|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * This module enables machines with Intel VT-x extensions to run virtual | 
|  | * machines without emulation or binary translation. | 
|  | * | 
|  | * MMU support | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * | 
|  | * Authors: | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * We need the mmu code to access both 32-bit and 64-bit guest ptes, | 
|  | * so the code in this file is compiled twice, once per pte size. | 
|  | */ | 
|  |  | 
|  | #if PTTYPE == 64 | 
|  | #define pt_element_t u64 | 
|  | #define guest_walker guest_walker64 | 
|  | #define FNAME(name) paging##64_##name | 
|  | #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK | 
|  | #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) | 
|  | #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) | 
|  | #define PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
|  | #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level) | 
|  | #define PT_LEVEL_BITS PT64_LEVEL_BITS | 
|  | #ifdef CONFIG_X86_64 | 
|  | #define PT_MAX_FULL_LEVELS 4 | 
|  | #define CMPXCHG cmpxchg | 
|  | #else | 
|  | #define CMPXCHG cmpxchg64 | 
|  | #define PT_MAX_FULL_LEVELS 2 | 
|  | #endif | 
|  | #elif PTTYPE == 32 | 
|  | #define pt_element_t u32 | 
|  | #define guest_walker guest_walker32 | 
|  | #define FNAME(name) paging##32_##name | 
|  | #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK | 
|  | #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) | 
|  | #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) | 
|  | #define PT_INDEX(addr, level) PT32_INDEX(addr, level) | 
|  | #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level) | 
|  | #define PT_LEVEL_BITS PT32_LEVEL_BITS | 
|  | #define PT_MAX_FULL_LEVELS 2 | 
|  | #define CMPXCHG cmpxchg | 
|  | #else | 
|  | #error Invalid PTTYPE value | 
|  | #endif | 
|  |  | 
|  | #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) | 
|  | #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) | 
|  |  | 
|  | /* | 
|  | * The guest_walker structure emulates the behavior of the hardware page | 
|  | * table walker. | 
|  | */ | 
|  | struct guest_walker { | 
|  | int level; | 
|  | gfn_t table_gfn[PT_MAX_FULL_LEVELS]; | 
|  | pt_element_t ptes[PT_MAX_FULL_LEVELS]; | 
|  | gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; | 
|  | unsigned pt_access; | 
|  | unsigned pte_access; | 
|  | gfn_t gfn; | 
|  | u32 error_code; | 
|  | }; | 
|  |  | 
|  | static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) | 
|  | { | 
|  | return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | static bool FNAME(cmpxchg_gpte)(struct kvm *kvm, | 
|  | gfn_t table_gfn, unsigned index, | 
|  | pt_element_t orig_pte, pt_element_t new_pte) | 
|  | { | 
|  | pt_element_t ret; | 
|  | pt_element_t *table; | 
|  | struct page *page; | 
|  |  | 
|  | page = gfn_to_page(kvm, table_gfn); | 
|  |  | 
|  | table = kmap_atomic(page, KM_USER0); | 
|  | ret = CMPXCHG(&table[index], orig_pte, new_pte); | 
|  | kunmap_atomic(table, KM_USER0); | 
|  |  | 
|  | kvm_release_page_dirty(page); | 
|  |  | 
|  | return (ret != orig_pte); | 
|  | } | 
|  |  | 
|  | static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte) | 
|  | { | 
|  | unsigned access; | 
|  |  | 
|  | access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK; | 
|  | #if PTTYPE == 64 | 
|  | if (is_nx(vcpu)) | 
|  | access &= ~(gpte >> PT64_NX_SHIFT); | 
|  | #endif | 
|  | return access; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch a guest pte for a guest virtual address | 
