disable_kernel_altivec(); | 
|  | t->vr_save_area = &vcpu->arch.vr; | 
|  | preempt_enable(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | t->regs->msr |= msr; | 
|  | vcpu->arch.guest_owned_ext |= msr; | 
|  | kvmppc_recalc_shadow_msr(vcpu); | 
|  |  | 
|  | return RESUME_GUEST; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kernel code using FP or VMX could have flushed guest state to | 
|  | * the thread_struct; if so, get it back now. | 
|  | */ | 
|  | static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long lost_ext; | 
|  |  | 
|  | lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; | 
|  | if (!lost_ext) | 
|  | return; | 
|  |  | 
|  | if (lost_ext & MSR_FP) { | 
|  | preempt_disable(); | 
|  | enable_kernel_fp(); | 
|  | load_fp_state(&vcpu->arch.fp); | 
|  | disable_kernel_fp(); | 
|  | preempt_enable(); | 
|  | } | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | if (lost_ext & MSR_VEC) { | 
|  | preempt_disable(); | 
|  | enable_kernel_altivec(); | 
|  | load_vr_state(&vcpu->arch.vr); | 
|  | disable_kernel_altivec(); | 
|  | preempt_enable(); | 
|  | } | 
|  | #endif | 
|  | current->thread.regs->msr |= lost_ext; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  |  | 
|  | void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac) | 
|  | { | 
|  | /* Inject the Interrupt Cause field and trigger a guest interrupt */ | 
|  | vcpu->arch.fscr &= ~(0xffULL << 56); | 
|  | vcpu->arch.fscr |= (fac << 56); | 
|  | kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL); | 
|  | } | 
|  |  | 
|  | static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac) | 
|  | { | 
|  | enum emulation_result er = EMULATE_FAIL; | 
|  |  | 
|  | if (!(kvmppc_get_msr(vcpu) & MSR_PR)) | 
|  | er = kvmppc_emulate_instruction(vcpu); | 
|  |  | 
|  | if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) { | 
|  | /* Couldn't emulate, trigger interrupt in guest */ | 
|  | kvmppc_trigger_fac_interrupt(vcpu, fac); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Enable facilities (TAR, EBB, DSCR) for the guest */ | 
|  | static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac) | 
|  | { | 
|  | bool guest_fac_enabled; | 
|  | BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S)); | 
|  |  | 
|  | /* | 
|  | * Not every facility is enabled by FSCR bits, check whether the | 
|  | * guest has this facility enabled at all. | 
|  | */ | 
|  | switch (fac) { | 
|  | case FSCR_TAR_LG: | 
|  | case FSCR_EBB_LG: | 
|  | guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac)); | 
|  | break; | 
|  | case FSCR_TM_LG: | 
|  | guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM; | 
|  | break; | 
|  | default: | 
|  | guest_fac_enabled = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!guest_fac_enabled) { | 
|  | /* Facility not enabled by the guest */ | 
|  | kvmppc_trigger_fac_interrupt(vcpu, fac); | 
|  | return RESUME_GUEST; | 
|  | } | 
|  |  | 
|  | switch (fac) { | 
|  | case FSCR_TAR_LG: | 
|  | /* TAR switching isn't lazy in Linux yet */ | 
|  | current->thread.tar = mfspr(SPRN_TAR); | 
|  | mtspr(SPRN_TAR, vcpu->arch.tar); | 
|  | vcpu->arch.shadow_fscr |= FSCR_TAR; | 
|  | break; | 
|  | default: | 
|  | kvmppc_emulate_fac(vcpu, fac); | 
|  | break; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | /* Since we disabled MSR_TM at privilege state, the mfspr instruction | 
|  | * for TM spr can trigger TM fac unavailable. In this case, the | 
|  | * emulation is handled by kvmppc_emulate_fac(), which invokes | 
|  | * kvmppc_emulate_mfspr() finally. But note the mfspr can include | 
|  | * RT for NV registers. So it need to restore those NV reg to reflect | 
|  | * the update. | 
|  | */ | 
|  | if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR)) | 
|  | return RESUME_GUEST_NV; | 
|  | #endif | 
|  |  | 
|  | return RESUME_GUEST; | 
|  | } | 
|  |  | 
|  | void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr) | 
|  | { | 
|  | if (fscr & FSCR_SCV) | 
|  | fscr &= ~FSCR_SCV; /* SCV must not be enabled */ | 
|  | if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) { | 
|  | /* TAR got dropped, drop it in shadow too */ | 
|  | kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); | 
|  | } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) { | 
|  | vcpu->arch.fscr = fscr; | 
|  | kvmppc_handle_fac(vcpu, FSCR_TAR_LG); | 
|  | return; | 
|  | } | 
|  |  | 
|  | vcpu->arch.fscr = fscr; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void kvmppc_setup_debug(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { | 
