|  | /* | 
|  | * raid6main.c : Multiple Devices driver for Linux | 
|  | *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman | 
|  | *	   Copyright (C) 1999, 2000 Ingo Molnar | 
|  | *	   Copyright (C) 2002, 2003 H. Peter Anvin | 
|  | * | 
|  | * RAID-6 management functions.  This code is derived from raid5.c. | 
|  | * Last merge from raid5.c bkcvs version 1.79 (kernel 2.6.1). | 
|  | * | 
|  | * Thanks to Penguin Computing for making the RAID-6 development possible | 
|  | * by donating a test server! | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * (for example /usr/src/linux/COPYING); if not, write to the Free | 
|  | * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <asm/atomic.h> | 
|  | #include "raid6.h" | 
|  |  | 
|  | /* | 
|  | * Stripe cache | 
|  | */ | 
|  |  | 
|  | #define NR_STRIPES		256 | 
|  | #define STRIPE_SIZE		PAGE_SIZE | 
|  | #define STRIPE_SHIFT		(PAGE_SHIFT - 9) | 
|  | #define STRIPE_SECTORS		(STRIPE_SIZE>>9) | 
|  | #define	IO_THRESHOLD		1 | 
|  | #define HASH_PAGES		1 | 
|  | #define HASH_PAGES_ORDER	0 | 
|  | #define NR_HASH			(HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *)) | 
|  | #define HASH_MASK		(NR_HASH - 1) | 
|  |  | 
|  | #define stripe_hash(conf, sect)	((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]) | 
|  |  | 
|  | /* bio's attached to a stripe+device for I/O are linked together in bi_sector | 
|  | * order without overlap.  There may be several bio's per stripe+device, and | 
|  | * a bio could span several devices. | 
|  | * When walking this list for a particular stripe+device, we must never proceed | 
|  | * beyond a bio that extends past this device, as the next bio might no longer | 
|  | * be valid. | 
|  | * This macro is used to determine the 'next' bio in the list, given the sector | 
|  | * of the current stripe+device | 
|  | */ | 
|  | #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) | 
|  | /* | 
|  | * The following can be used to debug the driver | 
|  | */ | 
|  | #define RAID6_DEBUG	0	/* Extremely verbose printk */ | 
|  | #define RAID6_PARANOIA	1	/* Check spinlocks */ | 
|  | #define RAID6_DUMPSTATE 0	/* Include stripe cache state in /proc/mdstat */ | 
|  | #if RAID6_PARANOIA && defined(CONFIG_SMP) | 
|  | # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) | 
|  | #else | 
|  | # define CHECK_DEVLOCK() | 
|  | #endif | 
|  |  | 
|  | #define PRINTK(x...) ((void)(RAID6_DEBUG && printk(KERN_DEBUG x))) | 
|  | #if RAID6_DEBUG | 
|  | #undef inline | 
|  | #undef __inline__ | 
|  | #define inline | 
|  | #define __inline__ | 
|  | #endif | 
|  |  | 
|  | #if !RAID6_USE_EMPTY_ZERO_PAGE | 
|  | /* In .bss so it's zeroed */ | 
|  | const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); | 
|  | #endif | 
|  |  | 
|  | static inline int raid6_next_disk(int disk, int raid_disks) | 
|  | { | 
|  | disk++; | 
|  | return (disk < raid_disks) ? disk : 0; | 
|  | } | 
|  |  | 
|  | static void print_raid6_conf (raid6_conf_t *conf); | 
|  |  | 
|  | static inline void __release_stripe(raid6_conf_t *conf, struct stripe_head *sh) | 
|  | { | 
|  | if (atomic_dec_and_test(&sh->count)) { | 
|  | if (!list_empty(&sh->lru)) | 
|  | BUG(); | 
|  | if (atomic_read(&conf->active_stripes)==0) | 
|  | BUG(); | 
|  | if (test_bit(STRIPE_HANDLE, &sh->state)) { | 
|  | if (test_bit(STRIPE_DELAYED, &sh->state)) | 
|  | list_add_tail(&sh->lru, &conf->delayed_list); | 
|  | else | 
|  | list_add_tail(&sh->lru, &conf->handle_list); | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } else { | 
|  | if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { | 
|  | atomic_dec(&conf->preread_active_stripes); | 
|  | if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } | 
|  | list_add_tail(&sh->lru, &conf->inactive_list); | 
|  | atomic_dec(&conf->active_stripes); | 
|  | if (!conf->inactive_blocked || | 
|  | atomic_read(&conf->active_stripes) < (NR_STRIPES*3/4)) | 
|  | wake_up(&conf->wait_for_stripe); | 
|  | } | 
|  | } | 
|  | } | 
|  | static void release_stripe(struct stripe_head *sh) | 
|  | { | 
|  | raid6_conf_t *conf = sh->raid_conf; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | __release_stripe(conf, sh); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | } | 
|  |  | 
|  | static void remove_hash(struct stripe_head *sh) | 
|  | { | 
|  | PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector); | 
|  |  | 
|  | if (sh->hash_pprev) { | 
|  | if (sh->hash_next) | 
|  | sh->hash_next->hash_pprev = sh->hash_pprev; | 
|  | *sh->hash_pprev = sh->hash_next; | 
|  | sh->hash_pprev = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static __inline__ void insert_hash(raid6_conf_t *conf, struct stripe_head *sh) | 
|  | { | 
|  | struct stripe_head **shp = &stripe_hash(conf, sh->sector); | 
|  |  | 
|  | PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector); | 
|  |  | 
|  | CHECK_DEVLOCK(); | 
|  | if ((sh->hash_next = *shp) != NULL) | 
|  | (*shp)->hash_pprev = &sh->hash_next; | 
|  | *shp = sh; | 
|  | sh->hash_pprev = shp; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* find an idle stripe, make sure it is unhashed, and return it. */ | 
|  | static struct stripe_head *get_free_stripe(raid6_conf_t *conf) | 
|  | { | 
|  | struct stripe_head *sh = NULL; | 
|  | struct list_head *first; | 
|  |  | 
|  | CHECK_DEVLOCK(); | 
|  | if (list_empty(&conf->inactive_list)) | 
|  | goto out; | 
|  | first = conf->inactive_list.next; | 
|  | sh = list_entry(first, struct stripe_head, lru); | 
|  | list_del_init(first); | 
|  | remove_hash(sh); | 
|  | atomic_inc(&conf->active_stripes); | 
|  | out: | 
|  | return sh; | 
|  | } | 
|  |  | 
|  | static void shrink_buffers(struct stripe_head *sh, int num) | 
|  | { | 
|  | struct page *p; | 
|  | int i; | 
|  |  | 
|  | for (i=0; i<num ; i++) { | 
|  | p = sh->dev[i].page; | 
|  | if (!p) | 
|  | continue; | 
|  | sh->dev[i].page = NULL; | 
|  | page_cache_release(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int grow_buffers(struct stripe_head *sh, int num) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i=0; i<num; i++) { | 
|  | struct page *page; | 
|  |  | 
|  | if (!(page = alloc_page(GFP_KERNEL))) { | 
|  | return 1; | 
|  | } | 
|  | sh->dev[i].page = page; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void raid6_build_block (struct stripe_head *sh, int i); | 
|  |  | 
|  | static inline void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx) | 
|  | { | 
|  | raid6_conf_t *conf = sh->raid_conf; | 
|  | int disks = conf->raid_disks, i; | 
|  |  | 
|  | if (atomic_read(&sh->count) != 0) | 
|  | BUG(); | 
|  | if (test_bit(STRIPE_HANDLE, &sh->state)) | 
|  | BUG(); | 
|  |  | 
|  | CHECK_DEVLOCK(); | 
|  | PRINTK("init_stripe called, stripe %llu\n", | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | remove_hash(sh); | 
|  |  | 
|  | sh->sector = sector; | 
|  | sh->pd_idx = pd_idx; | 
|  | sh->state = 0; | 
|  |  | 
|  | for (i=disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  |  | 
|  | if (dev->toread || dev->towrite || dev->written || | 
|  | test_bit(R5_LOCKED, &dev->flags)) { | 
|  | PRINTK("sector=%llx i=%d %p %p %p %d\n", | 
|  | (unsigned long long)sh->sector, i, dev->toread, | 
|  | dev->towrite, dev->written, | 
|  | test_bit(R5_LOCKED, &dev->flags)); | 
|  | BUG(); | 
|  | } | 
|  | dev->flags = 0; | 
|  | raid6_build_block(sh, i); | 
|  | } | 
|  | insert_hash(conf, sh); | 
|  | } | 
|  |  | 
|  | static struct stripe_head *__find_stripe(raid6_conf_t *conf, sector_t sector) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  |  | 
|  | CHECK_DEVLOCK(); | 
|  | PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector); | 
|  | for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next) | 
|  | if (sh->sector == sector) | 
|  | return sh; | 
|  | PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void unplug_slaves(mddev_t *mddev); | 
|  |  | 
|  | static struct stripe_head *get_active_stripe(raid6_conf_t *conf, sector_t sector, | 
|  | int pd_idx, int noblock) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  |  | 
|  | PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector); | 
|  |  | 
|  | spin_lock_irq(&conf->device_lock); | 
|  |  | 
|  | do { | 
|  | sh = __find_stripe(conf, sector); | 
|  | if (!sh) { | 
|  | if (!conf->inactive_blocked) | 
|  | sh = get_free_stripe(conf); | 
|  | if (noblock && sh == NULL) | 
|  | break; | 
|  | if (!sh) { | 
|  | conf->inactive_blocked = 1; | 
|  | wait_event_lock_irq(conf->wait_for_stripe, | 
|  | !list_empty(&conf->inactive_list) && | 
|  | (atomic_read(&conf->active_stripes) < (NR_STRIPES *3/4) | 
|  | || !conf->inactive_blocked), | 
|  | conf->device_lock, | 
|  | unplug_slaves(conf->mddev); | 
|  | ); | 
|  | conf->inactive_blocked = 0; | 
|  | } else | 
