| // SPDX-License-Identifier: GPL-2.0 | 
 |  | 
 | /* | 
 |  * Architecture neutral utility routines for interacting with | 
 |  * Hyper-V. This file is specifically for code that must be | 
 |  * built-in to the kernel image when CONFIG_HYPERV is set | 
 |  * (vs. being in a module) because it is called from architecture | 
 |  * specific code under arch/. | 
 |  * | 
 |  * Copyright (C) 2021, Microsoft, Inc. | 
 |  * | 
 |  * Author : Michael Kelley <mikelley@microsoft.com> | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/export.h> | 
 | #include <linux/bitfield.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/sched/task_stack.h> | 
 | #include <linux/panic_notifier.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/random.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/kmsg_dump.h> | 
 | #include <linux/sizes.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/dma-map-ops.h> | 
 | #include <linux/set_memory.h> | 
 | #include <asm/hyperv-tlfs.h> | 
 | #include <asm/mshyperv.h> | 
 |  | 
 | /* | 
 |  * hv_root_partition, ms_hyperv and hv_nested are defined here with other | 
 |  * Hyper-V specific globals so they are shared across all architectures and are | 
 |  * built only when CONFIG_HYPERV is defined.  But on x86, | 
 |  * ms_hyperv_init_platform() is built even when CONFIG_HYPERV is not | 
 |  * defined, and it uses these three variables.  So mark them as __weak | 
 |  * here, allowing for an overriding definition in the module containing | 
 |  * ms_hyperv_init_platform(). | 
 |  */ | 
 | bool __weak hv_root_partition; | 
 | EXPORT_SYMBOL_GPL(hv_root_partition); | 
 |  | 
 | bool __weak hv_nested; | 
 | EXPORT_SYMBOL_GPL(hv_nested); | 
 |  | 
 | struct ms_hyperv_info __weak ms_hyperv; | 
 | EXPORT_SYMBOL_GPL(ms_hyperv); | 
 |  | 
 | u32 *hv_vp_index; | 
 | EXPORT_SYMBOL_GPL(hv_vp_index); | 
 |  | 
 | u32 hv_max_vp_index; | 
 | EXPORT_SYMBOL_GPL(hv_max_vp_index); | 
 |  | 
 | void * __percpu *hyperv_pcpu_input_arg; | 
 | EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg); | 
 |  | 
 | void * __percpu *hyperv_pcpu_output_arg; | 
 | EXPORT_SYMBOL_GPL(hyperv_pcpu_output_arg); | 
 |  | 
 | static void hv_kmsg_dump_unregister(void); | 
 |  | 
 | static struct ctl_table_header *hv_ctl_table_hdr; | 
 |  | 
 | /* | 
 |  * Hyper-V specific initialization and shutdown code that is | 
 |  * common across all architectures.  Called from architecture | 
 |  * specific initialization functions. | 
 |  */ | 
 |  | 
 | void __init hv_common_free(void) | 
 | { | 
 | 	unregister_sysctl_table(hv_ctl_table_hdr); | 
 | 	hv_ctl_table_hdr = NULL; | 
 |  | 
 | 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) | 
 | 		hv_kmsg_dump_unregister(); | 
 |  | 
 | 	kfree(hv_vp_index); | 
 | 	hv_vp_index = NULL; | 
 |  | 
 | 	free_percpu(hyperv_pcpu_output_arg); | 
 | 	hyperv_pcpu_output_arg = NULL; | 
 |  | 
 | 	free_percpu(hyperv_pcpu_input_arg); | 
 | 	hyperv_pcpu_input_arg = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Functions for allocating and freeing memory with size and | 
 |  * alignment HV_HYP_PAGE_SIZE. These functions are needed because | 
 |  * the guest page size may not be the same as the Hyper-V page | 
 |  * size. We depend upon kmalloc() aligning power-of-two size | 
 |  * allocations to the allocation size boundary, so that the | 
 |  * allocated memory appears to Hyper-V as a page of the size | 
 |  * it expects. | 
 |  */ | 
 |  | 
 | void *hv_alloc_hyperv_page(void) | 
 | { | 
 | 	BUILD_BUG_ON(PAGE_SIZE <  HV_HYP_PAGE_SIZE); | 
 |  | 
 | 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE) | 
 | 		return (void *)__get_free_page(GFP_KERNEL); | 
 | 	else | 
 | 		return kmalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page); | 
 |  | 
 | void *hv_alloc_hyperv_zeroed_page(void) | 