|  | u64 msr = kvmppc_get_msr(vcpu); | 
|  |  | 
|  | kvmppc_set_msr(vcpu, msr | MSR_SE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvmppc_clear_debug(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { | 
|  | u64 msr = kvmppc_get_msr(vcpu); | 
|  |  | 
|  | kvmppc_set_msr(vcpu, msr & ~MSR_SE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvmppc_exit_pr_progint(struct kvm_vcpu *vcpu, unsigned int exit_nr) | 
|  | { | 
|  | enum emulation_result er; | 
|  | ulong flags; | 
|  | u32 last_inst; | 
|  | int emul, r; | 
|  |  | 
|  | /* | 
|  | * shadow_srr1 only contains valid flags if we came here via a program | 
|  | * exception. The other exceptions (emulation assist, FP unavailable, | 
|  | * etc.) do not provide flags in SRR1, so use an illegal-instruction | 
|  | * exception when injecting a program interrupt into the guest. | 
|  | */ | 
|  | if (exit_nr == BOOK3S_INTERRUPT_PROGRAM) | 
|  | flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; | 
|  | else | 
|  | flags = SRR1_PROGILL; | 
|  |  | 
|  | emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); | 
|  | if (emul != EMULATE_DONE) | 
|  | return RESUME_GUEST; | 
|  |  | 
|  | if (kvmppc_get_msr(vcpu) & MSR_PR) { | 
|  | #ifdef EXIT_DEBUG | 
|  | pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n", | 
|  | kvmppc_get_pc(vcpu), last_inst); | 
|  | #endif | 
|  | if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { | 
|  | kvmppc_core_queue_program(vcpu, flags); | 
|  | return RESUME_GUEST; | 
|  | } | 
|  | } | 
|  |  | 
|  | vcpu->stat.emulated_inst_exits++; | 
|  | er = kvmppc_emulate_instruction(vcpu); | 
|  | switch (er) { | 
|  | case EMULATE_DONE: | 
|  | r = RESUME_GUEST_NV; | 
|  | break; | 
|  | case EMULATE_AGAIN: | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | case EMULATE_FAIL: | 
|  | pr_crit("%s: emulation at %lx failed (%08x)\n", | 
|  | __func__, kvmppc_get_pc(vcpu), last_inst); | 
|  | kvmppc_core_queue_program(vcpu, flags); | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | case EMULATE_DO_MMIO: | 
|  | vcpu->run->exit_reason = KVM_EXIT_MMIO; | 
|  | r = RESUME_HOST_NV; | 
|  | break; | 
|  | case EMULATE_EXIT_USER: | 
|  | r = RESUME_HOST_NV; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvmppc_handle_exit_pr(struct kvm_vcpu *vcpu, unsigned int exit_nr) | 
|  | { | 
|  | struct kvm_run *run = vcpu->run; | 
|  | int r = RESUME_HOST; | 
|  | int s; | 
|  |  | 
|  | vcpu->stat.sum_exits++; | 
|  |  | 
|  | run->exit_reason = KVM_EXIT_UNKNOWN; | 
|  | run->ready_for_interrupt_injection = 1; | 
|  |  | 
|  | /* We get here with MSR.EE=1 */ | 
|  |  | 
|  | trace_kvm_exit(exit_nr, vcpu); | 
|  | guest_exit(); | 
|  |  | 
|  | switch (exit_nr) { | 
|  | case BOOK3S_INTERRUPT_INST_STORAGE: | 
|  | { | 
|  | ulong shadow_srr1 = vcpu->arch.shadow_srr1; | 
|  | vcpu->stat.pf_instruc++; | 
|  |  | 
|  | if (kvmppc_is_split_real(vcpu)) | 
|  | kvmppc_fixup_split_real(vcpu); | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_32 | 
|  | /* We set segments as unused segments when invalidating them. So | 
|  | * treat the respective fault as segment fault. */ | 
|  | { | 
|  | struct kvmppc_book3s_shadow_vcpu *svcpu; | 
|  | u32 sr; | 
|  |  | 
|  | svcpu = svcpu_get(vcpu); | 
|  | sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; | 
|  | svcpu_put(svcpu); | 
|  | if (sr == SR_INVALID) { | 
|  | kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* only care about PTEG not found errors, but leave NX alone */ | 
|  | if (shadow_srr1 & 0x40000000) { | 
|  | int idx = srcu_read_lock(&vcpu->kvm->srcu); | 
|  | r = kvmppc_handle_pagefault(vcpu, kvmppc_get_pc(vcpu), exit_nr); | 
|  | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
|  | vcpu->stat.sp_instruc++; | 
|  | } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && | 
|  | (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { | 
|  | /* | 
|  | * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, | 
|  | *     so we can't use the NX bit inside the guest. Let's cross our fingers, | 
|  | *     that no guest that needs the dcbz hack does NX. | 
|  | */ | 
|  | kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); | 
|  | r = RESUME_GUEST; | 
|  | } else { | 
|  | kvmppc_core_queue_inst_storage(vcpu, | 
|  | shadow_srr1 & 0x58000000); | 
|  | r = RESUME_GUEST; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case BOOK3S_INTERRUPT_DATA_STORAGE: | 
|  | { | 
|  | ulong dar = kvmppc_get_fault_dar(vcpu); | 