|  | init_stripe(sh, sector, pd_idx); | 
|  | } else { | 
|  | if (atomic_read(&sh->count)) { | 
|  | if (!list_empty(&sh->lru)) | 
|  | BUG(); | 
|  | } else { | 
|  | if (!test_bit(STRIPE_HANDLE, &sh->state)) | 
|  | atomic_inc(&conf->active_stripes); | 
|  | if (list_empty(&sh->lru)) | 
|  | BUG(); | 
|  | list_del_init(&sh->lru); | 
|  | } | 
|  | } | 
|  | } while (sh == NULL); | 
|  |  | 
|  | if (sh) | 
|  | atomic_inc(&sh->count); | 
|  |  | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | return sh; | 
|  | } | 
|  |  | 
|  | static int grow_stripes(raid6_conf_t *conf, int num) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  | kmem_cache_t *sc; | 
|  | int devs = conf->raid_disks; | 
|  |  | 
|  | sprintf(conf->cache_name, "raid6/%s", mdname(conf->mddev)); | 
|  |  | 
|  | sc = kmem_cache_create(conf->cache_name, | 
|  | sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), | 
|  | 0, 0, NULL, NULL); | 
|  | if (!sc) | 
|  | return 1; | 
|  | conf->slab_cache = sc; | 
|  | while (num--) { | 
|  | sh = kmem_cache_alloc(sc, GFP_KERNEL); | 
|  | if (!sh) | 
|  | return 1; | 
|  | memset(sh, 0, sizeof(*sh) + (devs-1)*sizeof(struct r5dev)); | 
|  | sh->raid_conf = conf; | 
|  | spin_lock_init(&sh->lock); | 
|  |  | 
|  | if (grow_buffers(sh, conf->raid_disks)) { | 
|  | shrink_buffers(sh, conf->raid_disks); | 
|  | kmem_cache_free(sc, sh); | 
|  | return 1; | 
|  | } | 
|  | /* we just created an active stripe so... */ | 
|  | atomic_set(&sh->count, 1); | 
|  | atomic_inc(&conf->active_stripes); | 
|  | INIT_LIST_HEAD(&sh->lru); | 
|  | release_stripe(sh); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void shrink_stripes(raid6_conf_t *conf) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  |  | 
|  | while (1) { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | sh = get_free_stripe(conf); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | if (!sh) | 
|  | break; | 
|  | if (atomic_read(&sh->count)) | 
|  | BUG(); | 
|  | shrink_buffers(sh, conf->raid_disks); | 
|  | kmem_cache_free(conf->slab_cache, sh); | 
|  | atomic_dec(&conf->active_stripes); | 
|  | } | 
|  | kmem_cache_destroy(conf->slab_cache); | 
|  | conf->slab_cache = NULL; | 
|  | } | 
|  |  | 
|  | static int raid6_end_read_request (struct bio * bi, unsigned int bytes_done, | 
|  | int error) | 
|  | { | 
|  | struct stripe_head *sh = bi->bi_private; | 
|  | raid6_conf_t *conf = sh->raid_conf; | 
|  | int disks = conf->raid_disks, i; | 
|  | int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); | 
|  |  | 
|  | if (bi->bi_size) | 
|  | return 1; | 
|  |  | 
|  | for (i=0 ; i<disks; i++) | 
|  | if (bi == &sh->dev[i].req) | 
|  | break; | 
|  |  | 
|  | PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n", | 
|  | (unsigned long long)sh->sector, i, atomic_read(&sh->count), | 
|  | uptodate); | 
|  | if (i == disks) { | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (uptodate) { | 
|  | #if 0 | 
|  | struct bio *bio; | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | /* we can return a buffer if we bypassed the cache or | 
|  | * if the top buffer is not in highmem.  If there are | 
|  | * multiple buffers, leave the extra work to | 
|  | * handle_stripe | 
|  | */ | 
|  | buffer = sh->bh_read[i]; | 
|  | if (buffer && | 
|  | (!PageHighMem(buffer->b_page) | 
|  | || buffer->b_page == bh->b_page ) | 
|  | ) { | 
|  | sh->bh_read[i] = buffer->b_reqnext; | 
|  | buffer->b_reqnext = NULL; | 
|  | } else | 
|  | buffer = NULL; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | if (sh->bh_page[i]==bh->b_page) | 
|  | set_buffer_uptodate(bh); | 
|  | if (buffer) { | 
|  | if (buffer->b_page != bh->b_page) | 
|  | memcpy(buffer->b_data, bh->b_data, bh->b_size); | 
|  | buffer->b_end_io(buffer, 1); | 
|  | } | 
|  | #else | 
|  | set_bit(R5_UPTODATE, &sh->dev[i].flags); | 
|  | #endif | 
|  | } else { | 
|  | md_error(conf->mddev, conf->disks[i].rdev); | 
|  | clear_bit(R5_UPTODATE, &sh->dev[i].flags); | 
|  | } | 
|  | rdev_dec_pending(conf->disks[i].rdev, conf->mddev); | 
|  | #if 0 | 
|  | /* must restore b_page before unlocking buffer... */ | 
|  | if (sh->bh_page[i] != bh->b_page) { | 
|  | bh->b_page = sh->bh_page[i]; | 
|  | bh->b_data = page_address(bh->b_page); | 
|  | clear_buffer_uptodate(bh); | 
|  | } | 
|  | #endif | 
|  | clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | release_stripe(sh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int raid6_end_write_request (struct bio *bi, unsigned int bytes_done, | 
|  | int error) | 
|  | { | 
|  | struct stripe_head *sh = bi->bi_private; | 
|  | raid6_conf_t *conf = sh->raid_conf; | 
|  | int disks = conf->raid_disks, i; | 
|  | unsigned long flags; | 
|  | int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); | 
|  |  | 
|  | if (bi->bi_size) | 
|  | return 1; | 
|  |  | 
|  | for (i=0 ; i<disks; i++) | 
|  | if (bi == &sh->dev[i].req) | 
|  | break; | 
|  |  | 
|  | PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n", | 
|  | (unsigned long long)sh->sector, i, atomic_read(&sh->count), | 
|  | uptodate); | 
|  | if (i == disks) { | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (!uptodate) | 
|  | md_error(conf->mddev, conf->disks[i].rdev); | 
|  |  | 
|  | rdev_dec_pending(conf->disks[i].rdev, conf->mddev); | 
|  |  | 
|  | clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | __release_stripe(conf, sh); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static sector_t compute_blocknr(struct stripe_head *sh, int i); | 
|  |  | 
|  | static void raid6_build_block (struct stripe_head *sh, int i) | 
|  | { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | int pd_idx = sh->pd_idx; | 
|  | int qd_idx = raid6_next_disk(pd_idx, sh->raid_conf->raid_disks); | 
|  |  | 
|  | bio_init(&dev->req); | 
|  | dev->req.bi_io_vec = &dev->vec; | 
|  | dev->req.bi_vcnt++; | 
|  | dev->req.bi_max_vecs++; | 
|  | dev->vec.bv_page = dev->page; | 
|  | dev->vec.bv_len = STRIPE_SIZE; | 
|  | dev->vec.bv_offset = 0; | 
|  |  | 
|  | dev->req.bi_sector = sh->sector; | 
|  | dev->req.bi_private = sh; | 
|  |  | 
|  | dev->flags = 0; | 
|  | if (i != pd_idx && i != qd_idx) | 
|  | dev->sector = compute_blocknr(sh, i); | 
|  | } | 
|  |  | 
|  | static void error(mddev_t *mddev, mdk_rdev_t *rdev) | 
|  | { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | raid6_conf_t *conf = (raid6_conf_t *) mddev->private; | 
|  | PRINTK("raid6: error called\n"); | 
|  |  | 
|  | if (!rdev->faulty) { | 
|  | mddev->sb_dirty = 1; | 
|  | if (rdev->in_sync) { | 
|  | conf->working_disks--; | 
|  | mddev->degraded++; | 
|  | conf->failed_disks++; | 
|  | rdev->in_sync = 0; | 
|  | /* | 
|  | * if recovery was running, make sure it aborts. | 
|  | */ | 
|  | set_bit(MD_RECOVERY_ERR, &mddev->recovery); | 
|  | } | 
|  | rdev->faulty = 1; | 
|  | printk (KERN_ALERT | 
|  | "raid6: Disk failure on %s, disabling device." | 
|  | " Operation continuing on %d devices\n", | 
|  | bdevname(rdev->bdev,b), conf->working_disks); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Input: a 'big' sector number, | 
|  | * Output: index of the data and parity disk, and the sector # in them. | 
|  | */ | 
|  | static sector_t raid6_compute_sector(sector_t r_sector, unsigned int raid_disks, | 
|  | unsigned int data_disks, unsigned int * dd_idx, | 
|  | unsigned int * pd_idx, raid6_conf_t *conf) | 
|  | { | 
|  | long stripe; | 
|  | unsigned long chunk_number; | 
|  | unsigned int chunk_offset; | 
|  | sector_t new_sector; | 
|  | int sectors_per_chunk = conf->chunk_size >> 9; | 
|  |  | 
|  | /* First compute the information on this sector */ | 
|  |  | 
|  | /* | 
|  | * Compute the chunk number and the sector offset inside the chunk | 
|  | */ | 
|  | chunk_offset = sector_div(r_sector, sectors_per_chunk); | 
|  | chunk_number = r_sector; | 
|  | if ( r_sector != chunk_number ) { | 
|  | printk(KERN_CRIT "raid6: ERROR: r_sector = %llu, chunk_number = %lu\n", | 
|  | (unsigned long long)r_sector, (unsigned long)chunk_number); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the stripe number | 
|  | */ | 
|  | stripe = chunk_number / data_disks; | 
|  |  | 
|  | /* | 
|  | * Compute the data disk and parity disk indexes inside the stripe | 
|  | */ | 
|  | *dd_idx = chunk_number % data_disks; | 
|  |  | 
|  | /* | 
|  | * Select the parity disk based on the user selected algorithm. | 
|  | */ | 
|  |  | 
|  | /**** FIX THIS ****/ | 
|  | switch (conf->algorithm) { | 
|  | case ALGORITHM_LEFT_ASYMMETRIC: | 
|  | *pd_idx = raid_disks - 1 - (stripe % raid_disks); | 
|  | if (*pd_idx == raid_disks-1) | 
|  | (*dd_idx)++; 	/* Q D D D P */ | 
|  | else if (*dd_idx >= *pd_idx) | 
|  | (*dd_idx) += 2; /* D D P Q D */ | 
|  | break; | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC: | 
|  | *pd_idx = stripe % raid_disks; | 