|  | */ | 
|  | static int FNAME(walk_addr)(struct guest_walker *walker, | 
|  | struct kvm_vcpu *vcpu, gva_t addr, | 
|  | int write_fault, int user_fault, int fetch_fault) | 
|  | { | 
|  | pt_element_t pte; | 
|  | gfn_t table_gfn; | 
|  | unsigned index, pt_access, pte_access; | 
|  | gpa_t pte_gpa; | 
|  | int rsvd_fault = 0; | 
|  |  | 
|  | trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault, | 
|  | fetch_fault); | 
|  | walk: | 
|  | walker->level = vcpu->arch.mmu.root_level; | 
|  | pte = vcpu->arch.cr3; | 
|  | #if PTTYPE == 64 | 
|  | if (!is_long_mode(vcpu)) { | 
|  | pte = kvm_pdptr_read(vcpu, (addr >> 30) & 3); | 
|  | trace_kvm_mmu_paging_element(pte, walker->level); | 
|  | if (!is_present_gpte(pte)) | 
|  | goto not_present; | 
|  | --walker->level; | 
|  | } | 
|  | #endif | 
|  | ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) || | 
|  | (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0); | 
|  |  | 
|  | pt_access = ACC_ALL; | 
|  |  | 
|  | for (;;) { | 
|  | index = PT_INDEX(addr, walker->level); | 
|  |  | 
|  | table_gfn = gpte_to_gfn(pte); | 
|  | pte_gpa = gfn_to_gpa(table_gfn); | 
|  | pte_gpa += index * sizeof(pt_element_t); | 
|  | walker->table_gfn[walker->level - 1] = table_gfn; | 
|  | walker->pte_gpa[walker->level - 1] = pte_gpa; | 
|  |  | 
|  | if (kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte))) | 
|  | goto not_present; | 
|  |  | 
|  | trace_kvm_mmu_paging_element(pte, walker->level); | 
|  |  | 
|  | if (!is_present_gpte(pte)) | 
|  | goto not_present; | 
|  |  | 
|  | rsvd_fault = is_rsvd_bits_set(vcpu, pte, walker->level); | 
|  | if (rsvd_fault) | 
|  | goto access_error; | 
|  |  | 
|  | if (write_fault && !is_writable_pte(pte)) | 
|  | if (user_fault || is_write_protection(vcpu)) | 
|  | goto access_error; | 
|  |  | 
|  | if (user_fault && !(pte & PT_USER_MASK)) | 
|  | goto access_error; | 
|  |  | 
|  | #if PTTYPE == 64 | 
|  | if (fetch_fault && (pte & PT64_NX_MASK)) | 
|  | goto access_error; | 
|  | #endif | 
|  |  | 
|  | if (!(pte & PT_ACCESSED_MASK)) { | 
|  | trace_kvm_mmu_set_accessed_bit(table_gfn, index, | 
|  | sizeof(pte)); | 
|  | mark_page_dirty(vcpu->kvm, table_gfn); | 
|  | if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, | 
|  | index, pte, pte|PT_ACCESSED_MASK)) | 
|  | goto walk; | 
|  | pte |= PT_ACCESSED_MASK; | 
|  | } | 
|  |  | 
|  | pte_access = pt_access & FNAME(gpte_access)(vcpu, pte); | 
|  |  | 
|  | walker->ptes[walker->level - 1] = pte; | 
|  |  | 
|  | if ((walker->level == PT_PAGE_TABLE_LEVEL) || | 
|  | ((walker->level == PT_DIRECTORY_LEVEL) && | 
|  | is_large_pte(pte) && | 
|  | (PTTYPE == 64 || is_pse(vcpu))) || | 
|  | ((walker->level == PT_PDPE_LEVEL) && | 
|  | is_large_pte(pte) && | 
|  | is_long_mode(vcpu))) { | 
|  | int lvl = walker->level; | 
|  |  | 
|  | walker->gfn = gpte_to_gfn_lvl(pte, lvl); | 
|  | walker->gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) | 
|  | >> PAGE_SHIFT; | 
|  |  | 
|  | if (PTTYPE == 32 && | 
|  | walker->level == PT_DIRECTORY_LEVEL && | 
|  | is_cpuid_PSE36()) | 
|  | walker->gfn += pse36_gfn_delta(pte); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | pt_access = pte_access; | 
|  | --walker->level; | 
|  | } | 
|  |  | 
|  | if (write_fault && !is_dirty_gpte(pte)) { | 
|  | bool ret; | 
|  |  | 
|  | trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); | 
|  | mark_page_dirty(vcpu->kvm, table_gfn); | 
|  | ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte, | 