|  | u32 fault_dsisr = vcpu->arch.fault_dsisr; | 
|  | vcpu->stat.pf_storage++; | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_32 | 
|  | /* We set segments as unused segments when invalidating them. So | 
|  | * treat the respective fault as segment fault. */ | 
|  | { | 
|  | struct kvmppc_book3s_shadow_vcpu *svcpu; | 
|  | u32 sr; | 
|  |  | 
|  | svcpu = svcpu_get(vcpu); | 
|  | sr = svcpu->sr[dar >> SID_SHIFT]; | 
|  | svcpu_put(svcpu); | 
|  | if (sr == SR_INVALID) { | 
|  | kvmppc_mmu_map_segment(vcpu, dar); | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We need to handle missing shadow PTEs, and | 
|  | * protection faults due to us mapping a page read-only | 
|  | * when the guest thinks it is writable. | 
|  | */ | 
|  | if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) { | 
|  | int idx = srcu_read_lock(&vcpu->kvm->srcu); | 
|  | r = kvmppc_handle_pagefault(vcpu, dar, exit_nr); | 
|  | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
|  | } else { | 
|  | kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr); | 
|  | r = RESUME_GUEST; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case BOOK3S_INTERRUPT_DATA_SEGMENT: | 
|  | if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { | 
|  | kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); | 
|  | kvmppc_book3s_queue_irqprio(vcpu, | 
|  | BOOK3S_INTERRUPT_DATA_SEGMENT); | 
|  | } | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | case BOOK3S_INTERRUPT_INST_SEGMENT: | 
|  | if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { | 
|  | kvmppc_book3s_queue_irqprio(vcpu, | 
|  | BOOK3S_INTERRUPT_INST_SEGMENT); | 
|  | } | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | /* We're good on these - the host merely wanted to get our attention */ | 
|  | case BOOK3S_INTERRUPT_DECREMENTER: | 
|  | case BOOK3S_INTERRUPT_HV_DECREMENTER: | 
|  | case BOOK3S_INTERRUPT_DOORBELL: | 
|  | case BOOK3S_INTERRUPT_H_DOORBELL: | 
|  | vcpu->stat.dec_exits++; | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | case BOOK3S_INTERRUPT_EXTERNAL: | 
|  | case BOOK3S_INTERRUPT_EXTERNAL_HV: | 
|  | case BOOK3S_INTERRUPT_H_VIRT: | 
|  | vcpu->stat.ext_intr_exits++; | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | case BOOK3S_INTERRUPT_HMI: | 
|  | case BOOK3S_INTERRUPT_PERFMON: | 
|  | case BOOK3S_INTERRUPT_SYSTEM_RESET: | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | case BOOK3S_INTERRUPT_PROGRAM: | 
|  | case BOOK3S_INTERRUPT_H_EMUL_ASSIST: | 
|  | r = kvmppc_exit_pr_progint(vcpu, exit_nr); | 
|  | break; | 
|  | case BOOK3S_INTERRUPT_SYSCALL: | 
|  | { | 
|  | u32 last_sc; | 
|  | int emul; | 
|  |  | 
|  | /* Get last sc for papr */ | 
|  | if (vcpu->arch.papr_enabled) { | 
|  | /* The sc instruction points SRR0 to the next inst */ | 
|  | emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc); | 
|  | if (emul != EMULATE_DONE) { | 
|  | kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4); | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (vcpu->arch.papr_enabled && | 
|  | (last_sc == 0x44000022) && | 
|  | !(kvmppc_get_msr(vcpu) & MSR_PR)) { | 
|  | /* SC 1 papr hypercalls */ | 
|  | ulong cmd = kvmppc_get_gpr(vcpu, 3); | 
|  | int i; | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | run->papr_hcall.nr = cmd; | 
|  | for (i = 0; i < 9; ++i) { | 
|  | ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); | 
|  | run->papr_hcall.args[i] = gpr; | 
|  | } | 
|  | run->exit_reason = KVM_EXIT_PAPR_HCALL; | 
|  | vcpu->arch.hcall_needed = 1; | 
|  | r = RESUME_HOST; | 
|  | } else if (vcpu->arch.osi_enabled && | 
|  | (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && | 
|  | (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { | 
|  | /* MOL hypercalls */ | 
|  | u64 *gprs = run->osi.gprs; | 
|  | int i; | 
|  |  | 
|  | run->exit_reason = KVM_EXIT_OSI; | 
|  | for (i = 0; i < 32; i++) | 
|  | gprs[i] = kvmppc_get_gpr(vcpu, i); | 
|  | vcpu->arch.osi_needed = 1; | 
|  | r = RESUME_HOST_NV; | 
|  | } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && | 
|  | (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { | 
|  | /* KVM PV hypercalls */ | 
|  | kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); | 
|  | r = RESUME_GUEST; | 
|  | } else { | 
|  | /* Guest syscalls */ | 
|  | vcpu->stat.syscall_exits++; | 
|  | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); | 
|  | r = RESUME_GUEST; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case BOOK3S_INTERRUPT_FP_UNAVAIL: | 
|  | case BOOK3S_INTERRUPT_ALTIVEC: | 