|  | if (*pd_idx == raid_disks-1) | 
|  | (*dd_idx)++; 	/* Q D D D P */ | 
|  | else if (*dd_idx >= *pd_idx) | 
|  | (*dd_idx) += 2; /* D D P Q D */ | 
|  | break; | 
|  | case ALGORITHM_LEFT_SYMMETRIC: | 
|  | *pd_idx = raid_disks - 1 - (stripe % raid_disks); | 
|  | *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; | 
|  | break; | 
|  | case ALGORITHM_RIGHT_SYMMETRIC: | 
|  | *pd_idx = stripe % raid_disks; | 
|  | *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; | 
|  | break; | 
|  | default: | 
|  | printk (KERN_CRIT "raid6: unsupported algorithm %d\n", | 
|  | conf->algorithm); | 
|  | } | 
|  |  | 
|  | PRINTK("raid6: chunk_number = %lu, pd_idx = %u, dd_idx = %u\n", | 
|  | chunk_number, *pd_idx, *dd_idx); | 
|  |  | 
|  | /* | 
|  | * Finally, compute the new sector number | 
|  | */ | 
|  | new_sector = (sector_t) stripe * sectors_per_chunk + chunk_offset; | 
|  | return new_sector; | 
|  | } | 
|  |  | 
|  |  | 
|  | static sector_t compute_blocknr(struct stripe_head *sh, int i) | 
|  | { | 
|  | raid6_conf_t *conf = sh->raid_conf; | 
|  | int raid_disks = conf->raid_disks, data_disks = raid_disks - 2; | 
|  | sector_t new_sector = sh->sector, check; | 
|  | int sectors_per_chunk = conf->chunk_size >> 9; | 
|  | sector_t stripe; | 
|  | int chunk_offset; | 
|  | int chunk_number, dummy1, dummy2, dd_idx = i; | 
|  | sector_t r_sector; | 
|  | int i0 = i; | 
|  |  | 
|  | chunk_offset = sector_div(new_sector, sectors_per_chunk); | 
|  | stripe = new_sector; | 
|  | if ( new_sector != stripe ) { | 
|  | printk(KERN_CRIT "raid6: ERROR: new_sector = %llu, stripe = %lu\n", | 
|  | (unsigned long long)new_sector, (unsigned long)stripe); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | switch (conf->algorithm) { | 
|  | case ALGORITHM_LEFT_ASYMMETRIC: | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC: | 
|  | if (sh->pd_idx == raid_disks-1) | 
|  | i--; 	/* Q D D D P */ | 
|  | else if (i > sh->pd_idx) | 
|  | i -= 2; /* D D P Q D */ | 
|  | break; | 
|  | case ALGORITHM_LEFT_SYMMETRIC: | 
|  | case ALGORITHM_RIGHT_SYMMETRIC: | 
|  | if (sh->pd_idx == raid_disks-1) | 
|  | i--; /* Q D D D P */ | 
|  | else { | 
|  | /* D D P Q D */ | 
|  | if (i < sh->pd_idx) | 
|  | i += raid_disks; | 
|  | i -= (sh->pd_idx + 2); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | printk (KERN_CRIT "raid6: unsupported algorithm %d\n", | 
|  | conf->algorithm); | 
|  | } | 
|  |  | 
|  | PRINTK("raid6: compute_blocknr: pd_idx = %u, i0 = %u, i = %u\n", sh->pd_idx, i0, i); | 
|  |  | 
|  | chunk_number = stripe * data_disks + i; | 
|  | r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; | 
|  |  | 
|  | check = raid6_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); | 
|  | if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { | 
|  | printk(KERN_CRIT "raid6: compute_blocknr: map not correct\n"); | 
|  | return 0; | 
|  | } | 
|  | return r_sector; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Copy data between a page in the stripe cache, and one or more bion | 
|  | * The page could align with the middle of the bio, or there could be | 
|  | * several bion, each with several bio_vecs, which cover part of the page | 
|  | * Multiple bion are linked together on bi_next.  There may be extras | 
|  | * at the end of this list.  We ignore them. | 
|  | */ | 
|  | static void copy_data(int frombio, struct bio *bio, | 
|  | struct page *page, | 
|  | sector_t sector) | 
|  | { | 
|  | char *pa = page_address(page); | 
|  | struct bio_vec *bvl; | 
|  | int i; | 
|  | int page_offset; | 
|  |  | 
|  | if (bio->bi_sector >= sector) | 
|  | page_offset = (signed)(bio->bi_sector - sector) * 512; | 
|  | else | 
|  | page_offset = (signed)(sector - bio->bi_sector) * -512; | 
|  | bio_for_each_segment(bvl, bio, i) { | 
|  | int len = bio_iovec_idx(bio,i)->bv_len; | 
|  | int clen; | 
|  | int b_offset = 0; | 
|  |  | 
|  | if (page_offset < 0) { | 
|  | b_offset = -page_offset; | 
|  | page_offset += b_offset; | 
|  | len -= b_offset; | 
|  | } | 
|  |  | 
|  | if (len > 0 && page_offset + len > STRIPE_SIZE) | 
|  | clen = STRIPE_SIZE - page_offset; | 
|  | else clen = len; | 
|  |  | 
|  | if (clen > 0) { | 
|  | char *ba = __bio_kmap_atomic(bio, i, KM_USER0); | 
|  | if (frombio) | 
|  | memcpy(pa+page_offset, ba+b_offset, clen); | 
|  | else | 
|  | memcpy(ba+b_offset, pa+page_offset, clen); | 
|  | __bio_kunmap_atomic(ba, KM_USER0); | 
|  | } | 
|  | if (clen < len) /* hit end of page */ | 
|  | break; | 
|  | page_offset +=  len; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define check_xor() 	do { 						\ | 
|  | if (count == MAX_XOR_BLOCKS) {		\ | 
|  | xor_block(count, STRIPE_SIZE, ptr);	\ | 
|  | count = 1;				\ | 
|  | }						\ | 
|  | } while(0) | 
|  |  | 
|  | /* Compute P and Q syndromes */ | 
|  | static void compute_parity(struct stripe_head *sh, int method) | 
|  | { | 
|  | raid6_conf_t *conf = sh->raid_conf; | 
|  | int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count; | 
|  | struct bio *chosen; | 
|  | /**** FIX THIS: This could be very bad if disks is close to 256 ****/ | 
|  | void *ptrs[disks]; | 
|  |  | 
|  | qd_idx = raid6_next_disk(pd_idx, disks); | 
|  | d0_idx = raid6_next_disk(qd_idx, disks); | 
|  |  | 
|  | PRINTK("compute_parity, stripe %llu, method %d\n", | 
|  | (unsigned long long)sh->sector, method); | 
|  |  | 
|  | switch(method) { | 
|  | case READ_MODIFY_WRITE: | 
|  | BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */ | 
|  | case RECONSTRUCT_WRITE: | 
|  | for (i= disks; i-- ;) | 
|  | if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { | 
|  | chosen = sh->dev[i].towrite; | 
|  | sh->dev[i].towrite = NULL; | 
|  |  | 
|  | if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) | 
|  | wake_up(&conf->wait_for_overlap); | 
|  |  | 
|  | if (sh->dev[i].written) BUG(); | 
|  | sh->dev[i].written = chosen; | 
|  | } | 
|  | break; | 
|  | case CHECK_PARITY: | 
|  | BUG();		/* Not implemented yet */ | 
|  | } | 
|  |  | 
|  | for (i = disks; i--;) | 
|  | if (sh->dev[i].written) { | 
|  | sector_t sector = sh->dev[i].sector; | 
|  | struct bio *wbi = sh->dev[i].written; | 
|  | while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { | 
|  | copy_data(1, wbi, sh->dev[i].page, sector); | 
|  | wbi = r5_next_bio(wbi, sector); | 
|  | } | 
|  |  | 
|  | set_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | set_bit(R5_UPTODATE, &sh->dev[i].flags); | 
|  | } | 
|  |  | 
|  | //	switch(method) { | 
|  | //	case RECONSTRUCT_WRITE: | 
|  | //	case CHECK_PARITY: | 
|  | //	case UPDATE_PARITY: | 
|  | /* Note that unlike RAID-5, the ordering of the disks matters greatly. */ | 
|  | /* FIX: Is this ordering of drives even remotely optimal? */ | 
|  | count = 0; | 
|  | i = d0_idx; | 
|  | do { | 
|  | ptrs[count++] = page_address(sh->dev[i].page); | 
|  | if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags)) | 
|  | printk("block %d/%d not uptodate on parity calc\n", i,count); | 
|  | i = raid6_next_disk(i, disks); | 
|  | } while ( i != d0_idx ); | 
|  | //		break; | 
|  | //	} | 
|  |  | 
|  | raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs); | 
|  |  | 
|  | switch(method) { | 
|  | case RECONSTRUCT_WRITE: | 
|  | set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); | 
|  | set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); | 
|  | set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags); | 
|  | set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags); | 
|  | break; | 
|  | case UPDATE_PARITY: | 
|  | set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); | 
|  | set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compute one missing block */ | 
|  | static void compute_block_1(struct stripe_head *sh, int dd_idx) | 
|  | { | 
|  | raid6_conf_t *conf = sh->raid_conf; | 
|  | int i, count, disks = conf->raid_disks; | 
|  | void *ptr[MAX_XOR_BLOCKS], *p; | 
|  | int pd_idx = sh->pd_idx; | 
|  | int qd_idx = raid6_next_disk(pd_idx, disks); | 
|  |  | 
|  | PRINTK("compute_block_1, stripe %llu, idx %d\n", | 
|  | (unsigned long long)sh->sector, dd_idx); | 
|  |  | 
|  | if ( dd_idx == qd_idx ) { | 
|  | /* We're actually computing the Q drive */ | 
|  | compute_parity(sh, UPDATE_PARITY); | 
|  | } else { | 
|  | ptr[0] = page_address(sh->dev[dd_idx].page); | 
|  | memset(ptr[0], 0, STRIPE_SIZE); | 
|  | count = 1; | 
|  | for (i = disks ; i--; ) { | 
|  | if (i == dd_idx || i == qd_idx) | 
|  | continue; | 
|  | p = page_address(sh->dev[i].page); | 
|  | if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) | 
|  | ptr[count++] = p; | 
|  | else | 
|  | printk("compute_block() %d, stripe %llu, %d" | 
|  | " not present\n", dd_idx, | 
|  | (unsigned long long)sh->sector, i); | 
|  |  | 
|  | check_xor(); | 
