|  | #undef DEBUG | 
|  |  | 
|  | /* | 
|  | * ARM performance counter support. | 
|  | * | 
|  | * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles | 
|  | * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> | 
|  | * | 
|  | * This code is based on the sparc64 perf event code, which is in turn based | 
|  | * on the x86 code. Callchain code is based on the ARM OProfile backtrace | 
|  | * code. | 
|  | */ | 
|  | #define pr_fmt(fmt) "hw perfevents: " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <asm/irq_regs.h> | 
|  | #include <asm/pmu.h> | 
|  | #include <asm/stacktrace.h> | 
|  |  | 
|  | static int | 
|  | armpmu_map_cache_event(const unsigned (*cache_map) | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX], | 
|  | u64 config) | 
|  | { | 
|  | unsigned int cache_type, cache_op, cache_result, ret; | 
|  |  | 
|  | cache_type = (config >>  0) & 0xff; | 
|  | if (cache_type >= PERF_COUNT_HW_CACHE_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_op = (config >>  8) & 0xff; | 
|  | if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_result = (config >> 16) & 0xff; | 
|  | if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; | 
|  |  | 
|  | if (ret == CACHE_OP_UNSUPPORTED) | 
|  | return -ENOENT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) | 
|  | { | 
|  | int mapping; | 
|  |  | 
|  | if (config >= PERF_COUNT_HW_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | mapping = (*event_map)[config]; | 
|  | return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_map_raw_event(u32 raw_event_mask, u64 config) | 
|  | { | 
|  | return (int)(config & raw_event_mask); | 
|  | } | 
|  |  | 
|  | int | 
|  | armpmu_map_event(struct perf_event *event, | 
|  | const unsigned (*event_map)[PERF_COUNT_HW_MAX], | 
|  | const unsigned (*cache_map) | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX], | 
|  | u32 raw_event_mask) | 
|  | { | 
|  | u64 config = event->attr.config; | 
|  |  | 
|  | switch (event->attr.type) { | 
|  | case PERF_TYPE_HARDWARE: | 
|  | return armpmu_map_hw_event(event_map, config); | 
|  | case PERF_TYPE_HW_CACHE: | 
|  | return armpmu_map_cache_event(cache_map, config); | 
|  | case PERF_TYPE_RAW: | 
|  | return armpmu_map_raw_event(raw_event_mask, config); | 
|  | } | 
|  |  | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | int armpmu_event_set_period(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | s64 left = local64_read(&hwc->period_left); | 
|  | s64 period = hwc->sample_period; | 
|  | int ret = 0; | 
|  |  | 
|  | /* The period may have been changed by PERF_EVENT_IOC_PERIOD */ | 
|  | if (unlikely(period != hwc->last_period)) | 
|  | left = period - (hwc->last_period - left); | 
|  |  | 
|  | if (unlikely(left <= -period)) { | 
|  | left = period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(left <= 0)) { | 
|  | left += period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (left > (s64)armpmu->max_period) | 
|  | left = armpmu->max_period; | 
|  |  | 
|  | local64_set(&hwc->prev_count, (u64)-left); | 
|  |  | 
|  | armpmu->write_counter(event, (u64)(-left) & 0xffffffff); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | u64 armpmu_event_update(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | u64 delta, prev_raw_count, new_raw_count; | 
|  |  | 
|  | again: | 
|  | prev_raw_count = local64_read(&hwc->prev_count); | 
|  | new_raw_count = armpmu->read_counter(event); | 
|  |  | 
|  | if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, | 
|  | new_raw_count) != prev_raw_count) | 
|  | goto again; | 
|  |  | 
|  | delta = (new_raw_count - prev_raw_count) & armpmu->max_period; | 
|  |  | 
|  | local64_add(delta, &event->count); | 
|  | local64_sub(delta, &hwc->period_left); | 
|  |  | 
|  | return new_raw_count; | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_read(struct perf_event *event) | 
|  | { | 
|  | armpmu_event_update(event); | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | /* | 
|  | * ARM pmu always has to update the counter, so ignore | 
|  | * PERF_EF_UPDATE, see comments in armpmu_start(). | 
|  | */ | 
|  | if (!(hwc->state & PERF_HES_STOPPED)) { | 
|  | armpmu->disable(event); | 
|  | armpmu_event_update(event); | 
|  | hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void armpmu_start(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | /* | 