|  | case BOOK3S_INTERRUPT_VSX: | 
|  | { | 
|  | int ext_msr = 0; | 
|  | int emul; | 
|  | u32 last_inst; | 
|  |  | 
|  | if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) { | 
|  | /* Do paired single instruction emulation */ | 
|  | emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, | 
|  | &last_inst); | 
|  | if (emul == EMULATE_DONE) | 
|  | r = kvmppc_exit_pr_progint(vcpu, exit_nr); | 
|  | else | 
|  | r = RESUME_GUEST; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Enable external provider */ | 
|  | switch (exit_nr) { | 
|  | case BOOK3S_INTERRUPT_FP_UNAVAIL: | 
|  | ext_msr = MSR_FP; | 
|  | break; | 
|  |  | 
|  | case BOOK3S_INTERRUPT_ALTIVEC: | 
|  | ext_msr = MSR_VEC; | 
|  | break; | 
|  |  | 
|  | case BOOK3S_INTERRUPT_VSX: | 
|  | ext_msr = MSR_VSX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); | 
|  | break; | 
|  | } | 
|  | case BOOK3S_INTERRUPT_ALIGNMENT: | 
|  | { | 
|  | u32 last_inst; | 
|  | int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); | 
|  |  | 
|  | if (emul == EMULATE_DONE) { | 
|  | u32 dsisr; | 
|  | u64 dar; | 
|  |  | 
|  | dsisr = kvmppc_alignment_dsisr(vcpu, last_inst); | 
|  | dar = kvmppc_alignment_dar(vcpu, last_inst); | 
|  |  | 
|  | kvmppc_set_dsisr(vcpu, dsisr); | 
|  | kvmppc_set_dar(vcpu, dar); | 
|  |  | 
|  | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); | 
|  | } | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | } | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | case BOOK3S_INTERRUPT_FAC_UNAVAIL: | 
|  | r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56); | 
|  | break; | 
|  | #endif | 
|  | case BOOK3S_INTERRUPT_MACHINE_CHECK: | 
|  | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | case BOOK3S_INTERRUPT_TRACE: | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { | 
|  | run->exit_reason = KVM_EXIT_DEBUG; | 
|  | r = RESUME_HOST; | 
|  | } else { | 
|  | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); | 
|  | r = RESUME_GUEST; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | { | 
|  | ulong shadow_srr1 = vcpu->arch.shadow_srr1; | 
|  | /* Ugh - bork here! What did we get? */ | 
|  | printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", | 
|  | exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); | 
|  | r = RESUME_HOST; | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!(r & RESUME_HOST)) { | 
|  | /* To avoid clobbering exit_reason, only check for signals if | 
|  | * we aren't already exiting to userspace for some other | 
|  | * reason. */ | 
|  |  | 
|  | /* | 
|  | * Interrupts could be timers for the guest which we have to | 
|  | * inject again, so let's postpone them until we're in the guest | 
|  | * and if we really did time things so badly, then we just exit | 
|  | * again due to a host external interrupt. | 
|  | */ | 
|  | s = kvmppc_prepare_to_enter(vcpu); | 
|  | if (s <= 0) | 
|  | r = s; | 
|  | else { | 
|  | /* interrupts now hard-disabled */ | 
|  | kvmppc_fix_ee_before_entry(); | 
|  | } | 
|  |  | 
|  | kvmppc_handle_lost_ext(vcpu); | 
|  | } | 
|  |  | 
|  | trace_kvm_book3s_reenter(r, vcpu); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu, | 
|  | struct kvm_sregs *sregs) | 
|  | { | 
|  | struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); | 
|  | int i; | 
|  |  | 
|  | sregs->pvr = vcpu->arch.pvr; | 
|  |  | 
|  | sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; | 
|  | if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { | 
|  | for (i = 0; i < 64; i++) { | 
|  | sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; | 
|  | sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < 16; i++) | 
|  | sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i); | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; | 
|  | sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu, | 
|  | struct kvm_sregs *sregs) | 
|  | { | 
|  | struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); | 
|  | int i; | 
|  |  | 
|  | kvmppc_set_pvr_pr(vcpu, sregs->pvr); | 
|  |  | 
|  | vcpu3s->sdr1 = sregs->u.s.sdr1; | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { | 
|  | /* Flush all SLB entries */ | 
|  | vcpu->arch.mmu.slbmte(vcpu, 0, 0); | 
|  | vcpu->arch.mmu.slbia(vcpu); | 
|  |  | 
|  | for (i = 0; i < 64; i++) { | 
|  | u64 rb = sregs->u.s.ppc64.slb[i].slbe; | 
|  | u64 rs = sregs->u.s.ppc64.slb[i].slbv; | 
|  |  | 
|  | if (rb & SLB_ESID_V) | 
|  | vcpu->arch.mmu.slbmte(vcpu, rs, rb); | 
