| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Freescale Memory Controller kernel module | 
 |  * | 
 |  * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and | 
 |  * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally | 
 |  * split out from mpc85xx_edac EDAC driver. | 
 |  * | 
 |  * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc. | 
 |  * | 
 |  * Author: Dave Jiang <djiang@mvista.com> | 
 |  * | 
 |  * 2006-2007 (c) MontaVista Software, Inc. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/io.h> | 
 | #include <linux/mod_devicetable.h> | 
 | #include <linux/edac.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/gfp.h> | 
 |  | 
 | #include <linux/of_platform.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/of_address.h> | 
 | #include "edac_module.h" | 
 | #include "fsl_ddr_edac.h" | 
 |  | 
 | #define EDAC_MOD_STR	"fsl_ddr_edac" | 
 |  | 
 | static int edac_mc_idx; | 
 |  | 
 | static u32 orig_ddr_err_disable; | 
 | static u32 orig_ddr_err_sbe; | 
 | static bool little_endian; | 
 |  | 
 | static inline u32 ddr_in32(void __iomem *addr) | 
 | { | 
 | 	return little_endian ? ioread32(addr) : ioread32be(addr); | 
 | } | 
 |  | 
 | static inline void ddr_out32(void __iomem *addr, u32 value) | 
 | { | 
 | 	if (little_endian) | 
 | 		iowrite32(value, addr); | 
 | 	else | 
 | 		iowrite32be(value, addr); | 
 | } | 
 |  | 
 | #ifdef CONFIG_EDAC_DEBUG | 
 | /************************ MC SYSFS parts ***********************************/ | 
 |  | 
 | #define to_mci(k) container_of(k, struct mem_ctl_info, dev) | 
 |  | 
 | static ssize_t fsl_mc_inject_data_hi_show(struct device *dev, | 
 | 					  struct device_attribute *mattr, | 
 | 					  char *data) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct fsl_mc_pdata *pdata = mci->pvt_info; | 
 | 	return sprintf(data, "0x%08x", | 
 | 		       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI)); | 
 | } | 
 |  | 
 | static ssize_t fsl_mc_inject_data_lo_show(struct device *dev, | 
 | 					  struct device_attribute *mattr, | 
 | 					      char *data) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct fsl_mc_pdata *pdata = mci->pvt_info; | 
 | 	return sprintf(data, "0x%08x", | 
 | 		       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO)); | 
 | } | 
 |  | 
 | static ssize_t fsl_mc_inject_ctrl_show(struct device *dev, | 
 | 				       struct device_attribute *mattr, | 
 | 					   char *data) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct fsl_mc_pdata *pdata = mci->pvt_info; | 
 | 	return sprintf(data, "0x%08x", | 
 | 		       ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT)); | 
 | } | 
 |  | 
 | static ssize_t fsl_mc_inject_data_hi_store(struct device *dev, | 
 | 					   struct device_attribute *mattr, | 
 | 					       const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct fsl_mc_pdata *pdata = mci->pvt_info; | 
 | 	unsigned long val; | 
 | 	int rc; | 
 |  | 
 | 	if (isdigit(*data)) { | 
 | 		rc = kstrtoul(data, 0, &val); | 
 | 		if (rc) | 
 | 			return rc; | 
 |  | 
 | 		ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val); | 
 | 		return count; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t fsl_mc_inject_data_lo_store(struct device *dev, | 
 | 					   struct device_attribute *mattr, | 
 | 					       const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct fsl_mc_pdata *pdata = mci->pvt_info; | 
 | 	unsigned long val; | 
 | 	int rc; | 
 |  | 
 | 	if (isdigit(*data)) { | 
 | 		rc = kstrtoul(data, 0, &val); | 
 | 		if (rc) | 
 | 			return rc; | 
 |  | 
 | 		ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val); | 
 | 		return count; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t fsl_mc_inject_ctrl_store(struct device *dev, | 
 | 					struct device_attribute *mattr, | 