|  | } | 
|  | if (count != 1) | 
|  | xor_block(count, STRIPE_SIZE, ptr); | 
|  | set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compute two missing blocks */ | 
|  | static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) | 
|  | { | 
|  | raid6_conf_t *conf = sh->raid_conf; | 
|  | int i, count, disks = conf->raid_disks; | 
|  | int pd_idx = sh->pd_idx; | 
|  | int qd_idx = raid6_next_disk(pd_idx, disks); | 
|  | int d0_idx = raid6_next_disk(qd_idx, disks); | 
|  | int faila, failb; | 
|  |  | 
|  | /* faila and failb are disk numbers relative to d0_idx */ | 
|  | /* pd_idx become disks-2 and qd_idx become disks-1 */ | 
|  | faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx; | 
|  | failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx; | 
|  |  | 
|  | BUG_ON(faila == failb); | 
|  | if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } | 
|  |  | 
|  | PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", | 
|  | (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb); | 
|  |  | 
|  | if ( failb == disks-1 ) { | 
|  | /* Q disk is one of the missing disks */ | 
|  | if ( faila == disks-2 ) { | 
|  | /* Missing P+Q, just recompute */ | 
|  | compute_parity(sh, UPDATE_PARITY); | 
|  | return; | 
|  | } else { | 
|  | /* We're missing D+Q; recompute D from P */ | 
|  | compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1); | 
|  | compute_parity(sh, UPDATE_PARITY); /* Is this necessary? */ | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We're missing D+P or D+D; build pointer table */ | 
|  | { | 
|  | /**** FIX THIS: This could be very bad if disks is close to 256 ****/ | 
|  | void *ptrs[disks]; | 
|  |  | 
|  | count = 0; | 
|  | i = d0_idx; | 
|  | do { | 
|  | ptrs[count++] = page_address(sh->dev[i].page); | 
|  | i = raid6_next_disk(i, disks); | 
|  | if (i != dd_idx1 && i != dd_idx2 && | 
|  | !test_bit(R5_UPTODATE, &sh->dev[i].flags)) | 
|  | printk("compute_2 with missing block %d/%d\n", count, i); | 
|  | } while ( i != d0_idx ); | 
|  |  | 
|  | if ( failb == disks-2 ) { | 
|  | /* We're missing D+P. */ | 
|  | raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs); | 
|  | } else { | 
|  | /* We're missing D+D. */ | 
|  | raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs); | 
|  | } | 
|  |  | 
|  | /* Both the above update both missing blocks */ | 
|  | set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); | 
|  | set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Each stripe/dev can have one or more bion attached. | 
|  | * toread/towrite point to the first in a chain. | 
|  | * The bi_next chain must be in order. | 
|  | */ | 
|  | static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) | 
|  | { | 
|  | struct bio **bip; | 
|  | raid6_conf_t *conf = sh->raid_conf; | 
|  |  | 
|  | PRINTK("adding bh b#%llu to stripe s#%llu\n", | 
|  | (unsigned long long)bi->bi_sector, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  |  | 
|  | spin_lock(&sh->lock); | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (forwrite) | 
|  | bip = &sh->dev[dd_idx].towrite; | 
|  | else | 
|  | bip = &sh->dev[dd_idx].toread; | 
|  | while (*bip && (*bip)->bi_sector < bi->bi_sector) { | 
|  | if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) | 
|  | goto overlap; | 
|  | bip = &(*bip)->bi_next; | 
|  | } | 
|  | if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) | 
|  | goto overlap; | 
|  |  | 
|  | if (*bip && bi->bi_next && (*bip) != bi->bi_next) | 
|  | BUG(); | 
|  | if (*bip) | 
|  | bi->bi_next = *bip; | 
|  | *bip = bi; | 
|  | bi->bi_phys_segments ++; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | spin_unlock(&sh->lock); | 
|  |  | 
|  | PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n", | 
|  | (unsigned long long)bi->bi_sector, | 
|  | (unsigned long long)sh->sector, dd_idx); | 
|  |  | 
|  | if (forwrite) { | 
|  | /* check if page is covered */ | 
|  | sector_t sector = sh->dev[dd_idx].sector; | 
|  | for (bi=sh->dev[dd_idx].towrite; | 
|  | sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && | 
|  | bi && bi->bi_sector <= sector; | 
|  | bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { | 
|  | if (bi->bi_sector + (bi->bi_size>>9) >= sector) | 
|  | sector = bi->bi_sector + (bi->bi_size>>9); | 
|  | } | 
|  | if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) | 
|  | set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); | 
|  | } | 
|  | return 1; | 
|  |  | 
|  | overlap: | 
|  | set_bit(R5_Overlap, &sh->dev[dd_idx].flags); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | spin_unlock(&sh->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * handle_stripe - do things to a stripe. | 
|  | * | 
|  | * We lock the stripe and then examine the state of various bits | 
|  | * to see what needs to be done. | 
|  | * Possible results: | 
|  | *    return some read request which now have data | 
|  | *    return some write requests which are safely on disc | 
|  | *    schedule a read on some buffers | 
|  | *    schedule a write of some buffers | 
|  | *    return confirmation of parity correctness | 
|  | * | 
|  | * Parity calculations are done inside the stripe lock | 
|  | * buffers are taken off read_list or write_list, and bh_cache buffers | 
|  | * get BH_Lock set before the stripe lock is released. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static void handle_stripe(struct stripe_head *sh) | 
|  | { | 
|  | raid6_conf_t *conf = sh->raid_conf; | 
|  | int disks = conf->raid_disks; | 
|  | struct bio *return_bi= NULL; | 
|  | struct bio *bi; | 
|  | int i; | 
|  | int syncing; | 
|  | int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; | 
|  | int non_overwrite = 0; | 
|  | int failed_num[2] = {0, 0}; | 
|  | struct r5dev *dev, *pdev, *qdev; | 
|  | int pd_idx = sh->pd_idx; | 
|  | int qd_idx = raid6_next_disk(pd_idx, disks); | 
|  | int p_failed, q_failed; | 
|  |  | 
|  | PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n", | 
|  | (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count), | 
|  | pd_idx, qd_idx); | 
|  |  | 
|  | spin_lock(&sh->lock); | 
|  | clear_bit(STRIPE_HANDLE, &sh->state); | 
|  | clear_bit(STRIPE_DELAYED, &sh->state); | 
|  |  | 
|  | syncing = test_bit(STRIPE_SYNCING, &sh->state); | 
|  | /* Now to look around and see what can be done */ | 
|  |  | 
|  | for (i=disks; i--; ) { | 
|  | mdk_rdev_t *rdev; | 
|  | dev = &sh->dev[i]; | 
|  | clear_bit(R5_Insync, &dev->flags); | 
|  | clear_bit(R5_Syncio, &dev->flags); | 
|  |  | 
|  | PRINTK("check %d: state 0x%lx read %p write %p written %p\n", | 
|  | i, dev->flags, dev->toread, dev->towrite, dev->written); | 
|  | /* maybe we can reply to a read */ | 
|  | if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { | 
|  | struct bio *rbi, *rbi2; | 
|  | PRINTK("Return read for disc %d\n", i); | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | rbi = dev->toread; | 
|  | dev->toread = NULL; | 
|  | if (test_and_clear_bit(R5_Overlap, &dev->flags)) | 
|  | wake_up(&conf->wait_for_overlap); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { | 
|  | copy_data(0, rbi, dev->page, dev->sector); | 
|  | rbi2 = r5_next_bio(rbi, dev->sector); | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (--rbi->bi_phys_segments == 0) { | 
|  | rbi->bi_next = return_bi; | 
|  | return_bi = rbi; | 
|  | } | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | rbi = rbi2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now count some things */ | 
|  | if (test_bit(R5_LOCKED, &dev->flags)) locked++; | 
|  | if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++; | 
|  |  | 
|  |  | 
|  | if (dev->toread) to_read++; | 
|  | if (dev->towrite) { | 
|  | to_write++; | 
|  | if (!test_bit(R5_OVERWRITE, &dev->flags)) | 
|  | non_overwrite++; | 
|  | } | 
|  | if (dev->written) written++; | 
|  | rdev = conf->disks[i].rdev; /* FIXME, should I be looking rdev */ | 
|  | if (!rdev || !rdev->in_sync) { | 
|  | if ( failed < 2 ) | 
|  | failed_num[failed] = i; | 
|  | failed++; | 
|  | } else | 
|  | set_bit(R5_Insync, &dev->flags); | 
|  | } | 
|  | PRINTK("locked=%d uptodate=%d to_read=%d" | 
|  | " to_write=%d failed=%d failed_num=%d,%d\n", | 
|  | locked, uptodate, to_read, to_write, failed, | 
|  | failed_num[0], failed_num[1]); | 
|  | /* check if the array has lost >2 devices and, if so, some requests might | 
|  | * need to be failed | 
|  | */ | 
|  | if (failed > 2 && to_read+to_write+written) { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | for (i=disks; i--; ) { | 
|  | /* fail all writes first */ | 
|  | bi = sh->dev[i].towrite; | 
|  | sh->dev[i].towrite = NULL; | 
|  | if (bi) to_write--; | 
|  |  | 
|  | if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) | 
|  | wake_up(&conf->wait_for_overlap); | 