|  | } | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | for (i = 0; i < 16; i++) { | 
|  | vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); | 
|  | } | 
|  | for (i = 0; i < 8; i++) { | 
|  | kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, | 
|  | (u32)sregs->u.s.ppc32.ibat[i]); | 
|  | kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, | 
|  | (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); | 
|  | kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, | 
|  | (u32)sregs->u.s.ppc32.dbat[i]); | 
|  | kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, | 
|  | (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Flush the MMU after messing with the segments */ | 
|  | kvmppc_mmu_pte_flush(vcpu, 0, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, | 
|  | union kvmppc_one_reg *val) | 
|  | { | 
|  | int r = 0; | 
|  |  | 
|  | switch (id) { | 
|  | case KVM_REG_PPC_DEBUG_INST: | 
|  | *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); | 
|  | break; | 
|  | case KVM_REG_PPC_HIOR: | 
|  | *val = get_reg_val(id, to_book3s(vcpu)->hior); | 
|  | break; | 
|  | case KVM_REG_PPC_VTB: | 
|  | *val = get_reg_val(id, to_book3s(vcpu)->vtb); | 
|  | break; | 
|  | case KVM_REG_PPC_LPCR: | 
|  | case KVM_REG_PPC_LPCR_64: | 
|  | /* | 
|  | * We are only interested in the LPCR_ILE bit | 
|  | */ | 
|  | if (vcpu->arch.intr_msr & MSR_LE) | 
|  | *val = get_reg_val(id, LPCR_ILE); | 
|  | else | 
|  | *val = get_reg_val(id, 0); | 
|  | break; | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | case KVM_REG_PPC_TFHAR: | 
|  | *val = get_reg_val(id, vcpu->arch.tfhar); | 
|  | break; | 
|  | case KVM_REG_PPC_TFIAR: | 
|  | *val = get_reg_val(id, vcpu->arch.tfiar); | 
|  | break; | 
|  | case KVM_REG_PPC_TEXASR: | 
|  | *val = get_reg_val(id, vcpu->arch.texasr); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: | 
|  | *val = get_reg_val(id, | 
|  | vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | i = id - KVM_REG_PPC_TM_VSR0; | 
|  | if (i < 32) | 
|  | for (j = 0; j < TS_FPRWIDTH; j++) | 
|  | val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; | 
|  | else { | 
|  | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | 
|  | val->vval = vcpu->arch.vr_tm.vr[i-32]; | 
|  | else | 
|  | r = -ENXIO; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case KVM_REG_PPC_TM_CR: | 
|  | *val = get_reg_val(id, vcpu->arch.cr_tm); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_XER: | 
|  | *val = get_reg_val(id, vcpu->arch.xer_tm); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_LR: | 
|  | *val = get_reg_val(id, vcpu->arch.lr_tm); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_CTR: | 
|  | *val = get_reg_val(id, vcpu->arch.ctr_tm); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_FPSCR: | 
|  | *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_AMR: | 
|  | *val = get_reg_val(id, vcpu->arch.amr_tm); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_PPR: | 
|  | *val = get_reg_val(id, vcpu->arch.ppr_tm); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_VRSAVE: | 
|  | *val = get_reg_val(id, vcpu->arch.vrsave_tm); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_VSCR: | 
|  | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | 
|  | *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); | 
|  | else | 
|  | r = -ENXIO; | 
|  | break; | 
|  | case KVM_REG_PPC_TM_DSCR: | 
|  | *val = get_reg_val(id, vcpu->arch.dscr_tm); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_TAR: | 
|  | *val = get_reg_val(id, vcpu->arch.tar_tm); | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr) | 
|  | { | 
|  | if (new_lpcr & LPCR_ILE) | 
|  | vcpu->arch.intr_msr |= MSR_LE; | 
|  | else | 
|  | vcpu->arch.intr_msr &= ~MSR_LE; | 
|  | } | 
|  |  | 
|  | static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, | 
|  | union kvmppc_one_reg *val) | 
|  | { | 
|  | int r = 0; | 
|  |  | 
|  | switch (id) { | 
|  | case KVM_REG_PPC_HIOR: | 
|  | to_book3s(vcpu)->hior = set_reg_val(id, *val); | 
|  | to_book3s(vcpu)->hior_explicit = true; | 
|  | break; | 
|  | case KVM_REG_PPC_VTB: | 
|  | to_book3s(vcpu)->vtb = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_LPCR: | 
|  | case KVM_REG_PPC_LPCR_64: | 
|  | kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val)); | 
|  | break; | 
|  | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | 
|  | case KVM_REG_PPC_TFHAR: | 
|  | vcpu->arch.tfhar = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TFIAR: | 
|  | vcpu->arch.tfiar = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TEXASR: | 