|  | * ARM pmu always has to reprogram the period, so ignore | 
|  | * PERF_EF_RELOAD, see the comment below. | 
|  | */ | 
|  | if (flags & PERF_EF_RELOAD) | 
|  | WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); | 
|  |  | 
|  | hwc->state = 0; | 
|  | /* | 
|  | * Set the period again. Some counters can't be stopped, so when we | 
|  | * were stopped we simply disabled the IRQ source and the counter | 
|  | * may have been left counting. If we don't do this step then we may | 
|  | * get an interrupt too soon or *way* too late if the overflow has | 
|  | * happened since disabling. | 
|  | */ | 
|  | armpmu_event_set_period(event); | 
|  | armpmu->enable(event); | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_del(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct pmu_hw_events *hw_events = armpmu->get_hw_events(); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int idx = hwc->idx; | 
|  |  | 
|  | armpmu_stop(event, PERF_EF_UPDATE); | 
|  | hw_events->events[idx] = NULL; | 
|  | clear_bit(idx, hw_events->used_mask); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_add(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct pmu_hw_events *hw_events = armpmu->get_hw_events(); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int idx; | 
|  | int err = 0; | 
|  |  | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | /* If we don't have a space for the counter then finish early. */ | 
|  | idx = armpmu->get_event_idx(hw_events, event); | 
|  | if (idx < 0) { | 
|  | err = idx; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is an event in the counter we are going to use then make | 
|  | * sure it is disabled. | 
|  | */ | 
|  | event->hw.idx = idx; | 
|  | armpmu->disable(event); | 
|  | hw_events->events[idx] = event; | 
|  |  | 
|  | hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | if (flags & PERF_EF_START) | 
|  | armpmu_start(event, PERF_EF_RELOAD); | 
|  |  | 
|  | /* Propagate our changes to the userspace mapping. */ | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | out: | 
|  | perf_pmu_enable(event->pmu); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int | 
|  | validate_event(struct pmu_hw_events *hw_events, | 
|  | struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  |  | 
|  | if (is_software_event(event)) | 
|  | return 1; | 
|  |  | 
|  | if (event->state < PERF_EVENT_STATE_OFF) | 
|  | return 1; | 
|  |  | 
|  | if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) | 
|  | return 1; | 
|  |  | 
|  | return armpmu->get_event_idx(hw_events, event) >= 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | validate_group(struct perf_event *event) | 
|  | { | 
|  | struct perf_event *sibling, *leader = event->group_leader; | 
|  | struct pmu_hw_events fake_pmu; | 
|  | DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS); | 
|  |  | 
|  | /* | 
|  | * Initialise the fake PMU. We only need to populate the | 
|  | * used_mask for the purposes of validation. | 
|  | */ | 
|  | memset(fake_used_mask, 0, sizeof(fake_used_mask)); | 
|  | fake_pmu.used_mask = fake_used_mask; | 
|  |  | 
|  | if (!validate_event(&fake_pmu, leader)) | 
|  | return -EINVAL; | 
|  |  | 
|  | list_for_each_entry(sibling, &leader->sibling_list, group_entry) { | 
|  | if (!validate_event(&fake_pmu, sibling)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!validate_event(&fake_pmu, event)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) | 
|  | { | 
|  | struct arm_pmu *armpmu = (struct arm_pmu *) dev; | 
|  | struct platform_device *plat_device = armpmu->plat_device; | 
|  | struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev); | 
|  |  | 
|  | if (plat && plat->handle_irq) | 
|  | return plat->handle_irq(irq, dev, armpmu->handle_irq); | 
|  | else | 
|  | return armpmu->handle_irq(irq, dev); | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_release_hardware(struct arm_pmu *armpmu) | 
|  | { | 
|  | armpmu->free_irq(armpmu); | 
|  | pm_runtime_put_sync(&armpmu->plat_device->dev); | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_reserve_hardware(struct arm_pmu *armpmu) | 
|  | { | 
|  | int err; | 
|  | struct platform_device *pmu_device = armpmu->plat_device; | 
|  |  | 
|  | if (!pmu_device) | 
|  | return -ENODEV; | 
|  |  | 
|  | pm_runtime_get_sync(&pmu_device->dev); | 
|  | err = armpmu->request_irq(armpmu, armpmu_dispatch_irq); | 
|  | if (err) { | 