|  | pte|PT_DIRTY_MASK); | 
|  | if (ret) | 
|  | goto walk; | 
|  | pte |= PT_DIRTY_MASK; | 
|  | walker->ptes[walker->level - 1] = pte; | 
|  | } | 
|  |  | 
|  | walker->pt_access = pt_access; | 
|  | walker->pte_access = pte_access; | 
|  | pgprintk("%s: pte %llx pte_access %x pt_access %x\n", | 
|  | __func__, (u64)pte, pt_access, pte_access); | 
|  | return 1; | 
|  |  | 
|  | not_present: | 
|  | walker->error_code = 0; | 
|  | goto err; | 
|  |  | 
|  | access_error: | 
|  | walker->error_code = PFERR_PRESENT_MASK; | 
|  |  | 
|  | err: | 
|  | if (write_fault) | 
|  | walker->error_code |= PFERR_WRITE_MASK; | 
|  | if (user_fault) | 
|  | walker->error_code |= PFERR_USER_MASK; | 
|  | if (fetch_fault) | 
|  | walker->error_code |= PFERR_FETCH_MASK; | 
|  | if (rsvd_fault) | 
|  | walker->error_code |= PFERR_RSVD_MASK; | 
|  | trace_kvm_mmu_walker_error(walker->error_code); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, | 
|  | u64 *spte, const void *pte) | 
|  | { | 
|  | pt_element_t gpte; | 
|  | unsigned pte_access; | 
|  | pfn_t pfn; | 
|  | u64 new_spte; | 
|  |  | 
|  | gpte = *(const pt_element_t *)pte; | 
|  | if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) { | 
|  | if (!is_present_gpte(gpte)) { | 
|  | if (page->unsync) | 
|  | new_spte = shadow_trap_nonpresent_pte; | 
|  | else | 
|  | new_spte = shadow_notrap_nonpresent_pte; | 
|  | __set_spte(spte, new_spte); | 
|  | } | 
|  | return; | 
|  | } | 
|  | pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); | 
|  | pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte); | 
|  | if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn) | 
|  | return; | 
|  | pfn = vcpu->arch.update_pte.pfn; | 
|  | if (is_error_pfn(pfn)) | 
|  | return; | 
|  | if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq)) | 
|  | return; | 
|  | kvm_get_pfn(pfn); | 
|  | /* | 
|  | * we call mmu_set_spte() with reset_host_protection = true beacuse that | 
|  | * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1). | 
|  | */ | 
|  | mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0, | 
|  | gpte & PT_DIRTY_MASK, NULL, PT_PAGE_TABLE_LEVEL, | 
|  | gpte_to_gfn(gpte), pfn, true, true); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch a shadow pte for a specific level in the paging hierarchy. | 
|  | */ | 
|  | static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, | 
|  | struct guest_walker *gw, | 
|  | int user_fault, int write_fault, int hlevel, | 
|  | int *ptwrite, pfn_t pfn) | 
|  | { | 
|  | unsigned access = gw->pt_access; | 
|  | struct kvm_mmu_page *shadow_page; | 
|  | u64 spte, *sptep = NULL; | 
|  | int direct; | 
|  | gfn_t table_gfn; | 
|  | int r; | 
|  | int level; | 
|  | pt_element_t curr_pte; | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  |  | 
|  | if (!is_present_gpte(gw->ptes[gw->level - 1])) | 
|  | return NULL; | 
|  |  | 
|  | for_each_shadow_entry(vcpu, addr, iterator) { | 
|  | level = iterator.level; | 
|  | sptep = iterator.sptep; | 
|  | if (iterator.level == hlevel) { | 
|  | mmu_set_spte(vcpu, sptep, access, | 
|  | gw->pte_access & access, | 
|  | user_fault, write_fault, | 
|  | gw->ptes[gw->level-1] & PT_DIRTY_MASK, | 
|  | ptwrite, level, | 
|  | gw->gfn, pfn, false, true); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { | 
|  | struct kvm_mmu_page *child; | 
|  | unsigned direct_access; | 
|  |  | 
|  | if (level != gw->level) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * For the direct sp, if the guest pte's dirty bit | 