|  |  | 
|  | while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ | 
|  | struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); | 
|  | clear_bit(BIO_UPTODATE, &bi->bi_flags); | 
|  | if (--bi->bi_phys_segments == 0) { | 
|  | md_write_end(conf->mddev); | 
|  | bi->bi_next = return_bi; | 
|  | return_bi = bi; | 
|  | } | 
|  | bi = nextbi; | 
|  | } | 
|  | /* and fail all 'written' */ | 
|  | bi = sh->dev[i].written; | 
|  | sh->dev[i].written = NULL; | 
|  | while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { | 
|  | struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); | 
|  | clear_bit(BIO_UPTODATE, &bi->bi_flags); | 
|  | if (--bi->bi_phys_segments == 0) { | 
|  | md_write_end(conf->mddev); | 
|  | bi->bi_next = return_bi; | 
|  | return_bi = bi; | 
|  | } | 
|  | bi = bi2; | 
|  | } | 
|  |  | 
|  | /* fail any reads if this device is non-operational */ | 
|  | if (!test_bit(R5_Insync, &sh->dev[i].flags)) { | 
|  | bi = sh->dev[i].toread; | 
|  | sh->dev[i].toread = NULL; | 
|  | if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) | 
|  | wake_up(&conf->wait_for_overlap); | 
|  | if (bi) to_read--; | 
|  | while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ | 
|  | struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); | 
|  | clear_bit(BIO_UPTODATE, &bi->bi_flags); | 
|  | if (--bi->bi_phys_segments == 0) { | 
|  | bi->bi_next = return_bi; | 
|  | return_bi = bi; | 
|  | } | 
|  | bi = nextbi; | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  | if (failed > 2 && syncing) { | 
|  | md_done_sync(conf->mddev, STRIPE_SECTORS,0); | 
|  | clear_bit(STRIPE_SYNCING, &sh->state); | 
|  | syncing = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * might be able to return some write requests if the parity blocks | 
|  | * are safe, or on a failed drive | 
|  | */ | 
|  | pdev = &sh->dev[pd_idx]; | 
|  | p_failed = (failed >= 1 && failed_num[0] == pd_idx) | 
|  | || (failed >= 2 && failed_num[1] == pd_idx); | 
|  | qdev = &sh->dev[qd_idx]; | 
|  | q_failed = (failed >= 1 && failed_num[0] == qd_idx) | 
|  | || (failed >= 2 && failed_num[1] == qd_idx); | 
|  |  | 
|  | if ( written && | 
|  | ( p_failed || ((test_bit(R5_Insync, &pdev->flags) | 
|  | && !test_bit(R5_LOCKED, &pdev->flags) | 
|  | && test_bit(R5_UPTODATE, &pdev->flags))) ) && | 
|  | ( q_failed || ((test_bit(R5_Insync, &qdev->flags) | 
|  | && !test_bit(R5_LOCKED, &qdev->flags) | 
|  | && test_bit(R5_UPTODATE, &qdev->flags))) ) ) { | 
|  | /* any written block on an uptodate or failed drive can be | 
|  | * returned.  Note that if we 'wrote' to a failed drive, | 
|  | * it will be UPTODATE, but never LOCKED, so we don't need | 
|  | * to test 'failed' directly. | 
|  | */ | 
|  | for (i=disks; i--; ) | 
|  | if (sh->dev[i].written) { | 
|  | dev = &sh->dev[i]; | 
|  | if (!test_bit(R5_LOCKED, &dev->flags) && | 
|  | test_bit(R5_UPTODATE, &dev->flags) ) { | 
|  | /* We can return any write requests */ | 
|  | struct bio *wbi, *wbi2; | 
|  | PRINTK("Return write for stripe %llu disc %d\n", | 
|  | (unsigned long long)sh->sector, i); | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | wbi = dev->written; | 
|  | dev->written = NULL; | 
|  | while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { | 
|  | wbi2 = r5_next_bio(wbi, dev->sector); | 
|  | if (--wbi->bi_phys_segments == 0) { | 
|  | md_write_end(conf->mddev); | 
|  | wbi->bi_next = return_bi; | 
|  | return_bi = wbi; | 
|  | } | 
|  | wbi = wbi2; | 
|  | } | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now we might consider reading some blocks, either to check/generate | 
|  | * parity, or to satisfy requests | 
|  | * or to load a block that is being partially written. | 
|  | */ | 
|  | if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) { | 
|  | for (i=disks; i--;) { | 
|  | dev = &sh->dev[i]; | 
|  | if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && | 
|  | (dev->toread || | 
|  | (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || | 
|  | syncing || | 
|  | (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) || | 
|  | (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write)) | 
|  | ) | 
|  | ) { | 
|  | /* we would like to get this block, possibly | 
|  | * by computing it, but we might not be able to | 
|  | */ | 
|  | if (uptodate == disks-1) { | 
|  | PRINTK("Computing stripe %llu block %d\n", | 
|  | (unsigned long long)sh->sector, i); | 
|  | compute_block_1(sh, i); | 
|  | uptodate++; | 
|  | } else if ( uptodate == disks-2 && failed >= 2 ) { | 
|  | /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */ | 
|  | int other; | 
|  | for (other=disks; other--;) { | 
|  | if ( other == i ) | 
|  | continue; | 
|  | if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) ) | 
|  | break; | 
|  | } | 
|  | BUG_ON(other < 0); | 
|  | PRINTK("Computing stripe %llu blocks %d,%d\n", | 
|  | (unsigned long long)sh->sector, i, other); | 
|  | compute_block_2(sh, i, other); | 
|  | uptodate += 2; | 
|  | } else if (test_bit(R5_Insync, &dev->flags)) { | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | set_bit(R5_Wantread, &dev->flags); | 
|  | #if 0 | 
|  | /* if I am just reading this block and we don't have | 
|  | a failed drive, or any pending writes then sidestep the cache */ | 
|  | if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext && | 
|  | ! syncing && !failed && !to_write) { | 
|  | sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page; | 
|  | sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data; | 
|  | } | 
|  | #endif | 
|  | locked++; | 
|  | PRINTK("Reading block %d (sync=%d)\n", | 
|  | i, syncing); | 
|  | if (syncing) | 
|  | md_sync_acct(conf->disks[i].rdev->bdev, | 
|  | STRIPE_SECTORS); | 
|  | } | 
|  | } | 
|  | } | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | } | 
|  |  | 
|  | /* now to consider writing and what else, if anything should be read */ | 
|  | if (to_write) { | 
|  | int rcw=0, must_compute=0; | 
|  | for (i=disks ; i--;) { | 
|  | dev = &sh->dev[i]; | 
|  | /* Would I have to read this buffer for reconstruct_write */ | 
|  | if (!test_bit(R5_OVERWRITE, &dev->flags) | 
|  | && i != pd_idx && i != qd_idx | 
|  | && (!test_bit(R5_LOCKED, &dev->flags) | 
|  | #if 0 | 
|  | || sh->bh_page[i] != bh->b_page | 
|  | #endif | 
|  | ) && | 
|  | !test_bit(R5_UPTODATE, &dev->flags)) { | 
|  | if (test_bit(R5_Insync, &dev->flags)) rcw++; | 
|  | else { | 
|  | PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags); | 
|  | must_compute++; | 
|  | } | 
|  | } | 
|  | } | 
|  | PRINTK("for sector %llu, rcw=%d, must_compute=%d\n", | 
|  | (unsigned long long)sh->sector, rcw, must_compute); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  |  | 
|  | if (rcw > 0) | 
|  | /* want reconstruct write, but need to get some data */ | 
|  | for (i=disks; i--;) { | 
|  | dev = &sh->dev[i]; | 
|  | if (!test_bit(R5_OVERWRITE, &dev->flags) | 
|  | && !(failed == 0 && (i == pd_idx || i == qd_idx)) | 
|  | && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && | 
|  | test_bit(R5_Insync, &dev->flags)) { | 
|  | if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | { | 
|  | PRINTK("Read_old stripe %llu block %d for Reconstruct\n", | 
|  | (unsigned long long)sh->sector, i); | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | set_bit(R5_Wantread, &dev->flags); | 
|  | locked++; | 
|  | } else { | 
|  | PRINTK("Request delayed stripe %llu block %d for Reconstruct\n", | 
|  | (unsigned long long)sh->sector, i); | 
|  | set_bit(STRIPE_DELAYED, &sh->state); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | } | 
|  | } | 
|  | } | 
|  | /* now if nothing is locked, and if we have enough data, we can start a write request */ | 
|  | if (locked == 0 && rcw == 0) { | 
|  | if ( must_compute > 0 ) { | 
|  | /* We have failed blocks and need to compute them */ | 
|  | switch ( failed ) { | 
|  | case 0:	BUG(); | 
|  | case 1: compute_block_1(sh, failed_num[0]); break; | 
|  | case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break; | 
|  | default: BUG();	/* This request should have been failed? */ | 
|  | } | 
|  | } | 
|  |  | 
|  | PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector); | 
|  | compute_parity(sh, RECONSTRUCT_WRITE); | 
|  | /* now every locked buffer is ready to be written */ | 
|  | for (i=disks; i--;) | 
|  | if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { | 
|  | PRINTK("Writing stripe %llu block %d\n", | 
|  | (unsigned long long)sh->sector, i); | 
|  | locked++; | 
|  | set_bit(R5_Wantwrite, &sh->dev[i].flags); | 
|  | #if 0 /**** FIX: I don't understand the logic here... ****/ | 
|  | if (!test_bit(R5_Insync, &sh->dev[i].flags) | 
|  | || ((i==pd_idx || i==qd_idx) && failed == 0)) /* FIX? */ | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | #endif | 