|  | vcpu->arch.texasr = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: | 
|  | vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] = | 
|  | set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | i = id - KVM_REG_PPC_TM_VSR0; | 
|  | if (i < 32) | 
|  | for (j = 0; j < TS_FPRWIDTH; j++) | 
|  | vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; | 
|  | else | 
|  | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | 
|  | vcpu->arch.vr_tm.vr[i-32] = val->vval; | 
|  | else | 
|  | r = -ENXIO; | 
|  | break; | 
|  | } | 
|  | case KVM_REG_PPC_TM_CR: | 
|  | vcpu->arch.cr_tm = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_XER: | 
|  | vcpu->arch.xer_tm = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_LR: | 
|  | vcpu->arch.lr_tm = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_CTR: | 
|  | vcpu->arch.ctr_tm = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_FPSCR: | 
|  | vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_AMR: | 
|  | vcpu->arch.amr_tm = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_PPR: | 
|  | vcpu->arch.ppr_tm = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_VRSAVE: | 
|  | vcpu->arch.vrsave_tm = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_VSCR: | 
|  | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | 
|  | vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); | 
|  | else | 
|  | r = -ENXIO; | 
|  | break; | 
|  | case KVM_REG_PPC_TM_DSCR: | 
|  | vcpu->arch.dscr_tm = set_reg_val(id, *val); | 
|  | break; | 
|  | case KVM_REG_PPC_TM_TAR: | 
|  | vcpu->arch.tar_tm = set_reg_val(id, *val); | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int kvmppc_core_vcpu_create_pr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvmppc_vcpu_book3s *vcpu_book3s; | 
|  | unsigned long p; | 
|  | int err; | 
|  |  | 
|  | err = -ENOMEM; | 
|  |  | 
|  | vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); | 
|  | if (!vcpu_book3s) | 
|  | goto out; | 
|  | vcpu->arch.book3s = vcpu_book3s; | 
|  |  | 
|  | #ifdef CONFIG_KVM_BOOK3S_32_HANDLER | 
|  | vcpu->arch.shadow_vcpu = | 
|  | kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL); | 
|  | if (!vcpu->arch.shadow_vcpu) | 
|  | goto free_vcpu3s; | 
|  | #endif | 
|  |  | 
|  | p = __get_free_page(GFP_KERNEL|__GFP_ZERO); | 
|  | if (!p) | 
|  | goto free_shadow_vcpu; | 
|  | vcpu->arch.shared = (void *)p; | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | /* Always start the shared struct in native endian mode */ | 
|  | #ifdef __BIG_ENDIAN__ | 
|  | vcpu->arch.shared_big_endian = true; | 
|  | #else | 
|  | vcpu->arch.shared_big_endian = false; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Default to the same as the host if we're on sufficiently | 
|  | * recent machine that we have 1TB segments; | 
|  | * otherwise default to PPC970FX. | 
|  | */ | 
|  | vcpu->arch.pvr = 0x3C0301; | 
|  | if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) | 
|  | vcpu->arch.pvr = mfspr(SPRN_PVR); | 
|  | vcpu->arch.intr_msr = MSR_SF; | 
|  | #else | 
|  | /* default to book3s_32 (750) */ | 
|  | vcpu->arch.pvr = 0x84202; | 
|  | vcpu->arch.intr_msr = 0; | 
|  | #endif | 
|  | kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr); | 
|  | vcpu->arch.slb_nr = 64; | 
|  |  | 
|  | vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE; | 
|  |  | 
|  | err = kvmppc_mmu_init_pr(vcpu); | 
|  | if (err < 0) | 
|  | goto free_shared_page; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_shared_page: | 
|  | free_page((unsigned long)vcpu->arch.shared); | 
|  | free_shadow_vcpu: | 
|  | #ifdef CONFIG_KVM_BOOK3S_32_HANDLER | 
|  | kfree(vcpu->arch.shadow_vcpu); | 
|  | free_vcpu3s: | 
|  | #endif | 
|  | vfree(vcpu_book3s); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); | 
|  |  | 
|  | kvmppc_mmu_destroy_pr(vcpu); | 
|  | free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); | 
|  | #ifdef CONFIG_KVM_BOOK3S_32_HANDLER | 
|  | kfree(vcpu->arch.shadow_vcpu); | 
|  | #endif | 
|  | vfree(vcpu_book3s); | 
|  | } | 
|  |  | 
|  | static int kvmppc_vcpu_run_pr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Check if we can run the vcpu at all */ | 
|  | if (!vcpu->arch.sane) { | 
|  | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kvmppc_setup_debug(vcpu); | 
|  |  | 
|  | /* | 
|  | * Interrupts could be timers for the guest which we have to inject | 
|  | * again, so let's postpone them until we're in the guest and if we | 