 | 					       const char *data, size_t count) | 
 | { | 
 | 	struct mem_ctl_info *mci = to_mci(dev); | 
 | 	struct fsl_mc_pdata *pdata = mci->pvt_info; | 
 | 	unsigned long val; | 
 | 	int rc; | 
 |  | 
 | 	if (isdigit(*data)) { | 
 | 		rc = kstrtoul(data, 0, &val); | 
 | 		if (rc) | 
 | 			return rc; | 
 |  | 
 | 		ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val); | 
 | 		return count; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR, | 
 | 		   fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store); | 
 | static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR, | 
 | 		   fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store); | 
 | static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR, | 
 | 		   fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store); | 
 | #endif /* CONFIG_EDAC_DEBUG */ | 
 |  | 
 | static struct attribute *fsl_ddr_dev_attrs[] = { | 
 | #ifdef CONFIG_EDAC_DEBUG | 
 | 	&dev_attr_inject_data_hi.attr, | 
 | 	&dev_attr_inject_data_lo.attr, | 
 | 	&dev_attr_inject_ctrl.attr, | 
 | #endif | 
 | 	NULL | 
 | }; | 
 |  | 
 | ATTRIBUTE_GROUPS(fsl_ddr_dev); | 
 |  | 
 | /**************************** MC Err device ***************************/ | 
 |  | 
 | /* | 
 |  * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the | 
 |  * MPC8572 User's Manual.  Each line represents a syndrome bit column as a | 
 |  * 64-bit value, but split into an upper and lower 32-bit chunk.  The labels | 
 |  * below correspond to Freescale's manuals. | 
 |  */ | 
 | static unsigned int ecc_table[16] = { | 
 | 	/* MSB           LSB */ | 
 | 	/* [0:31]    [32:63] */ | 
 | 	0xf00fe11e, 0xc33c0ff7,	/* Syndrome bit 7 */ | 
 | 	0x00ff00ff, 0x00fff0ff, | 
 | 	0x0f0f0f0f, 0x0f0fff00, | 
 | 	0x11113333, 0x7777000f, | 
 | 	0x22224444, 0x8888222f, | 
 | 	0x44448888, 0xffff4441, | 
 | 	0x8888ffff, 0x11118882, | 
 | 	0xffff1111, 0x22221114,	/* Syndrome bit 0 */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Calculate the correct ECC value for a 64-bit value specified by high:low | 
 |  */ | 
 | static u8 calculate_ecc(u32 high, u32 low) | 
 | { | 
 | 	u32 mask_low; | 
 | 	u32 mask_high; | 
 | 	int bit_cnt; | 
 | 	u8 ecc = 0; | 
 | 	int i; | 
 | 	int j; | 
 |  | 
 | 	for (i = 0; i < 8; i++) { | 
 | 		mask_high = ecc_table[i * 2]; | 
 | 		mask_low = ecc_table[i * 2 + 1]; | 
 | 		bit_cnt = 0; | 
 |  | 
 | 		for (j = 0; j < 32; j++) { | 
 | 			if ((mask_high >> j) & 1) | 
 | 				bit_cnt ^= (high >> j) & 1; | 
 | 			if ((mask_low >> j) & 1) | 
 | 				bit_cnt ^= (low >> j) & 1; | 
 | 		} | 
 |  | 
 | 		ecc |= bit_cnt << i; | 
 | 	} | 
 |  | 
 | 	return ecc; | 
 | } | 
 |  | 
 | /* | 
 |  * Create the syndrome code which is generated if the data line specified by | 
 |  * 'bit' failed.  Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641 | 
 |  * User's Manual and 9-61 in the MPC8572 User's Manual. | 
 |  */ | 
 | static u8 syndrome_from_bit(unsigned int bit) { | 
 | 	int i; | 
 | 	u8 syndrome = 0; | 
 |  | 
 | 	/* | 
 | 	 * Cycle through the upper or lower 32-bit portion of each value in | 
 | 	 * ecc_table depending on if 'bit' is in the upper or lower half of | 
 | 	 * 64-bit data. | 
 | 	 */ | 
 | 	for (i = bit < 32; i < 16; i += 2) | 
 | 		syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2); | 
 |  | 
 | 	return syndrome; | 
 | } | 
 |  | 
 | /* | 
 |  * Decode data and ecc syndrome to determine what went wrong | 
 |  * Note: This can only decode single-bit errors | 
 |  */ | 
 | static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc, | 
 | 		       int *bad_data_bit, int *bad_ecc_bit) | 
 | { | 
 | 	int i; | 
 | 	u8 syndrome; | 
 |  | 
 | 	*bad_data_bit = -1; | 
 | 	*bad_ecc_bit = -1; | 
 |  | 
 | 	/* | 
 | 	 * Calculate the ECC of the captured data and XOR it with the captured | 
 | 	 * ECC to find an ECC syndrome value we can search for | 