|  | } | 
|  | if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { | 
|  | atomic_dec(&conf->preread_active_stripes); | 
|  | if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* maybe we need to check and possibly fix the parity for this stripe | 
|  | * Any reads will already have been scheduled, so we just see if enough data | 
|  | * is available | 
|  | */ | 
|  | if (syncing && locked == 0 && | 
|  | !test_bit(STRIPE_INSYNC, &sh->state) && failed <= 2) { | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | #if 0 /* RAID-6: Don't support CHECK PARITY yet */ | 
|  | if (failed == 0) { | 
|  | char *pagea; | 
|  | if (uptodate != disks) | 
|  | BUG(); | 
|  | compute_parity(sh, CHECK_PARITY); | 
|  | uptodate--; | 
|  | pagea = page_address(sh->dev[pd_idx].page); | 
|  | if ((*(u32*)pagea) == 0 && | 
|  | !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) { | 
|  | /* parity is correct (on disc, not in buffer any more) */ | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if (!test_bit(STRIPE_INSYNC, &sh->state)) { | 
|  | int failed_needupdate[2]; | 
|  | struct r5dev *adev, *bdev; | 
|  |  | 
|  | if ( failed < 1 ) | 
|  | failed_num[0] = pd_idx; | 
|  | if ( failed < 2 ) | 
|  | failed_num[1] = (failed_num[0] == qd_idx) ? pd_idx : qd_idx; | 
|  |  | 
|  | failed_needupdate[0] = !test_bit(R5_UPTODATE, &sh->dev[failed_num[0]].flags); | 
|  | failed_needupdate[1] = !test_bit(R5_UPTODATE, &sh->dev[failed_num[1]].flags); | 
|  |  | 
|  | PRINTK("sync: failed=%d num=%d,%d fnu=%u%u\n", | 
|  | failed, failed_num[0], failed_num[1], failed_needupdate[0], failed_needupdate[1]); | 
|  |  | 
|  | #if 0  /* RAID-6: This code seems to require that CHECK_PARITY destroys the uptodateness of the parity */ | 
|  | /* should be able to compute the missing block(s) and write to spare */ | 
|  | if ( failed_needupdate[0] ^ failed_needupdate[1] ) { | 
|  | if (uptodate+1 != disks) | 
|  | BUG(); | 
|  | compute_block_1(sh, failed_needupdate[0] ? failed_num[0] : failed_num[1]); | 
|  | uptodate++; | 
|  | } else if ( failed_needupdate[0] & failed_needupdate[1] ) { | 
|  | if (uptodate+2 != disks) | 
|  | BUG(); | 
|  | compute_block_2(sh, failed_num[0], failed_num[1]); | 
|  | uptodate += 2; | 
|  | } | 
|  | #else | 
|  | compute_block_2(sh, failed_num[0], failed_num[1]); | 
|  | uptodate += failed_needupdate[0] + failed_needupdate[1]; | 
|  | #endif | 
|  |  | 
|  | if (uptodate != disks) | 
|  | BUG(); | 
|  |  | 
|  | PRINTK("Marking for sync stripe %llu blocks %d,%d\n", | 
|  | (unsigned long long)sh->sector, failed_num[0], failed_num[1]); | 
|  |  | 
|  | /**** FIX: Should we really do both of these unconditionally? ****/ | 
|  | adev = &sh->dev[failed_num[0]]; | 
|  | locked += !test_bit(R5_LOCKED, &adev->flags); | 
|  | set_bit(R5_LOCKED, &adev->flags); | 
|  | set_bit(R5_Wantwrite, &adev->flags); | 
|  | bdev = &sh->dev[failed_num[1]]; | 
|  | locked += !test_bit(R5_LOCKED, &bdev->flags); | 
|  | set_bit(R5_LOCKED, &bdev->flags); | 
|  | set_bit(R5_Wantwrite, &bdev->flags); | 
|  |  | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | set_bit(R5_Syncio, &adev->flags); | 
|  | set_bit(R5_Syncio, &bdev->flags); | 
|  | } | 
|  | } | 
|  | if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { | 
|  | md_done_sync(conf->mddev, STRIPE_SECTORS,1); | 
|  | clear_bit(STRIPE_SYNCING, &sh->state); | 
|  | } | 
|  |  | 
|  | spin_unlock(&sh->lock); | 
|  |  | 
|  | while ((bi=return_bi)) { | 
|  | int bytes = bi->bi_size; | 
|  |  | 
|  | return_bi = bi->bi_next; | 
|  | bi->bi_next = NULL; | 
|  | bi->bi_size = 0; | 
|  | bi->bi_end_io(bi, bytes, 0); | 
|  | } | 
|  | for (i=disks; i-- ;) { | 
|  | int rw; | 
|  | struct bio *bi; | 
|  | mdk_rdev_t *rdev; | 
|  | if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) | 
|  | rw = 1; | 
|  | else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) | 
|  | rw = 0; | 
|  | else | 
|  | continue; | 
|  |  | 
|  | bi = &sh->dev[i].req; | 
|  |  | 
|  | bi->bi_rw = rw; | 
|  | if (rw) | 
|  | bi->bi_end_io = raid6_end_write_request; | 
|  | else | 
|  | bi->bi_end_io = raid6_end_read_request; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | rdev = conf->disks[i].rdev; | 
|  | if (rdev && rdev->faulty) | 
|  | rdev = NULL; | 
|  | if (rdev) | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (rdev) { | 
|  | if (test_bit(R5_Syncio, &sh->dev[i].flags)) | 
|  | md_sync_acct(rdev->bdev, STRIPE_SECTORS); | 
|  |  | 
|  | bi->bi_bdev = rdev->bdev; | 
|  | PRINTK("for %llu schedule op %ld on disc %d\n", | 
|  | (unsigned long long)sh->sector, bi->bi_rw, i); | 
|  | atomic_inc(&sh->count); | 
|  | bi->bi_sector = sh->sector + rdev->data_offset; | 
|  | bi->bi_flags = 1 << BIO_UPTODATE; | 
|  | bi->bi_vcnt = 1; | 
|  | bi->bi_max_vecs = 1; | 
|  | bi->bi_idx = 0; | 
|  | bi->bi_io_vec = &sh->dev[i].vec; | 
|  | bi->bi_io_vec[0].bv_len = STRIPE_SIZE; | 
|  | bi->bi_io_vec[0].bv_offset = 0; | 
|  | bi->bi_size = STRIPE_SIZE; | 
|  | bi->bi_next = NULL; | 
|  | generic_make_request(bi); | 
|  | } else { | 
|  | PRINTK("skip op %ld on disc %d for sector %llu\n", | 
|  | bi->bi_rw, i, (unsigned long long)sh->sector); | 
|  | clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void raid6_activate_delayed(raid6_conf_t *conf) | 
|  | { | 
|  | if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { | 
|  | while (!list_empty(&conf->delayed_list)) { | 
|  | struct list_head *l = conf->delayed_list.next; | 
|  | struct stripe_head *sh; | 
|  | sh = list_entry(l, struct stripe_head, lru); | 
|  | list_del_init(l); | 
|  | clear_bit(STRIPE_DELAYED, &sh->state); | 
|  | if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | atomic_inc(&conf->preread_active_stripes); | 
|  | list_add_tail(&sh->lru, &conf->handle_list); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void unplug_slaves(mddev_t *mddev) | 
|  | { | 
|  | raid6_conf_t *conf = mddev_to_conf(mddev); | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i=0; i<mddev->raid_disks; i++) { | 
|  | mdk_rdev_t *rdev = conf->disks[i].rdev; | 
|  | if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) { | 
|  | request_queue_t *r_queue = bdev_get_queue(rdev->bdev); | 
|  |  | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (r_queue->unplug_fn) | 
|  | r_queue->unplug_fn(r_queue); | 
|  |  | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void raid6_unplug_device(request_queue_t *q) | 
|  | { | 
|  | mddev_t *mddev = q->queuedata; | 
|  | raid6_conf_t *conf = mddev_to_conf(mddev); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  |  | 
|  | if (blk_remove_plug(q)) | 
|  | raid6_activate_delayed(conf); | 
|  | md_wakeup_thread(mddev->thread); | 
|  |  | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | unplug_slaves(mddev); | 
|  | } | 
|  |  | 
|  | static int raid6_issue_flush(request_queue_t *q, struct gendisk *disk, | 
|  | sector_t *error_sector) | 
|  | { | 
|  | mddev_t *mddev = q->queuedata; | 
|  | raid6_conf_t *conf = mddev_to_conf(mddev); | 
|  | int i, ret = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i=0; i<mddev->raid_disks && ret == 0; i++) { | 
|  | mdk_rdev_t *rdev = conf->disks[i].rdev; | 
|  | if (rdev && !rdev->faulty) { | 
|  | struct block_device *bdev = rdev->bdev; | 
|  | request_queue_t *r_queue = bdev_get_queue(bdev); | 
|  |  | 
|  | if (!r_queue->issue_flush_fn) | 
|  | ret = -EOPNOTSUPP; | 
|  | else { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  | ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, | 
|  | error_sector); | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void raid6_plug_device(raid6_conf_t *conf) | 
|  | { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | blk_plug_device(conf->mddev->queue); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  |  | 
|  | static int make_request (request_queue_t *q, struct bio * bi) | 
|  | { | 
|  | mddev_t *mddev = q->queuedata; | 
|  | raid6_conf_t *conf = mddev_to_conf(mddev); | 
|  | const unsigned int raid_disks = conf->raid_disks; | 
|  | const unsigned int data_disks = raid_disks - 2; | 
|  | unsigned int dd_idx, pd_idx; | 
|  | sector_t new_sector; | 
|  | sector_t logical_sector, last_sector; | 
|  | struct stripe_head *sh; | 
|  |  | 
|  | md_write_start(mddev, bi); | 
|  |  | 
|  | if (bio_data_dir(bi)==WRITE) { | 
|  | disk_stat_inc(mddev->gendisk, writes); | 
|  | disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bi)); | 
|  | } else { | 
|  | disk_stat_inc(mddev->gendisk, reads); | 
|  | disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bi)); | 
|  | } | 
|  |  | 
|  | logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); | 
|  | last_sector = bi->bi_sector + (bi->bi_size>>9); | 
|  |  | 
|  | bi->bi_next = NULL; | 
|  | bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */ | 