|  | * changed form clean to dirty, it will corrupt the | 
|  | * sp's access: allow writable in the read-only sp, | 
|  | * so we should update the spte at this point to get | 
|  | * a new sp with the correct access. | 
|  | */ | 
|  | direct_access = gw->pt_access & gw->pte_access; | 
|  | if (!is_dirty_gpte(gw->ptes[gw->level - 1])) | 
|  | direct_access &= ~ACC_WRITE_MASK; | 
|  |  | 
|  | child = page_header(*sptep & PT64_BASE_ADDR_MASK); | 
|  | if (child->role.access == direct_access) | 
|  | continue; | 
|  |  | 
|  | mmu_page_remove_parent_pte(child, sptep); | 
|  | __set_spte(sptep, shadow_trap_nonpresent_pte); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } | 
|  |  | 
|  | if (is_large_pte(*sptep)) { | 
|  | rmap_remove(vcpu->kvm, sptep); | 
|  | __set_spte(sptep, shadow_trap_nonpresent_pte); | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  | } | 
|  |  | 
|  | if (level <= gw->level) { | 
|  | int delta = level - gw->level + 1; | 
|  | direct = 1; | 
|  | if (!is_dirty_gpte(gw->ptes[level - delta])) | 
|  | access &= ~ACC_WRITE_MASK; | 
|  | table_gfn = gpte_to_gfn(gw->ptes[level - delta]); | 
|  | /* advance table_gfn when emulating 1gb pages with 4k */ | 
|  | if (delta == 0) | 
|  | table_gfn += PT_INDEX(addr, level); | 
|  | access &= gw->pte_access; | 
|  | } else { | 
|  | direct = 0; | 
|  | table_gfn = gw->table_gfn[level - 2]; | 
|  | } | 
|  | shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1, | 
|  | direct, access, sptep); | 
|  | if (!direct) { | 
|  | r = kvm_read_guest_atomic(vcpu->kvm, | 
|  | gw->pte_gpa[level - 2], | 
|  | &curr_pte, sizeof(curr_pte)); | 
|  | if (r || curr_pte != gw->ptes[level - 2]) { | 
|  | kvm_mmu_put_page(shadow_page, sptep); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | sptep = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | spte = __pa(shadow_page->spt) | 
|  | | PT_PRESENT_MASK | PT_ACCESSED_MASK | 
|  | | PT_WRITABLE_MASK | PT_USER_MASK; | 
|  | *sptep = spte; | 
|  | } | 
|  |  | 
|  | return sptep; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Page fault handler.  There are several causes for a page fault: | 
|  | *   - there is no shadow pte for the guest pte | 
|  | *   - write access through a shadow pte marked read only so that we can set | 
|  | *     the dirty bit | 
|  | *   - write access to a shadow pte marked read only so we can update the page | 
|  | *     dirty bitmap, when userspace requests it | 
|  | *   - mmio access; in this case we will never install a present shadow pte | 
|  | *   - normal guest page fault due to the guest pte marked not present, not | 
|  | *     writable, or not executable | 
|  | * | 
|  | *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or | 
|  | *           a negative value on error. | 
|  | */ | 
|  | static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, | 
|  | u32 error_code) | 
|  | { | 
|  | int write_fault = error_code & PFERR_WRITE_MASK; | 
|  | int user_fault = error_code & PFERR_USER_MASK; | 
|  | int fetch_fault = error_code & PFERR_FETCH_MASK; | 
|  | struct guest_walker walker; | 
|  | u64 *sptep; | 
|  | int write_pt = 0; | 
|  | int r; | 
|  | pfn_t pfn; | 
|  | int level = PT_PAGE_TABLE_LEVEL; | 
|  | unsigned long mmu_seq; | 
|  |  | 
|  | pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); | 
|  | kvm_mmu_audit(vcpu, "pre page fault"); | 
|  |  | 
|  | r = mmu_topup_memory_caches(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | /* | 
|  | * Look up the guest pte for the faulting address. | 