 | 	 */ | 
 | 	syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc; | 
 |  | 
 | 	/* Check if a data line is stuck... */ | 
 | 	for (i = 0; i < 64; i++) { | 
 | 		if (syndrome == syndrome_from_bit(i)) { | 
 | 			*bad_data_bit = i; | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If data is correct, check ECC bits for errors... */ | 
 | 	for (i = 0; i < 8; i++) { | 
 | 		if ((syndrome >> i) & 0x1) { | 
 | 			*bad_ecc_bit = i; | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #define make64(high, low) (((u64)(high) << 32) | (low)) | 
 |  | 
 | static void fsl_mc_check(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct fsl_mc_pdata *pdata = mci->pvt_info; | 
 | 	struct csrow_info *csrow; | 
 | 	u32 bus_width; | 
 | 	u32 err_detect; | 
 | 	u32 syndrome; | 
 | 	u64 err_addr; | 
 | 	u32 pfn; | 
 | 	int row_index; | 
 | 	u32 cap_high; | 
 | 	u32 cap_low; | 
 | 	int bad_data_bit; | 
 | 	int bad_ecc_bit; | 
 |  | 
 | 	err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT); | 
 | 	if (!err_detect) | 
 | 		return; | 
 |  | 
 | 	fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n", | 
 | 		      err_detect); | 
 |  | 
 | 	/* no more processing if not ECC bit errors */ | 
 | 	if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) { | 
 | 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC); | 
 |  | 
 | 	/* Mask off appropriate bits of syndrome based on bus width */ | 
 | 	bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) & | 
 | 		     DSC_DBW_MASK) ? 32 : 64; | 
 | 	if (bus_width == 64) | 
 | 		syndrome &= 0xff; | 
 | 	else | 
 | 		syndrome &= 0xffff; | 
 |  | 
 | 	err_addr = make64( | 
 | 		ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS), | 
 | 		ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS)); | 
 | 	pfn = err_addr >> PAGE_SHIFT; | 
 |  | 
 | 	for (row_index = 0; row_index < mci->nr_csrows; row_index++) { | 
 | 		csrow = mci->csrows[row_index]; | 
 | 		if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI); | 
 | 	cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO); | 
 |  | 
 | 	/* | 
 | 	 * Analyze single-bit errors on 64-bit wide buses | 
 | 	 * TODO: Add support for 32-bit wide buses | 
 | 	 */ | 
 | 	if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) { | 
 | 		sbe_ecc_decode(cap_high, cap_low, syndrome, | 
 | 				&bad_data_bit, &bad_ecc_bit); | 
 |  | 
 | 		if (bad_data_bit != -1) | 
 | 			fsl_mc_printk(mci, KERN_ERR, | 
 | 				"Faulty Data bit: %d\n", bad_data_bit); | 
 | 		if (bad_ecc_bit != -1) | 
 | 			fsl_mc_printk(mci, KERN_ERR, | 
 | 				"Faulty ECC bit: %d\n", bad_ecc_bit); | 
 |  | 
 | 		fsl_mc_printk(mci, KERN_ERR, | 
 | 			"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n", | 
 | 			cap_high ^ (1 << (bad_data_bit - 32)), | 
 | 			cap_low ^ (1 << bad_data_bit), | 
 | 			syndrome ^ (1 << bad_ecc_bit)); | 
 | 	} | 
 |  | 
 | 	fsl_mc_printk(mci, KERN_ERR, | 
 | 			"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n", | 
 | 			cap_high, cap_low, syndrome); | 
 | 	fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr); | 
 | 	fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn); | 
 |  | 
 | 	/* we are out of range */ | 
 | 	if (row_index == mci->nr_csrows) | 
 | 		fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n"); | 
 |  | 
 | 	if (err_detect & DDR_EDE_SBE) | 
 | 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, | 
 | 				     pfn, err_addr & ~PAGE_MASK, syndrome, | 
 | 				     row_index, 0, -1, | 
 | 				     mci->ctl_name, ""); | 
 |  | 
 | 	if (err_detect & DDR_EDE_MBE) | 
 | 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, | 
 | 				     pfn, err_addr & ~PAGE_MASK, syndrome, | 
 | 				     row_index, 0, -1, | 
 | 				     mci->ctl_name, ""); | 
 |  | 
 | 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect); | 