|  | * really did time things so badly, then we just exit again due to | 
|  | * a host external interrupt. | 
|  | */ | 
|  | ret = kvmppc_prepare_to_enter(vcpu); | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  | /* interrupts now hard-disabled */ | 
|  |  | 
|  | /* Save FPU, Altivec and VSX state */ | 
|  | giveup_all(current); | 
|  |  | 
|  | /* Preload FPU if it's enabled */ | 
|  | if (kvmppc_get_msr(vcpu) & MSR_FP) | 
|  | kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); | 
|  |  | 
|  | kvmppc_fix_ee_before_entry(); | 
|  |  | 
|  | ret = __kvmppc_vcpu_run(vcpu); | 
|  |  | 
|  | kvmppc_clear_debug(vcpu); | 
|  |  | 
|  | /* No need for guest_exit. It's done in handle_exit. | 
|  | We also get here with interrupts enabled. */ | 
|  |  | 
|  | /* Make sure we save the guest FPU/Altivec/VSX state */ | 
|  | kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); | 
|  |  | 
|  | /* Make sure we save the guest TAR/EBB/DSCR state */ | 
|  | kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); | 
|  |  | 
|  | srr_regs_clobbered(); | 
|  | out: | 
|  | vcpu->mode = OUTSIDE_GUEST_MODE; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get (and clear) the dirty memory log for a memory slot. | 
|  | */ | 
|  | static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm, | 
|  | struct kvm_dirty_log *log) | 
|  | { | 
|  | struct kvm_memory_slot *memslot; | 
|  | struct kvm_vcpu *vcpu; | 
|  | ulong ga, ga_end; | 
|  | int is_dirty = 0; | 
|  | int r; | 
|  | unsigned long n; | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  |  | 
|  | r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | /* If nothing is dirty, don't bother messing with page tables. */ | 
|  | if (is_dirty) { | 
|  | ga = memslot->base_gfn << PAGE_SHIFT; | 
|  | ga_end = ga + (memslot->npages << PAGE_SHIFT); | 
|  |  | 
|  | kvm_for_each_vcpu(n, vcpu, kvm) | 
|  | kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); | 
|  |  | 
|  | n = kvm_dirty_bitmap_bytes(memslot); | 
|  | memset(memslot->dirty_bitmap, 0, n); | 
|  | } | 
|  |  | 
|  | r = 0; | 
|  | out: | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void kvmppc_core_flush_memslot_pr(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, | 
|  | const struct kvm_memory_slot *old, | 
|  | struct kvm_memory_slot *new, | 
|  | enum kvm_mr_change change) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, | 
|  | struct kvm_memory_slot *old, | 
|  | const struct kvm_memory_slot *new, | 
|  | enum kvm_mr_change change) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *slot) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC64 | 
|  | static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, | 
|  | struct kvm_ppc_smmu_info *info) | 
|  | { | 
|  | long int i; | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | info->flags = 0; | 
|  |  | 
|  | /* SLB is always 64 entries */ | 
|  | info->slb_size = 64; | 
|  |  | 
|  | /* Standard 4k base page size segment */ | 
|  | info->sps[0].page_shift = 12; | 
|  | info->sps[0].slb_enc = 0; | 
|  | info->sps[0].enc[0].page_shift = 12; | 
|  | info->sps[0].enc[0].pte_enc = 0; | 
|  |  | 
|  | /* | 
|  | * 64k large page size. | 
|  | * We only want to put this in if the CPUs we're emulating | 
|  | * support it, but unfortunately we don't have a vcpu easily | 
|  | * to hand here to test.  Just pick the first vcpu, and if | 
|  | * that doesn't exist yet, report the minimum capability, | 
|  | * i.e., no 64k pages. | 
|  | * 1T segment support goes along with 64k pages. | 
|  | */ | 
|  | i = 1; | 
|  | vcpu = kvm_get_vcpu(kvm, 0); | 
|  | if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { | 
|  | info->flags = KVM_PPC_1T_SEGMENTS; | 
|  | info->sps[i].page_shift = 16; | 
|  | info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; | 
|  | info->sps[i].enc[0].page_shift = 16; | 
|  | info->sps[i].enc[0].pte_enc = 1; | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | /* Standard 16M large page size segment */ | 
|  | info->sps[i].page_shift = 24; | 
|  | info->sps[i].slb_enc = SLB_VSID_L; | 
|  | info->sps[i].enc[0].page_shift = 24; | 
|  | info->sps[i].enc[0].pte_enc = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) | 
|  | { | 
|  | if (!cpu_has_feature(CPU_FTR_ARCH_300)) | 
|  | return -ENODEV; | 
|  | /* Require flags and process table base and size to all be zero. */ | 
|  | if (cfg->flags || cfg->process_table) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #else | 
|  | static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, | 