|  | */ | 
|  | r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault, | 
|  | fetch_fault); | 
|  |  | 
|  | /* | 
|  | * The page is not mapped by the guest.  Let the guest handle it. | 
|  | */ | 
|  | if (!r) { | 
|  | pgprintk("%s: guest page fault\n", __func__); | 
|  | inject_page_fault(vcpu, addr, walker.error_code); | 
|  | vcpu->arch.last_pt_write_count = 0; /* reset fork detector */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (walker.level >= PT_DIRECTORY_LEVEL) { | 
|  | level = min(walker.level, mapping_level(vcpu, walker.gfn)); | 
|  | walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); | 
|  | } | 
|  |  | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | smp_rmb(); | 
|  | pfn = gfn_to_pfn(vcpu->kvm, walker.gfn); | 
|  |  | 
|  | /* mmio */ | 
|  | if (is_error_pfn(pfn)) { | 
|  | pgprintk("gfn %lx is mmio\n", walker.gfn); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(vcpu, mmu_seq)) | 
|  | goto out_unlock; | 
|  | kvm_mmu_free_some_pages(vcpu); | 
|  | sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault, | 
|  | level, &write_pt, pfn); | 
|  | pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__, | 
|  | sptep, *sptep, write_pt); | 
|  |  | 
|  | if (!write_pt) | 
|  | vcpu->arch.last_pt_write_count = 0; /* reset fork detector */ | 
|  |  | 
|  | ++vcpu->stat.pf_fixed; | 
|  | kvm_mmu_audit(vcpu, "post page fault (fixed)"); | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | return write_pt; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | struct kvm_shadow_walk_iterator iterator; | 
|  | gpa_t pte_gpa = -1; | 
|  | int level; | 
|  | u64 *sptep; | 
|  | int need_flush = 0; | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | for_each_shadow_entry(vcpu, gva, iterator) { | 
|  | level = iterator.level; | 
|  | sptep = iterator.sptep; | 
|  |  | 
|  | if (is_last_spte(*sptep, level)) { | 
|  | struct kvm_mmu_page *sp = page_header(__pa(sptep)); | 
|  | int offset, shift; | 
|  |  | 
|  | shift = PAGE_SHIFT - | 
|  | (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level; | 
|  | offset = sp->role.quadrant << shift; | 
|  |  | 
|  | pte_gpa = (sp->gfn << PAGE_SHIFT) + offset; | 
|  | pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); | 
|  |  | 
|  | if (is_shadow_present_pte(*sptep)) { | 
|  | rmap_remove(vcpu->kvm, sptep); | 
|  | if (is_large_pte(*sptep)) | 
|  | --vcpu->kvm->stat.lpages; | 
|  | need_flush = 1; | 
|  | } | 
|  | __set_spte(sptep, shadow_trap_nonpresent_pte); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!is_shadow_present_pte(*sptep)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (need_flush) | 
|  | kvm_flush_remote_tlbs(vcpu->kvm); | 
|  |  | 
|  | atomic_inc(&vcpu->kvm->arch.invlpg_counter); | 
|  |  | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | if (pte_gpa == -1) | 
|  | return; | 
|  |  | 
|  | if (mmu_topup_memory_caches(vcpu)) | 
|  | return; | 
|  | kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0); | 
|  | } | 
|  |  | 
|  | static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, | 
|  | u32 *error) | 
|  | { | 
|  | struct guest_walker walker; | 
|  | gpa_t gpa = UNMAPPED_GVA; | 
|  | int r; | 
|  |  | 
|  | r = FNAME(walk_addr)(&walker, vcpu, vaddr, | 
|  | !!(access & PFERR_WRITE_MASK), | 
|  | !!(access & PFERR_USER_MASK), | 
|  | !!(access & PFERR_FETCH_MASK)); | 
|  |  | 
|  | if (r) { | 
|  | gpa = gfn_to_gpa(walker.gfn); | 
|  | gpa |= vaddr & ~PAGE_MASK; | 
|  | } else if (error) | 
|  | *error = walker.error_code; | 