 | { | 
 | 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE) | 
 | 		return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | 
 | 	else | 
 | 		return kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page); | 
 |  | 
 | void hv_free_hyperv_page(void *addr) | 
 | { | 
 | 	if (PAGE_SIZE == HV_HYP_PAGE_SIZE) | 
 | 		free_page((unsigned long)addr); | 
 | 	else | 
 | 		kfree(addr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_free_hyperv_page); | 
 |  | 
 | static void *hv_panic_page; | 
 |  | 
 | /* | 
 |  * Boolean to control whether to report panic messages over Hyper-V. | 
 |  * | 
 |  * It can be set via /proc/sys/kernel/hyperv_record_panic_msg | 
 |  */ | 
 | static int sysctl_record_panic_msg = 1; | 
 |  | 
 | /* | 
 |  * sysctl option to allow the user to control whether kmsg data should be | 
 |  * reported to Hyper-V on panic. | 
 |  */ | 
 | static struct ctl_table hv_ctl_table[] = { | 
 | 	{ | 
 | 		.procname	= "hyperv_record_panic_msg", | 
 | 		.data		= &sysctl_record_panic_msg, | 
 | 		.maxlen		= sizeof(int), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec_minmax, | 
 | 		.extra1		= SYSCTL_ZERO, | 
 | 		.extra2		= SYSCTL_ONE | 
 | 	}, | 
 | }; | 
 |  | 
 | static int hv_die_panic_notify_crash(struct notifier_block *self, | 
 | 				     unsigned long val, void *args); | 
 |  | 
 | static struct notifier_block hyperv_die_report_block = { | 
 | 	.notifier_call = hv_die_panic_notify_crash, | 
 | }; | 
 |  | 
 | static struct notifier_block hyperv_panic_report_block = { | 
 | 	.notifier_call = hv_die_panic_notify_crash, | 
 | }; | 
 |  | 
 | /* | 
 |  * The following callback works both as die and panic notifier; its | 
 |  * goal is to provide panic information to the hypervisor unless the | 
 |  * kmsg dumper is used [see hv_kmsg_dump()], which provides more | 
 |  * information but isn't always available. | 
 |  * | 
 |  * Notice that both the panic/die report notifiers are registered only | 
 |  * if we have the capability HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE set. | 
 |  */ | 
 | static int hv_die_panic_notify_crash(struct notifier_block *self, | 
 | 				     unsigned long val, void *args) | 
 | { | 
 | 	struct pt_regs *regs; | 
 | 	bool is_die; | 
 |  | 
 | 	/* Don't notify Hyper-V unless we have a die oops event or panic. */ | 
 | 	if (self == &hyperv_panic_report_block) { | 
 | 		is_die = false; | 
 | 		regs = current_pt_regs(); | 
 | 	} else { /* die event */ | 
 | 		if (val != DIE_OOPS) | 
 | 			return NOTIFY_DONE; | 
 |  | 
 | 		is_die = true; | 
 | 		regs = ((struct die_args *)args)->regs; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Hyper-V should be notified only once about a panic/die. If we will | 
 | 	 * be calling hv_kmsg_dump() later with kmsg data, don't do the | 
 | 	 * notification here. | 
 | 	 */ | 
 | 	if (!sysctl_record_panic_msg || !hv_panic_page) | 
 | 		hyperv_report_panic(regs, val, is_die); | 
 |  | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | /* | 
 |  * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg | 
 |  * buffer and call into Hyper-V to transfer the data. | 
 |  */ | 
 | static void hv_kmsg_dump(struct kmsg_dumper *dumper, | 
 | 			 struct kmsg_dump_detail *detail) | 
 | { | 
 | 	struct kmsg_dump_iter iter; | 
 | 	size_t bytes_written; | 
 |  | 
 | 	/* We are only interested in panics. */ | 
 | 	if (detail->reason != KMSG_DUMP_PANIC || !sysctl_record_panic_msg) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Write dump contents to the page. No need to synchronize; panic should | 
 | 	 * be single-threaded. | 
 | 	 */ | 
 | 	kmsg_dump_rewind(&iter); | 
 | 	kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE, | 
 | 			     &bytes_written); | 
 | 	if (!bytes_written) | 