|  |  | 
|  | for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { | 
|  | DEFINE_WAIT(w); | 
|  |  | 
|  | new_sector = raid6_compute_sector(logical_sector, | 
|  | raid_disks, data_disks, &dd_idx, &pd_idx, conf); | 
|  |  | 
|  | PRINTK("raid6: make_request, sector %llu logical %llu\n", | 
|  | (unsigned long long)new_sector, | 
|  | (unsigned long long)logical_sector); | 
|  |  | 
|  | retry: | 
|  | prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); | 
|  | sh = get_active_stripe(conf, new_sector, pd_idx, (bi->bi_rw&RWA_MASK)); | 
|  | if (sh) { | 
|  | if (!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { | 
|  | /* Add failed due to overlap.  Flush everything | 
|  | * and wait a while | 
|  | */ | 
|  | raid6_unplug_device(mddev->queue); | 
|  | release_stripe(sh); | 
|  | schedule(); | 
|  | goto retry; | 
|  | } | 
|  | finish_wait(&conf->wait_for_overlap, &w); | 
|  | raid6_plug_device(conf); | 
|  | handle_stripe(sh); | 
|  | release_stripe(sh); | 
|  | } else { | 
|  | /* cannot get stripe for read-ahead, just give-up */ | 
|  | clear_bit(BIO_UPTODATE, &bi->bi_flags); | 
|  | finish_wait(&conf->wait_for_overlap, &w); | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (--bi->bi_phys_segments == 0) { | 
|  | int bytes = bi->bi_size; | 
|  |  | 
|  | if ( bio_data_dir(bi) == WRITE ) | 
|  | md_write_end(mddev); | 
|  | bi->bi_size = 0; | 
|  | bi->bi_end_io(bi, bytes, 0); | 
|  | } | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* FIXME go_faster isn't used */ | 
|  | static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) | 
|  | { | 
|  | raid6_conf_t *conf = (raid6_conf_t *) mddev->private; | 
|  | struct stripe_head *sh; | 
|  | int sectors_per_chunk = conf->chunk_size >> 9; | 
|  | sector_t x; | 
|  | unsigned long stripe; | 
|  | int chunk_offset; | 
|  | int dd_idx, pd_idx; | 
|  | sector_t first_sector; | 
|  | int raid_disks = conf->raid_disks; | 
|  | int data_disks = raid_disks - 2; | 
|  |  | 
|  | if (sector_nr >= mddev->size <<1) { | 
|  | /* just being told to finish up .. nothing much to do */ | 
|  | unplug_slaves(mddev); | 
|  | return 0; | 
|  | } | 
|  | /* if there are 2 or more failed drives and we are trying | 
|  | * to resync, then assert that we are finished, because there is | 
|  | * nothing we can do. | 
|  | */ | 
|  | if (mddev->degraded >= 2 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
|  | sector_t rv = (mddev->size << 1) - sector_nr; | 
|  | *skipped = 1; | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | x = sector_nr; | 
|  | chunk_offset = sector_div(x, sectors_per_chunk); | 
|  | stripe = x; | 
|  | BUG_ON(x != stripe); | 
|  |  | 
|  | first_sector = raid6_compute_sector((sector_t)stripe*data_disks*sectors_per_chunk | 
|  | + chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf); | 
|  | sh = get_active_stripe(conf, sector_nr, pd_idx, 1); | 
|  | if (sh == NULL) { | 
|  | sh = get_active_stripe(conf, sector_nr, pd_idx, 0); | 
|  | /* make sure we don't swamp the stripe cache if someone else | 
|  | * is trying to get access | 
|  | */ | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | schedule_timeout(1); | 
|  | } | 
|  | spin_lock(&sh->lock); | 
|  | set_bit(STRIPE_SYNCING, &sh->state); | 
|  | clear_bit(STRIPE_INSYNC, &sh->state); | 
|  | spin_unlock(&sh->lock); | 
|  |  | 
|  | handle_stripe(sh); | 
|  | release_stripe(sh); | 
|  |  | 
|  | return STRIPE_SECTORS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is our raid6 kernel thread. | 
|  | * | 
|  | * We scan the hash table for stripes which can be handled now. | 
|  | * During the scan, completed stripes are saved for us by the interrupt | 
|  | * handler, so that they will not have to wait for our next wakeup. | 
|  | */ | 
|  | static void raid6d (mddev_t *mddev) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  | raid6_conf_t *conf = mddev_to_conf(mddev); | 
|  | int handled; | 
|  |  | 
|  | PRINTK("+++ raid6d active\n"); | 
|  |  | 
|  | md_check_recovery(mddev); | 
|  |  | 
|  | handled = 0; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | while (1) { | 
|  | struct list_head *first; | 
|  |  | 
|  | if (list_empty(&conf->handle_list) && | 
|  | atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD && | 
|  | !blk_queue_plugged(mddev->queue) && | 
|  | !list_empty(&conf->delayed_list)) | 
|  | raid6_activate_delayed(conf); | 
|  |  | 
|  | if (list_empty(&conf->handle_list)) | 
|  | break; | 
|  |  | 
|  | first = conf->handle_list.next; | 
|  | sh = list_entry(first, struct stripe_head, lru); | 
|  |  | 
|  | list_del_init(first); | 
|  | atomic_inc(&sh->count); | 
|  | if (atomic_read(&sh->count)!= 1) | 
|  | BUG(); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  |  | 
|  | handled++; | 
|  | handle_stripe(sh); | 
|  | release_stripe(sh); | 
|  |  | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | } | 
|  | PRINTK("%d stripes handled\n", handled); | 
|  |  | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  |  | 
|  | unplug_slaves(mddev); | 
|  |  | 
|  | PRINTK("--- raid6d inactive\n"); | 
|  | } | 
|  |  | 
|  | static int run (mddev_t *mddev) | 
|  | { | 
|  | raid6_conf_t *conf; | 
|  | int raid_disk, memory; | 
|  | mdk_rdev_t *rdev; | 
|  | struct disk_info *disk; | 
|  | struct list_head *tmp; | 
|  |  | 
|  | if (mddev->level != 6) { | 
|  | PRINTK("raid6: %s: raid level not set to 6 (%d)\n", mdname(mddev), mddev->level); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | mddev->private = kmalloc (sizeof (raid6_conf_t) | 
|  | + mddev->raid_disks * sizeof(struct disk_info), | 
|  | GFP_KERNEL); | 
|  | if ((conf = mddev->private) == NULL) | 
|  | goto abort; | 
|  | memset (conf, 0, sizeof (*conf) + mddev->raid_disks * sizeof(struct disk_info) ); | 
|  | conf->mddev = mddev; | 
|  |  | 
|  | if ((conf->stripe_hashtbl = (struct stripe_head **) __get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER)) == NULL) | 
|  | goto abort; | 
|  | memset(conf->stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE); | 
|  |  | 
|  | spin_lock_init(&conf->device_lock); | 
|  | init_waitqueue_head(&conf->wait_for_stripe); | 
|  | init_waitqueue_head(&conf->wait_for_overlap); | 
|  | INIT_LIST_HEAD(&conf->handle_list); | 
|  | INIT_LIST_HEAD(&conf->delayed_list); | 
|  | INIT_LIST_HEAD(&conf->inactive_list); | 
|  | atomic_set(&conf->active_stripes, 0); | 
|  | atomic_set(&conf->preread_active_stripes, 0); | 
|  |  | 
|  | PRINTK("raid6: run(%s) called.\n", mdname(mddev)); | 
|  |  | 
|  | ITERATE_RDEV(mddev,rdev,tmp) { | 
|  | raid_disk = rdev->raid_disk; | 
|  | if (raid_disk >= mddev->raid_disks | 
|  | || raid_disk < 0) | 
|  | continue; | 
|  | disk = conf->disks + raid_disk; | 
|  |  | 
|  | disk->rdev = rdev; | 
|  |  | 
|  | if (rdev->in_sync) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | printk(KERN_INFO "raid6: device %s operational as raid" | 
|  | " disk %d\n", bdevname(rdev->bdev,b), | 
|  | raid_disk); | 
|  | conf->working_disks++; | 
|  | } | 
|  | } | 
|  |  | 
|  | conf->raid_disks = mddev->raid_disks; | 
|  |  | 
|  | /* | 
|  | * 0 for a fully functional array, 1 or 2 for a degraded array. | 
|  | */ | 
|  | mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks; | 
|  | conf->mddev = mddev; | 
|  | conf->chunk_size = mddev->chunk_size; | 
|  | conf->level = mddev->level; | 
|  | conf->algorithm = mddev->layout; | 
|  | conf->max_nr_stripes = NR_STRIPES; | 
|  |  | 
|  | /* device size must be a multiple of chunk size */ | 
|  | mddev->size &= ~(mddev->chunk_size/1024 -1); | 
|  | mddev->resync_max_sectors = mddev->size << 1; | 
|  |  | 
|  | if (conf->raid_disks < 4) { | 
|  | printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n", | 
|  | mdname(mddev), conf->raid_disks); | 
|  | goto abort; | 
|  | } | 
|  | if (!conf->chunk_size || conf->chunk_size % 4) { | 
|  | printk(KERN_ERR "raid6: invalid chunk size %d for %s\n", | 
|  | conf->chunk_size, mdname(mddev)); | 
|  | goto abort; | 
|  | } | 
|  | if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { | 
|  | printk(KERN_ERR | 
|  | "raid6: unsupported parity algorithm %d for %s\n", | 
|  | conf->algorithm, mdname(mddev)); | 
|  | goto abort; | 
|  | } | 
|  | if (mddev->degraded > 2) { | 
|  | printk(KERN_ERR "raid6: not enough operational devices for %s" | 
|  | " (%d/%d failed)\n", | 
|  | mdname(mddev), conf->failed_disks, conf->raid_disks); | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | #if 0				/* FIX: For now */ | 
|  | if (mddev->degraded > 0 && | 
|  | mddev->recovery_cp != MaxSector) { | 
|  | printk(KERN_ERR "raid6: cannot start dirty degraded array for %s\n", mdname(mddev)); | 
|  | goto abort; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | { | 
|  | mddev->thread = md_register_thread(raid6d, mddev, "%s_raid6"); | 