|  | armpmu_release_hardware(armpmu); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | hw_perf_event_destroy(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | atomic_t *active_events	 = &armpmu->active_events; | 
|  | struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; | 
|  |  | 
|  | if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { | 
|  | armpmu_release_hardware(armpmu); | 
|  | mutex_unlock(pmu_reserve_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | event_requires_mode_exclusion(struct perf_event_attr *attr) | 
|  | { | 
|  | return attr->exclude_idle || attr->exclude_user || | 
|  | attr->exclude_kernel || attr->exclude_hv; | 
|  | } | 
|  |  | 
|  | static int | 
|  | __hw_perf_event_init(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int mapping; | 
|  |  | 
|  | mapping = armpmu->map_event(event); | 
|  |  | 
|  | if (mapping < 0) { | 
|  | pr_debug("event %x:%llx not supported\n", event->attr.type, | 
|  | event->attr.config); | 
|  | return mapping; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't assign an index until we actually place the event onto | 
|  | * hardware. Use -1 to signify that we haven't decided where to put it | 
|  | * yet. For SMP systems, each core has it's own PMU so we can't do any | 
|  | * clever allocation or constraints checking at this point. | 
|  | */ | 
|  | hwc->idx		= -1; | 
|  | hwc->config_base	= 0; | 
|  | hwc->config		= 0; | 
|  | hwc->event_base		= 0; | 
|  |  | 
|  | /* | 
|  | * Check whether we need to exclude the counter from certain modes. | 
|  | */ | 
|  | if ((!armpmu->set_event_filter || | 
|  | armpmu->set_event_filter(hwc, &event->attr)) && | 
|  | event_requires_mode_exclusion(&event->attr)) { | 
|  | pr_debug("ARM performance counters do not support " | 
|  | "mode exclusion\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store the event encoding into the config_base field. | 
|  | */ | 
|  | hwc->config_base	    |= (unsigned long)mapping; | 
|  |  | 
|  | if (!hwc->sample_period) { | 
|  | /* | 
|  | * For non-sampling runs, limit the sample_period to half | 
|  | * of the counter width. That way, the new counter value | 
|  | * is far less likely to overtake the previous one unless | 
|  | * you have some serious IRQ latency issues. | 
|  | */ | 
|  | hwc->sample_period  = armpmu->max_period >> 1; | 
|  | hwc->last_period    = hwc->sample_period; | 
|  | local64_set(&hwc->period_left, hwc->sample_period); | 
|  | } | 
|  |  | 
|  | if (event->group_leader != event) { | 
|  | if (validate_group(event) != 0) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int armpmu_event_init(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | int err = 0; | 
|  | atomic_t *active_events = &armpmu->active_events; | 
|  |  | 
|  | /* does not support taken branch sampling */ | 
|  | if (has_branch_stack(event)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (armpmu->map_event(event) == -ENOENT) | 
|  | return -ENOENT; | 
|  |  | 
|  | event->destroy = hw_perf_event_destroy; | 
|  |  | 
|  | if (!atomic_inc_not_zero(active_events)) { | 
|  | mutex_lock(&armpmu->reserve_mutex); | 
|  | if (atomic_read(active_events) == 0) | 
|  | err = armpmu_reserve_hardware(armpmu); | 
|  |  | 
|  | if (!err) | 
|  | atomic_inc(active_events); | 
|  | mutex_unlock(&armpmu->reserve_mutex); | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = __hw_perf_event_init(event); | 
|  | if (err) | 
|  | hw_perf_event_destroy(event); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void armpmu_enable(struct pmu *pmu) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
|  | struct pmu_hw_events *hw_events = armpmu->get_hw_events(); | 
|  | int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); | 
|  |  | 
|  | if (enabled) | 
|  | armpmu->start(armpmu); | 
|  | } | 
|  |  | 
|  | static void armpmu_disable(struct pmu *pmu) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
|  | armpmu->stop(armpmu); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_RUNTIME | 
|  | static int armpmu_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct arm_pmu_platdata *plat = dev_get_platdata(dev); | 
|  |  | 
|  | if (plat && plat->runtime_resume) | 
|  | return plat->runtime_resume(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int armpmu_runtime_suspend(struct device *dev) | 
|  | { | 
|  | struct arm_pmu_platdata *plat = dev_get_platdata(dev); | 