 | 		return; | 
 | 	/* | 
 | 	 * P3 to contain the physical address of the panic page & P4 to | 
 | 	 * contain the size of the panic data in that page. Rest of the | 
 | 	 * registers are no-op when the NOTIFY_MSG flag is set. | 
 | 	 */ | 
 | 	hv_set_msr(HV_MSR_CRASH_P0, 0); | 
 | 	hv_set_msr(HV_MSR_CRASH_P1, 0); | 
 | 	hv_set_msr(HV_MSR_CRASH_P2, 0); | 
 | 	hv_set_msr(HV_MSR_CRASH_P3, virt_to_phys(hv_panic_page)); | 
 | 	hv_set_msr(HV_MSR_CRASH_P4, bytes_written); | 
 |  | 
 | 	/* | 
 | 	 * Let Hyper-V know there is crash data available along with | 
 | 	 * the panic message. | 
 | 	 */ | 
 | 	hv_set_msr(HV_MSR_CRASH_CTL, | 
 | 		   (HV_CRASH_CTL_CRASH_NOTIFY | | 
 | 		    HV_CRASH_CTL_CRASH_NOTIFY_MSG)); | 
 | } | 
 |  | 
 | static struct kmsg_dumper hv_kmsg_dumper = { | 
 | 	.dump = hv_kmsg_dump, | 
 | }; | 
 |  | 
 | static void hv_kmsg_dump_unregister(void) | 
 | { | 
 | 	kmsg_dump_unregister(&hv_kmsg_dumper); | 
 | 	unregister_die_notifier(&hyperv_die_report_block); | 
 | 	atomic_notifier_chain_unregister(&panic_notifier_list, | 
 | 					 &hyperv_panic_report_block); | 
 |  | 
 | 	hv_free_hyperv_page(hv_panic_page); | 
 | 	hv_panic_page = NULL; | 
 | } | 
 |  | 
 | static void hv_kmsg_dump_register(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	hv_panic_page = hv_alloc_hyperv_zeroed_page(); | 
 | 	if (!hv_panic_page) { | 
 | 		pr_err("Hyper-V: panic message page memory allocation failed\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ret = kmsg_dump_register(&hv_kmsg_dumper); | 
 | 	if (ret) { | 
 | 		pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret); | 
 | 		hv_free_hyperv_page(hv_panic_page); | 
 | 		hv_panic_page = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | int __init hv_common_init(void) | 
 | { | 
 | 	int i; | 
 | 	union hv_hypervisor_version_info version; | 
 |  | 
 | 	/* Get information about the Hyper-V host version */ | 
 | 	if (!hv_get_hypervisor_version(&version)) | 
 | 		pr_info("Hyper-V: Host Build %d.%d.%d.%d-%d-%d\n", | 
 | 			version.major_version, version.minor_version, | 
 | 			version.build_number, version.service_number, | 
 | 			version.service_pack, version.service_branch); | 
 |  | 
 | 	if (hv_is_isolation_supported()) | 
 | 		sysctl_record_panic_msg = 0; | 
 |  | 
 | 	/* | 
 | 	 * Hyper-V expects to get crash register data or kmsg when | 
 | 	 * crash enlightment is available and system crashes. Set | 
 | 	 * crash_kexec_post_notifiers to be true to make sure that | 
 | 	 * calling crash enlightment interface before running kdump | 
 | 	 * kernel. | 
 | 	 */ | 
 | 	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) { | 
 | 		u64 hyperv_crash_ctl; | 
 |  | 
 | 		crash_kexec_post_notifiers = true; | 
 | 		pr_info("Hyper-V: enabling crash_kexec_post_notifiers\n"); | 
 |  | 
 | 		/* | 
 | 		 * Panic message recording (sysctl_record_panic_msg) | 
 | 		 * is enabled by default in non-isolated guests and | 
 | 		 * disabled by default in isolated guests; the panic | 
 | 		 * message recording won't be available in isolated | 
 | 		 * guests should the following registration fail. | 
 | 		 */ | 
 | 		hv_ctl_table_hdr = register_sysctl("kernel", hv_ctl_table); | 
 | 		if (!hv_ctl_table_hdr) | 
 | 			pr_err("Hyper-V: sysctl table register error"); | 
 |  | 
 | 		/* | 
 | 		 * Register for panic kmsg callback only if the right | 
 | 		 * capability is supported by the hypervisor. | 
 | 		 */ | 
 | 		hyperv_crash_ctl = hv_get_msr(HV_MSR_CRASH_CTL); | 
 | 		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG) | 
 | 			hv_kmsg_dump_register(); | 
 |  | 
 | 		register_die_notifier(&hyperv_die_report_block); | 
 | 		atomic_notifier_chain_register(&panic_notifier_list, | 
 | 					       &hyperv_panic_report_block); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Allocate the per-CPU state for the hypercall input arg. | 