 | } | 
 |  | 
 | static irqreturn_t fsl_mc_isr(int irq, void *dev_id) | 
 | { | 
 | 	struct mem_ctl_info *mci = dev_id; | 
 | 	struct fsl_mc_pdata *pdata = mci->pvt_info; | 
 | 	u32 err_detect; | 
 |  | 
 | 	err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT); | 
 | 	if (!err_detect) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	fsl_mc_check(mci); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static void fsl_ddr_init_csrows(struct mem_ctl_info *mci) | 
 | { | 
 | 	struct fsl_mc_pdata *pdata = mci->pvt_info; | 
 | 	struct csrow_info *csrow; | 
 | 	struct dimm_info *dimm; | 
 | 	u32 sdram_ctl; | 
 | 	u32 sdtype; | 
 | 	enum mem_type mtype; | 
 | 	u32 cs_bnds; | 
 | 	int index; | 
 |  | 
 | 	sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG); | 
 |  | 
 | 	sdtype = sdram_ctl & DSC_SDTYPE_MASK; | 
 | 	if (sdram_ctl & DSC_RD_EN) { | 
 | 		switch (sdtype) { | 
 | 		case 0x02000000: | 
 | 			mtype = MEM_RDDR; | 
 | 			break; | 
 | 		case 0x03000000: | 
 | 			mtype = MEM_RDDR2; | 
 | 			break; | 
 | 		case 0x07000000: | 
 | 			mtype = MEM_RDDR3; | 
 | 			break; | 
 | 		case 0x05000000: | 
 | 			mtype = MEM_RDDR4; | 
 | 			break; | 
 | 		default: | 
 | 			mtype = MEM_UNKNOWN; | 
 | 			break; | 
 | 		} | 
 | 	} else { | 
 | 		switch (sdtype) { | 
 | 		case 0x02000000: | 
 | 			mtype = MEM_DDR; | 
 | 			break; | 
 | 		case 0x03000000: | 
 | 			mtype = MEM_DDR2; | 
 | 			break; | 
 | 		case 0x07000000: | 
 | 			mtype = MEM_DDR3; | 
 | 			break; | 
 | 		case 0x05000000: | 
 | 			mtype = MEM_DDR4; | 
 | 			break; | 
 | 		default: | 
 | 			mtype = MEM_UNKNOWN; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (index = 0; index < mci->nr_csrows; index++) { | 
 | 		u32 start; | 
 | 		u32 end; | 
 |  | 
 | 		csrow = mci->csrows[index]; | 
 | 		dimm = csrow->channels[0]->dimm; | 
 |  | 
 | 		cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 + | 
 | 				   (index * FSL_MC_CS_BNDS_OFS)); | 
 |  | 
 | 		start = (cs_bnds & 0xffff0000) >> 16; | 
 | 		end   = (cs_bnds & 0x0000ffff); | 
 |  | 
 | 		if (start == end) | 
 | 			continue;	/* not populated */ | 
 |  | 
 | 		start <<= (24 - PAGE_SHIFT); | 
 | 		end   <<= (24 - PAGE_SHIFT); | 
 | 		end    |= (1 << (24 - PAGE_SHIFT)) - 1; | 
 |  | 
 | 		csrow->first_page = start; | 
 | 		csrow->last_page = end; | 
 |  | 
 | 		dimm->nr_pages = end + 1 - start; | 
 | 		dimm->grain = 8; | 
 | 		dimm->mtype = mtype; | 
 | 		dimm->dtype = DEV_UNKNOWN; | 
 | 		if (sdram_ctl & DSC_X32_EN) | 
 | 			dimm->dtype = DEV_X32; | 
 | 		dimm->edac_mode = EDAC_SECDED; | 
 | 	} | 
 | } | 
 |  | 
 | int fsl_mc_err_probe(struct platform_device *op) | 
 | { | 
 | 	struct mem_ctl_info *mci; | 
 | 	struct edac_mc_layer layers[2]; | 
 | 	struct fsl_mc_pdata *pdata; | 
 | 	struct resource r; | 
 | 	u32 sdram_ctl; | 
 | 	int res; | 
 |  | 
 | 	if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; | 
 | 	layers[0].size = 4; | 
 | 	layers[0].is_virt_csrow = true; | 
 | 	layers[1].type = EDAC_MC_LAYER_CHANNEL; | 
 | 	layers[1].size = 1; | 
 | 	layers[1].is_virt_csrow = false; | 
 | 	mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers, | 
 | 			    sizeof(*pdata)); | 
 | 	if (!mci) { | 
 | 		devres_release_group(&op->dev, fsl_mc_err_probe); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pdata = mci->pvt_info; | 
 | 	pdata->name = "fsl_mc_err"; | 
 | 	mci->pdev = &op->dev; | 
 | 	pdata->edac_idx = edac_mc_idx++; | 
 | 	dev_set_drvdata(mci->pdev, mci); | 
 | 	mci->ctl_name = pdata->name; | 
 | 	mci->dev_name = pdata->name; | 
 |  | 
 | 	/* | 
 | 	 * Get the endianness of DDR controller registers. | 
 | 	 * Default is big endian. | 
 | 	 */ | 
 | 	little_endian = of_property_read_bool(op->dev.of_node, "little-endian"); | 
 |  | 
 | 	res = of_address_to_resource(op->dev.of_node, 0, &r); | 