|  |  | 
|  | return gpa; | 
|  | } | 
|  |  | 
|  | static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu, | 
|  | struct kvm_mmu_page *sp) | 
|  | { | 
|  | int i, j, offset, r; | 
|  | pt_element_t pt[256 / sizeof(pt_element_t)]; | 
|  | gpa_t pte_gpa; | 
|  |  | 
|  | if (sp->role.direct | 
|  | || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) { | 
|  | nonpaging_prefetch_page(vcpu, sp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pte_gpa = gfn_to_gpa(sp->gfn); | 
|  | if (PTTYPE == 32) { | 
|  | offset = sp->role.quadrant << PT64_LEVEL_BITS; | 
|  | pte_gpa += offset * sizeof(pt_element_t); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) { | 
|  | r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt); | 
|  | pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t); | 
|  | for (j = 0; j < ARRAY_SIZE(pt); ++j) | 
|  | if (r || is_present_gpte(pt[j])) | 
|  | sp->spt[i+j] = shadow_trap_nonpresent_pte; | 
|  | else | 
|  | sp->spt[i+j] = shadow_notrap_nonpresent_pte; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Using the cached information from sp->gfns is safe because: | 
|  | * - The spte has a reference to the struct page, so the pfn for a given gfn | 
|  | *   can't change unless all sptes pointing to it are nuked first. | 
|  | * - Alias changes zap the entire shadow cache. | 
|  | */ | 
|  | static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) | 
|  | { | 
|  | int i, offset, nr_present; | 
|  | bool reset_host_protection; | 
|  | gpa_t first_pte_gpa; | 
|  |  | 
|  | offset = nr_present = 0; | 
|  |  | 
|  | if (PTTYPE == 32) | 
|  | offset = sp->role.quadrant << PT64_LEVEL_BITS; | 
|  |  | 
|  | first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); | 
|  |  | 
|  | for (i = 0; i < PT64_ENT_PER_PAGE; i++) { | 
|  | unsigned pte_access; | 
|  | pt_element_t gpte; | 
|  | gpa_t pte_gpa; | 
|  | gfn_t gfn = sp->gfns[i]; | 
|  |  | 
|  | if (!is_shadow_present_pte(sp->spt[i])) | 
|  | continue; | 
|  |  | 
|  | pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); | 
|  |  | 
|  | if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte, | 
|  | sizeof(pt_element_t))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (gpte_to_gfn(gpte) != gfn || !is_present_gpte(gpte) || | 
|  | !(gpte & PT_ACCESSED_MASK)) { | 
|  | u64 nonpresent; | 
|  |  | 
|  | rmap_remove(vcpu->kvm, &sp->spt[i]); | 
|  | if (is_present_gpte(gpte)) | 
|  | nonpresent = shadow_trap_nonpresent_pte; | 
|  | else | 
|  | nonpresent = shadow_notrap_nonpresent_pte; | 
|  | __set_spte(&sp->spt[i], nonpresent); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nr_present++; | 
|  | pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte); | 
|  | if (!(sp->spt[i] & SPTE_HOST_WRITEABLE)) { | 
|  | pte_access &= ~ACC_WRITE_MASK; | 
|  | reset_host_protection = 0; | 
|  | } else { | 
|  | reset_host_protection = 1; | 
|  | } | 
|  | set_spte(vcpu, &sp->spt[i], pte_access, 0, 0, | 
|  | is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn, | 
|  | spte_to_pfn(sp->spt[i]), true, false, | 
|  | reset_host_protection); | 
|  | } | 
|  |  | 
|  | return !nr_present; | 
|  | } | 
|  |  | 
|  | #undef pt_element_t | 
|  | #undef guest_walker | 
|  | #undef FNAME | 
|  | #undef PT_BASE_ADDR_MASK | 
|  | #undef PT_INDEX | 
|  | #undef PT_LEVEL_MASK | 
|  | #undef PT_LVL_ADDR_MASK | 
|  | #undef PT_LVL_OFFSET_MASK | 
|  | #undef PT_LEVEL_BITS | 
|  | #undef PT_MAX_FULL_LEVELS | 
|  | #undef gpte_to_gfn | 
|  | #undef gpte_to_gfn_lvl | 
|  | #undef CMPXCHG |