 | 	 * If this allocation fails, we will not be able to setup | 
 | 	 * (per-CPU) hypercall input page and thus this failure is | 
 | 	 * fatal on Hyper-V. | 
 | 	 */ | 
 | 	hyperv_pcpu_input_arg = alloc_percpu(void  *); | 
 | 	BUG_ON(!hyperv_pcpu_input_arg); | 
 |  | 
 | 	/* Allocate the per-CPU state for output arg for root */ | 
 | 	if (hv_root_partition) { | 
 | 		hyperv_pcpu_output_arg = alloc_percpu(void *); | 
 | 		BUG_ON(!hyperv_pcpu_output_arg); | 
 | 	} | 
 |  | 
 | 	hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index), | 
 | 				    GFP_KERNEL); | 
 | 	if (!hv_vp_index) { | 
 | 		hv_common_free(); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < num_possible_cpus(); i++) | 
 | 		hv_vp_index[i] = VP_INVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __init ms_hyperv_late_init(void) | 
 | { | 
 | 	struct acpi_table_header *header; | 
 | 	acpi_status status; | 
 | 	u8 *randomdata; | 
 | 	u32 length, i; | 
 |  | 
 | 	/* | 
 | 	 * Seed the Linux random number generator with entropy provided by | 
 | 	 * the Hyper-V host in ACPI table OEM0. | 
 | 	 */ | 
 | 	if (!IS_ENABLED(CONFIG_ACPI)) | 
 | 		return; | 
 |  | 
 | 	status = acpi_get_table("OEM0", 0, &header); | 
 | 	if (ACPI_FAILURE(status) || !header) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Since the "OEM0" table name is for OEM specific usage, verify | 
 | 	 * that what we're seeing purports to be from Microsoft. | 
 | 	 */ | 
 | 	if (strncmp(header->oem_table_id, "MICROSFT", 8)) | 
 | 		goto error; | 
 |  | 
 | 	/* | 
 | 	 * Ensure the length is reasonable. Requiring at least 8 bytes and | 
 | 	 * no more than 4K bytes is somewhat arbitrary and just protects | 
 | 	 * against a malformed table. Hyper-V currently provides 64 bytes, | 
 | 	 * but allow for a change in a later version. | 
 | 	 */ | 
 | 	if (header->length < sizeof(*header) + 8 || | 
 | 	    header->length > sizeof(*header) + SZ_4K) | 
 | 		goto error; | 
 |  | 
 | 	length = header->length - sizeof(*header); | 
 | 	randomdata = (u8 *)(header + 1); | 
 |  | 
 | 	pr_debug("Hyper-V: Seeding rng with %d random bytes from ACPI table OEM0\n", | 
 | 			length); | 
 |  | 
 | 	add_bootloader_randomness(randomdata, length); | 
 |  | 
 | 	/* | 
 | 	 * To prevent the seed data from being visible in /sys/firmware/acpi, | 
 | 	 * zero out the random data in the ACPI table and fixup the checksum. | 
 | 	 * The zero'ing is done out of an abundance of caution in avoiding | 
 | 	 * potential security risks to the rng. Similarly, reset the table | 
 | 	 * length to just the header size so that a subsequent kexec doesn't | 
 | 	 * try to use the zero'ed out random data. | 
 | 	 */ | 
 | 	for (i = 0; i < length; i++) { | 
 | 		header->checksum += randomdata[i]; | 
 | 		randomdata[i] = 0; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < sizeof(header->length); i++) | 
 | 		header->checksum += ((u8 *)&header->length)[i]; | 
 | 	header->length = sizeof(*header); | 
 | 	for (i = 0; i < sizeof(header->length); i++) | 
 | 		header->checksum -= ((u8 *)&header->length)[i]; | 
 |  | 
 | error: | 
 | 	acpi_put_table(header); | 
 | } | 
 |  | 
 | /* | 
 |  * Hyper-V specific initialization and die code for | 
 |  * individual CPUs that is common across all architectures. | 
 |  * Called by the CPU hotplug mechanism. | 
 |  */ | 
 |  | 
 | int hv_common_cpu_init(unsigned int cpu) | 
 | { | 
 | 	void **inputarg, **outputarg; | 
 | 	u64 msr_vp_index; | 
 | 	gfp_t flags; | 
 | 	int pgcount = hv_root_partition ? 2 : 1; | 
 | 	void *mem; | 
 | 	int ret; | 
 |  | 
 | 	/* hv_cpu_init() can be called with IRQs disabled from hv_resume() */ | 
 | 	flags = irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL; | 
 |  | 