|  | struct kvm_ppc_smmu_info *info) | 
|  | { | 
|  | /* We should not get called */ | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_PPC64 */ | 
|  |  | 
|  | static unsigned int kvm_global_user_count = 0; | 
|  | static DEFINE_SPINLOCK(kvm_global_user_count_lock); | 
|  |  | 
|  | static int kvmppc_core_init_vm_pr(struct kvm *kvm) | 
|  | { | 
|  | mutex_init(&kvm->arch.hpt_mutex); | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | /* Start out with the default set of hcalls enabled */ | 
|  | kvmppc_pr_init_default_hcalls(kvm); | 
|  | #endif | 
|  |  | 
|  | if (firmware_has_feature(FW_FEATURE_SET_MODE)) { | 
|  | spin_lock(&kvm_global_user_count_lock); | 
|  | if (++kvm_global_user_count == 1) | 
|  | pseries_disable_reloc_on_exc(); | 
|  | spin_unlock(&kvm_global_user_count_lock); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvmppc_core_destroy_vm_pr(struct kvm *kvm) | 
|  | { | 
|  | #ifdef CONFIG_PPC64 | 
|  | WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); | 
|  | #endif | 
|  |  | 
|  | if (firmware_has_feature(FW_FEATURE_SET_MODE)) { | 
|  | spin_lock(&kvm_global_user_count_lock); | 
|  | BUG_ON(kvm_global_user_count == 0); | 
|  | if (--kvm_global_user_count == 0) | 
|  | pseries_enable_reloc_on_exc(); | 
|  | spin_unlock(&kvm_global_user_count_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvmppc_core_check_processor_compat_pr(void) | 
|  | { | 
|  | /* | 
|  | * PR KVM can work on POWER9 inside a guest partition | 
|  | * running in HPT mode.  It can't work if we are using | 
|  | * radix translation (because radix provides no way for | 
|  | * a process to have unique translations in quadrant 3). | 
|  | */ | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long kvm_arch_vm_ioctl_pr(struct file *filp, | 
|  | unsigned int ioctl, unsigned long arg) | 
|  | { | 
|  | return -ENOTTY; | 
|  | } | 
|  |  | 
|  | static struct kvmppc_ops kvm_ops_pr = { | 
|  | .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr, | 
|  | .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr, | 
|  | .get_one_reg = kvmppc_get_one_reg_pr, | 
|  | .set_one_reg = kvmppc_set_one_reg_pr, | 
|  | .vcpu_load   = kvmppc_core_vcpu_load_pr, | 
|  | .vcpu_put    = kvmppc_core_vcpu_put_pr, | 
|  | .inject_interrupt = kvmppc_inject_interrupt_pr, | 
|  | .set_msr     = kvmppc_set_msr_pr, | 
|  | .vcpu_run    = kvmppc_vcpu_run_pr, | 
|  | .vcpu_create = kvmppc_core_vcpu_create_pr, | 
|  | .vcpu_free   = kvmppc_core_vcpu_free_pr, | 
|  | .check_requests = kvmppc_core_check_requests_pr, | 
|  | .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr, | 
|  | .flush_memslot = kvmppc_core_flush_memslot_pr, | 
|  | .prepare_memory_region = kvmppc_core_prepare_memory_region_pr, | 
|  | .commit_memory_region = kvmppc_core_commit_memory_region_pr, | 
|  | .unmap_gfn_range = kvm_unmap_gfn_range_pr, | 
|  | .age_gfn  = kvm_age_gfn_pr, | 
|  | .test_age_gfn = kvm_test_age_gfn_pr, | 
|  | .set_spte_gfn = kvm_set_spte_gfn_pr, | 
|  | .free_memslot = kvmppc_core_free_memslot_pr, | 
|  | .init_vm = kvmppc_core_init_vm_pr, | 
|  | .destroy_vm = kvmppc_core_destroy_vm_pr, | 
|  | .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr, | 
|  | .emulate_op = kvmppc_core_emulate_op_pr, | 
|  | .emulate_mtspr = kvmppc_core_emulate_mtspr_pr, | 
|  | .emulate_mfspr = kvmppc_core_emulate_mfspr_pr, | 
|  | .fast_vcpu_kick = kvm_vcpu_kick, | 
|  | .arch_vm_ioctl  = kvm_arch_vm_ioctl_pr, | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | .hcall_implemented = kvmppc_hcall_impl_pr, | 
|  | .configure_mmu = kvm_configure_mmu_pr, | 
|  | #endif | 
|  | .giveup_ext = kvmppc_giveup_ext, | 
|  | }; | 
|  |  | 
|  |  | 
|  | int kvmppc_book3s_init_pr(void) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = kvmppc_core_check_processor_compat_pr(); | 
|  | if (r < 0) | 
|  | return r; | 
|  |  | 
|  | kvm_ops_pr.owner = THIS_MODULE; | 
|  | kvmppc_pr_ops = &kvm_ops_pr; | 
|  |  | 
|  | r = kvmppc_mmu_hpte_sysinit(); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | void kvmppc_book3s_exit_pr(void) | 
|  | { | 
|  | kvmppc_pr_ops = NULL; | 
|  | kvmppc_mmu_hpte_sysexit(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We only support separate modules for book3s 64 | 
|  | */ | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  |  | 
|  | module_init(kvmppc_book3s_init_pr); | 
|  | module_exit(kvmppc_book3s_exit_pr); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS_MISCDEV(KVM_MINOR); | 
|  | MODULE_ALIAS("devname:kvm"); | 
|  | #endif |