|  | if (!mddev->thread) { | 
|  | printk(KERN_ERR | 
|  | "raid6: couldn't allocate thread for %s\n", | 
|  | mdname(mddev)); | 
|  | goto abort; | 
|  | } | 
|  | } | 
|  |  | 
|  | memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + | 
|  | conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; | 
|  | if (grow_stripes(conf, conf->max_nr_stripes)) { | 
|  | printk(KERN_ERR | 
|  | "raid6: couldn't allocate %dkB for buffers\n", memory); | 
|  | shrink_stripes(conf); | 
|  | md_unregister_thread(mddev->thread); | 
|  | goto abort; | 
|  | } else | 
|  | printk(KERN_INFO "raid6: allocated %dkB for %s\n", | 
|  | memory, mdname(mddev)); | 
|  |  | 
|  | if (mddev->degraded == 0) | 
|  | printk(KERN_INFO "raid6: raid level %d set %s active with %d out of %d" | 
|  | " devices, algorithm %d\n", conf->level, mdname(mddev), | 
|  | mddev->raid_disks-mddev->degraded, mddev->raid_disks, | 
|  | conf->algorithm); | 
|  | else | 
|  | printk(KERN_ALERT "raid6: raid level %d set %s active with %d" | 
|  | " out of %d devices, algorithm %d\n", conf->level, | 
|  | mdname(mddev), mddev->raid_disks - mddev->degraded, | 
|  | mddev->raid_disks, conf->algorithm); | 
|  |  | 
|  | print_raid6_conf(conf); | 
|  |  | 
|  | /* read-ahead size must cover two whole stripes, which is | 
|  | * 2 * (n-2) * chunksize where 'n' is the number of raid devices | 
|  | */ | 
|  | { | 
|  | int stripe = (mddev->raid_disks-2) * mddev->chunk_size | 
|  | / PAGE_CACHE_SIZE; | 
|  | if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) | 
|  | mddev->queue->backing_dev_info.ra_pages = 2 * stripe; | 
|  | } | 
|  |  | 
|  | /* Ok, everything is just fine now */ | 
|  | mddev->array_size =  mddev->size * (mddev->raid_disks - 2); | 
|  |  | 
|  | mddev->queue->unplug_fn = raid6_unplug_device; | 
|  | mddev->queue->issue_flush_fn = raid6_issue_flush; | 
|  | return 0; | 
|  | abort: | 
|  | if (conf) { | 
|  | print_raid6_conf(conf); | 
|  | if (conf->stripe_hashtbl) | 
|  | free_pages((unsigned long) conf->stripe_hashtbl, | 
|  | HASH_PAGES_ORDER); | 
|  | kfree(conf); | 
|  | } | 
|  | mddev->private = NULL; | 
|  | printk(KERN_ALERT "raid6: failed to run raid set %s\n", mdname(mddev)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static int stop (mddev_t *mddev) | 
|  | { | 
|  | raid6_conf_t *conf = (raid6_conf_t *) mddev->private; | 
|  |  | 
|  | md_unregister_thread(mddev->thread); | 
|  | mddev->thread = NULL; | 
|  | shrink_stripes(conf); | 
|  | free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER); | 
|  | blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ | 
|  | kfree(conf); | 
|  | mddev->private = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if RAID6_DUMPSTATE | 
|  | static void print_sh (struct seq_file *seq, struct stripe_head *sh) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", | 
|  | (unsigned long long)sh->sector, sh->pd_idx, sh->state); | 
|  | seq_printf(seq, "sh %llu,  count %d.\n", | 
|  | (unsigned long long)sh->sector, atomic_read(&sh->count)); | 
|  | seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); | 
|  | for (i = 0; i < sh->raid_conf->raid_disks; i++) { | 
|  | seq_printf(seq, "(cache%d: %p %ld) ", | 
|  | i, sh->dev[i].page, sh->dev[i].flags); | 
|  | } | 
|  | seq_printf(seq, "\n"); | 
|  | } | 
|  |  | 
|  | static void printall (struct seq_file *seq, raid6_conf_t *conf) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  | int i; | 
|  |  | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | for (i = 0; i < NR_HASH; i++) { | 
|  | sh = conf->stripe_hashtbl[i]; | 
|  | for (; sh; sh = sh->hash_next) { | 
|  | if (sh->raid_conf != conf) | 
|  | continue; | 
|  | print_sh(seq, sh); | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void status (struct seq_file *seq, mddev_t *mddev) | 
|  | { | 
|  | raid6_conf_t *conf = (raid6_conf_t *) mddev->private; | 
|  | int i; | 
|  |  | 
|  | seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); | 
|  | seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks); | 
|  | for (i = 0; i < conf->raid_disks; i++) | 
|  | seq_printf (seq, "%s", | 
|  | conf->disks[i].rdev && | 
|  | conf->disks[i].rdev->in_sync ? "U" : "_"); | 
|  | seq_printf (seq, "]"); | 
|  | #if RAID6_DUMPSTATE | 
|  | seq_printf (seq, "\n"); | 
|  | printall(seq, conf); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void print_raid6_conf (raid6_conf_t *conf) | 
|  | { | 
|  | int i; | 
|  | struct disk_info *tmp; | 
|  |  | 
|  | printk("RAID6 conf printout:\n"); | 
|  | if (!conf) { | 
|  | printk("(conf==NULL)\n"); | 
|  | return; | 
|  | } | 
|  | printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks, | 
|  | conf->working_disks, conf->failed_disks); | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | tmp = conf->disks + i; | 
|  | if (tmp->rdev) | 
|  | printk(" disk %d, o:%d, dev:%s\n", | 
|  | i, !tmp->rdev->faulty, | 
|  | bdevname(tmp->rdev->bdev,b)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int raid6_spare_active(mddev_t *mddev) | 
|  | { | 
|  | int i; | 
|  | raid6_conf_t *conf = mddev->private; | 
|  | struct disk_info *tmp; | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | tmp = conf->disks + i; | 
|  | if (tmp->rdev | 
|  | && !tmp->rdev->faulty | 
|  | && !tmp->rdev->in_sync) { | 
|  | mddev->degraded--; | 
|  | conf->failed_disks--; | 
|  | conf->working_disks++; | 
|  | tmp->rdev->in_sync = 1; | 
|  | } | 
|  | } | 
|  | print_raid6_conf(conf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int raid6_remove_disk(mddev_t *mddev, int number) | 
|  | { | 
|  | raid6_conf_t *conf = mddev->private; | 
|  | int err = 0; | 
|  | mdk_rdev_t *rdev; | 
|  | struct disk_info *p = conf->disks + number; | 
|  |  | 
|  | print_raid6_conf(conf); | 
|  | rdev = p->rdev; | 
|  | if (rdev) { | 
|  | if (rdev->in_sync || | 
|  | atomic_read(&rdev->nr_pending)) { | 
|  | err = -EBUSY; | 
|  | goto abort; | 
|  | } | 
|  | p->rdev = NULL; | 
|  | synchronize_rcu(); | 
|  | if (atomic_read(&rdev->nr_pending)) { | 
|  | /* lost the race, try later */ | 
|  | err = -EBUSY; | 
|  | p->rdev = rdev; | 
|  | } | 
|  | } | 
|  |  | 
|  | abort: | 
|  |  | 
|  | print_raid6_conf(conf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int raid6_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) | 
|  | { | 
|  | raid6_conf_t *conf = mddev->private; | 
|  | int found = 0; | 
|  | int disk; | 
|  | struct disk_info *p; | 
|  |  | 
|  | if (mddev->degraded > 2) | 
|  | /* no point adding a device */ | 
|  | return 0; | 
|  | /* | 
|  | * find the disk ... | 
|  | */ | 
|  | for (disk=0; disk < mddev->raid_disks; disk++) | 
|  | if ((p=conf->disks + disk)->rdev == NULL) { | 
|  | rdev->in_sync = 0; | 
|  | rdev->raid_disk = disk; | 
|  | found = 1; | 
|  | p->rdev = rdev; | 
|  | break; | 
|  | } | 
|  | print_raid6_conf(conf); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static int raid6_resize(mddev_t *mddev, sector_t sectors) | 
|  | { | 
|  | /* no resync is happening, and there is enough space | 
|  | * on all devices, so we can resize. | 
|  | * We need to make sure resync covers any new space. | 
|  | * If the array is shrinking we should possibly wait until | 
|  | * any io in the removed space completes, but it hardly seems | 
|  | * worth it. | 
|  | */ | 
|  | sectors &= ~((sector_t)mddev->chunk_size/512 - 1); | 
|  | mddev->array_size = (sectors * (mddev->raid_disks-2))>>1; | 
|  | set_capacity(mddev->gendisk, mddev->array_size << 1); | 
|  | mddev->changed = 1; | 
|  | if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) { | 
|  | mddev->recovery_cp = mddev->size << 1; | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | } | 
|  | mddev->size = sectors /2; | 
|  | mddev->resync_max_sectors = sectors; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static mdk_personality_t raid6_personality= | 
|  | { | 
|  | .name		= "raid6", | 
|  | .owner		= THIS_MODULE, | 
|  | .make_request	= make_request, | 
|  | .run		= run, | 
|  | .stop		= stop, | 
|  | .status		= status, | 
|  | .error_handler	= error, | 
|  | .hot_add_disk	= raid6_add_disk, | 
|  | .hot_remove_disk= raid6_remove_disk, | 
|  | .spare_active	= raid6_spare_active, | 
|  | .sync_request	= sync_request, | 
|  | .resize		= raid6_resize, | 
|  | }; | 
|  |  | 
|  | static int __init raid6_init (void) | 
|  | { | 
|  | int e; | 
|  |  | 
|  | e = raid6_select_algo(); | 
|  | if ( e ) | 
|  | return e; | 
|  |  | 
|  | return register_md_personality (RAID6, &raid6_personality); | 
|  | } | 
|  |  | 
|  | static void raid6_exit (void) | 
|  | { | 
|  | unregister_md_personality (RAID6); | 
|  | } | 
|  |  | 
|  | module_init(raid6_init); | 
|  | module_exit(raid6_exit); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("md-personality-8"); /* RAID6 */ |