 | 	inputarg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg); | 
 |  | 
 | 	/* | 
 | 	 * hyperv_pcpu_input_arg and hyperv_pcpu_output_arg memory is already | 
 | 	 * allocated if this CPU was previously online and then taken offline | 
 | 	 */ | 
 | 	if (!*inputarg) { | 
 | 		mem = kmalloc(pgcount * HV_HYP_PAGE_SIZE, flags); | 
 | 		if (!mem) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		if (hv_root_partition) { | 
 | 			outputarg = (void **)this_cpu_ptr(hyperv_pcpu_output_arg); | 
 | 			*outputarg = (char *)mem + HV_HYP_PAGE_SIZE; | 
 | 		} | 
 |  | 
 | 		if (!ms_hyperv.paravisor_present && | 
 | 		    (hv_isolation_type_snp() || hv_isolation_type_tdx())) { | 
 | 			ret = set_memory_decrypted((unsigned long)mem, pgcount); | 
 | 			if (ret) { | 
 | 				/* It may be unsafe to free 'mem' */ | 
 | 				return ret; | 
 | 			} | 
 |  | 
 | 			memset(mem, 0x00, pgcount * HV_HYP_PAGE_SIZE); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * In a fully enlightened TDX/SNP VM with more than 64 VPs, if | 
 | 		 * hyperv_pcpu_input_arg is not NULL, set_memory_decrypted() -> | 
 | 		 * ... -> cpa_flush()-> ... -> __send_ipi_mask_ex() tries to | 
 | 		 * use hyperv_pcpu_input_arg as the hypercall input page, which | 
 | 		 * must be a decrypted page in such a VM, but the page is still | 
 | 		 * encrypted before set_memory_decrypted() returns. Fix this by | 
 | 		 * setting *inputarg after the above set_memory_decrypted(): if | 
 | 		 * hyperv_pcpu_input_arg is NULL, __send_ipi_mask_ex() returns | 
 | 		 * HV_STATUS_INVALID_PARAMETER immediately, and the function | 
 | 		 * hv_send_ipi_mask() falls back to orig_apic.send_IPI_mask(), | 
 | 		 * which may be slightly slower than the hypercall, but still | 
 | 		 * works correctly in such a VM. | 
 | 		 */ | 
 | 		*inputarg = mem; | 
 | 	} | 
 |  | 
 | 	msr_vp_index = hv_get_msr(HV_MSR_VP_INDEX); | 
 |  | 
 | 	hv_vp_index[cpu] = msr_vp_index; | 
 |  | 
 | 	if (msr_vp_index > hv_max_vp_index) | 
 | 		hv_max_vp_index = msr_vp_index; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int hv_common_cpu_die(unsigned int cpu) | 
 | { | 
 | 	/* | 
 | 	 * The hyperv_pcpu_input_arg and hyperv_pcpu_output_arg memory | 
 | 	 * is not freed when the CPU goes offline as the hyperv_pcpu_input_arg | 
 | 	 * may be used by the Hyper-V vPCI driver in reassigning interrupts | 
 | 	 * as part of the offlining process.  The interrupt reassignment | 
 | 	 * happens *after* the CPUHP_AP_HYPERV_ONLINE state has run and | 
 | 	 * called this function. | 
 | 	 * | 
 | 	 * If a previously offlined CPU is brought back online again, the | 
 | 	 * originally allocated memory is reused in hv_common_cpu_init(). | 
 | 	 */ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Bit mask of the extended capability to query: see HV_EXT_CAPABILITY_xxx */ | 
 | bool hv_query_ext_cap(u64 cap_query) | 
 | { | 
 | 	/* | 
 | 	 * The address of the 'hv_extended_cap' variable will be used as an | 
 | 	 * output parameter to the hypercall below and so it should be | 
 | 	 * compatible with 'virt_to_phys'. Which means, it's address should be | 
 | 	 * directly mapped. Use 'static' to keep it compatible; stack variables | 
 | 	 * can be virtually mapped, making them incompatible with | 
 | 	 * 'virt_to_phys'. | 
 | 	 * Hypercall input/output addresses should also be 8-byte aligned. | 
 | 	 */ | 
 | 	static u64 hv_extended_cap __aligned(8); | 
 | 	static bool hv_extended_cap_queried; | 
 | 	u64 status; | 
 |  | 
 | 	/* | 
 | 	 * Querying extended capabilities is an extended hypercall. Check if the | 
 | 	 * partition supports extended hypercall, first. | 
 | 	 */ | 
 | 	if (!(ms_hyperv.priv_high & HV_ENABLE_EXTENDED_HYPERCALLS)) | 
 | 		return false; | 
 |  | 
 | 	/* Extended capabilities do not change at runtime. */ | 