 | 	if (res) { | 
 | 		pr_err("%s: Unable to get resource for MC err regs\n", | 
 | 		       __func__); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r), | 
 | 				     pdata->name)) { | 
 | 		pr_err("%s: Error while requesting mem region\n", | 
 | 		       __func__); | 
 | 		res = -EBUSY; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r)); | 
 | 	if (!pdata->mc_vbase) { | 
 | 		pr_err("%s: Unable to setup MC err regs\n", __func__); | 
 | 		res = -ENOMEM; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG); | 
 | 	if (!(sdram_ctl & DSC_ECC_EN)) { | 
 | 		/* no ECC */ | 
 | 		pr_warn("%s: No ECC DIMMs discovered\n", __func__); | 
 | 		res = -ENODEV; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	edac_dbg(3, "init mci\n"); | 
 | 	mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR | | 
 | 			 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 | | 
 | 			 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 | | 
 | 			 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4; | 
 | 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; | 
 | 	mci->edac_cap = EDAC_FLAG_SECDED; | 
 | 	mci->mod_name = EDAC_MOD_STR; | 
 |  | 
 | 	if (edac_op_state == EDAC_OPSTATE_POLL) | 
 | 		mci->edac_check = fsl_mc_check; | 
 |  | 
 | 	mci->ctl_page_to_phys = NULL; | 
 |  | 
 | 	mci->scrub_mode = SCRUB_SW_SRC; | 
 |  | 
 | 	fsl_ddr_init_csrows(mci); | 
 |  | 
 | 	/* store the original error disable bits */ | 
 | 	orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE); | 
 | 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0); | 
 |  | 
 | 	/* clear all error bits */ | 
 | 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0); | 
 |  | 
 | 	res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups); | 
 | 	if (res) { | 
 | 		edac_dbg(3, "failed edac_mc_add_mc()\n"); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	if (edac_op_state == EDAC_OPSTATE_INT) { | 
 | 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, | 
 | 			  DDR_EIE_MBEE | DDR_EIE_SBEE); | 
 |  | 
 | 		/* store the original error management threshold */ | 
 | 		orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase + | 
 | 					    FSL_MC_ERR_SBE) & 0xff0000; | 
 |  | 
 | 		/* set threshold to 1 error per interrupt */ | 
 | 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000); | 
 |  | 
 | 		/* register interrupts */ | 
 | 		pdata->irq = platform_get_irq(op, 0); | 
 | 		res = devm_request_irq(&op->dev, pdata->irq, | 
 | 				       fsl_mc_isr, | 
 | 				       IRQF_SHARED, | 
 | 				       "[EDAC] MC err", mci); | 
 | 		if (res < 0) { | 
 | 			pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n", | 
 | 			       __func__, pdata->irq); | 
 | 			res = -ENODEV; | 
 | 			goto err2; | 
 | 		} | 
 |  | 
 | 		pr_info(EDAC_MOD_STR " acquired irq %d for MC\n", | 
 | 		       pdata->irq); | 
 | 	} | 
 |  | 
 | 	devres_remove_group(&op->dev, fsl_mc_err_probe); | 
 | 	edac_dbg(3, "success\n"); | 
 | 	pr_info(EDAC_MOD_STR " MC err registered\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err2: | 
 | 	edac_mc_del_mc(&op->dev); | 
 | err: | 
 | 	devres_release_group(&op->dev, fsl_mc_err_probe); | 
 | 	edac_mc_free(mci); | 
 | 	return res; | 
 | } | 
 |  | 
 | int fsl_mc_err_remove(struct platform_device *op) | 
 | { | 
 | 	struct mem_ctl_info *mci = dev_get_drvdata(&op->dev); | 
 | 	struct fsl_mc_pdata *pdata = mci->pvt_info; | 
 |  | 
 | 	edac_dbg(0, "\n"); | 
 |  | 
 | 	if (edac_op_state == EDAC_OPSTATE_INT) { | 
 | 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0); | 
 | 	} | 
 |  | 
 | 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, | 
 | 		  orig_ddr_err_disable); | 
 | 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe); | 
 |  | 
 | 	edac_mc_del_mc(&op->dev); | 
 | 	edac_mc_free(mci); | 
 | 	return 0; | 
 | } |