 | 	if (hv_extended_cap_queried) | 
 | 		return hv_extended_cap & cap_query; | 
 |  | 
 | 	status = hv_do_hypercall(HV_EXT_CALL_QUERY_CAPABILITIES, NULL, | 
 | 				 &hv_extended_cap); | 
 |  | 
 | 	/* | 
 | 	 * The query extended capabilities hypercall should not fail under | 
 | 	 * any normal circumstances. Avoid repeatedly making the hypercall, on | 
 | 	 * error. | 
 | 	 */ | 
 | 	hv_extended_cap_queried = true; | 
 | 	if (!hv_result_success(status)) { | 
 | 		pr_err("Hyper-V: Extended query capabilities hypercall failed 0x%llx\n", | 
 | 		       status); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return hv_extended_cap & cap_query; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_query_ext_cap); | 
 |  | 
 | void hv_setup_dma_ops(struct device *dev, bool coherent) | 
 | { | 
 | 	arch_setup_dma_ops(dev, coherent); | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_setup_dma_ops); | 
 |  | 
 | bool hv_is_hibernation_supported(void) | 
 | { | 
 | 	return !hv_root_partition && acpi_sleep_state_supported(ACPI_STATE_S4); | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_is_hibernation_supported); | 
 |  | 
 | /* | 
 |  * Default function to read the Hyper-V reference counter, independent | 
 |  * of whether Hyper-V enlightened clocks/timers are being used. But on | 
 |  * architectures where it is used, Hyper-V enlightenment code in | 
 |  * hyperv_timer.c may override this function. | 
 |  */ | 
 | static u64 __hv_read_ref_counter(void) | 
 | { | 
 | 	return hv_get_msr(HV_MSR_TIME_REF_COUNT); | 
 | } | 
 |  | 
 | u64 (*hv_read_reference_counter)(void) = __hv_read_ref_counter; | 
 | EXPORT_SYMBOL_GPL(hv_read_reference_counter); | 
 |  | 
 | /* These __weak functions provide default "no-op" behavior and | 
 |  * may be overridden by architecture specific versions. Architectures | 
 |  * for which the default "no-op" behavior is sufficient can leave | 
 |  * them unimplemented and not be cluttered with a bunch of stub | 
 |  * functions in arch-specific code. | 
 |  */ | 
 |  | 
 | bool __weak hv_is_isolation_supported(void) | 
 | { | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_is_isolation_supported); | 
 |  | 
 | bool __weak hv_isolation_type_snp(void) | 
 | { | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_isolation_type_snp); | 
 |  | 
 | bool __weak hv_isolation_type_tdx(void) | 
 | { | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_isolation_type_tdx); | 
 |  | 
 | void __weak hv_setup_vmbus_handler(void (*handler)(void)) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_setup_vmbus_handler); | 
 |  | 
 | void __weak hv_remove_vmbus_handler(void) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_remove_vmbus_handler); | 
 |  | 
 | void __weak hv_setup_kexec_handler(void (*handler)(void)) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_setup_kexec_handler); | 
 |  | 
 | void __weak hv_remove_kexec_handler(void) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_remove_kexec_handler); | 
 |  | 
 | void __weak hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_setup_crash_handler); | 
 |  | 
 | void __weak hv_remove_crash_handler(void) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_remove_crash_handler); | 
 |  | 
 | void __weak hyperv_cleanup(void) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL_GPL(hyperv_cleanup); | 
 |  | 
 | u64 __weak hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size) | 
 | { | 
 | 	return HV_STATUS_INVALID_PARAMETER; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_ghcb_hypercall); | 
 |  | 
 | u64 __weak hv_tdx_hypercall(u64 control, u64 param1, u64 param2) | 
 | { | 
 | 	return HV_STATUS_INVALID_PARAMETER; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hv_tdx_hypercall); |