|  |  | 
|  | if (plat && plat->runtime_suspend) | 
|  | return plat->runtime_suspend(dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | const struct dev_pm_ops armpmu_dev_pm_ops = { | 
|  | SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL) | 
|  | }; | 
|  |  | 
|  | static void armpmu_init(struct arm_pmu *armpmu) | 
|  | { | 
|  | atomic_set(&armpmu->active_events, 0); | 
|  | mutex_init(&armpmu->reserve_mutex); | 
|  |  | 
|  | armpmu->pmu = (struct pmu) { | 
|  | .pmu_enable	= armpmu_enable, | 
|  | .pmu_disable	= armpmu_disable, | 
|  | .event_init	= armpmu_event_init, | 
|  | .add		= armpmu_add, | 
|  | .del		= armpmu_del, | 
|  | .start		= armpmu_start, | 
|  | .stop		= armpmu_stop, | 
|  | .read		= armpmu_read, | 
|  | }; | 
|  | } | 
|  |  | 
|  | int armpmu_register(struct arm_pmu *armpmu, int type) | 
|  | { | 
|  | armpmu_init(armpmu); | 
|  | pm_runtime_enable(&armpmu->plat_device->dev); | 
|  | pr_info("enabled with %s PMU driver, %d counters available\n", | 
|  | armpmu->name, armpmu->num_events); | 
|  | return perf_pmu_register(&armpmu->pmu, armpmu->name, type); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Callchain handling code. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The registers we're interested in are at the end of the variable | 
|  | * length saved register structure. The fp points at the end of this | 
|  | * structure so the address of this struct is: | 
|  | * (struct frame_tail *)(xxx->fp)-1 | 
|  | * | 
|  | * This code has been adapted from the ARM OProfile support. | 
|  | */ | 
|  | struct frame_tail { | 
|  | struct frame_tail __user *fp; | 
|  | unsigned long sp; | 
|  | unsigned long lr; | 
|  | } __attribute__((packed)); | 
|  |  | 
|  | /* | 
|  | * Get the return address for a single stackframe and return a pointer to the | 
|  | * next frame tail. | 
|  | */ | 
|  | static struct frame_tail __user * | 
|  | user_backtrace(struct frame_tail __user *tail, | 
|  | struct perf_callchain_entry *entry) | 
|  | { | 
|  | struct frame_tail buftail; | 
|  |  | 
|  | /* Also check accessibility of one struct frame_tail beyond */ | 
|  | if (!access_ok(VERIFY_READ, tail, sizeof(buftail))) | 
|  | return NULL; | 
|  | if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail))) | 
|  | return NULL; | 
|  |  | 
|  | perf_callchain_store(entry, buftail.lr); | 
|  |  | 
|  | /* | 
|  | * Frame pointers should strictly progress back up the stack | 
|  | * (towards higher addresses). | 
|  | */ | 
|  | if (tail + 1 >= buftail.fp) | 
|  | return NULL; | 
|  |  | 
|  | return buftail.fp - 1; | 
|  | } | 
|  |  | 
|  | void | 
|  | perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) | 
|  | { | 
|  | struct frame_tail __user *tail; | 
|  |  | 
|  | if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { | 
|  | /* We don't support guest os callchain now */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | perf_callchain_store(entry, regs->ARM_pc); | 
|  | tail = (struct frame_tail __user *)regs->ARM_fp - 1; | 
|  |  | 
|  | while ((entry->nr < PERF_MAX_STACK_DEPTH) && | 
|  | tail && !((unsigned long)tail & 0x3)) | 
|  | tail = user_backtrace(tail, entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gets called by walk_stackframe() for every stackframe. This will be called | 
|  | * whist unwinding the stackframe and is like a subroutine return so we use | 
|  | * the PC. | 
|  | */ | 
|  | static int | 
|  | callchain_trace(struct stackframe *fr, | 
|  | void *data) | 
|  | { | 
|  | struct perf_callchain_entry *entry = data; | 
|  | perf_callchain_store(entry, fr->pc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) | 
|  | { | 
|  | struct stackframe fr; | 
|  |  | 
|  | if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { | 
|  | /* We don't support guest os callchain now */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | fr.fp = regs->ARM_fp; | 
|  | fr.sp = regs->ARM_sp; | 
|  | fr.lr = regs->ARM_lr; | 
|  | fr.pc = regs->ARM_pc; | 
|  | walk_stackframe(&fr, callchain_trace, entry); | 
|  | } | 
|  |  | 
|  | unsigned long perf_instruction_pointer(struct pt_regs *regs) | 
|  | { | 
|  | if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) | 
|  | return perf_guest_cbs->get_guest_ip(); | 
|  |  | 
|  | return instruction_pointer(regs); | 
|  | } | 
|  |  | 
|  | unsigned long perf_misc_flags(struct pt_regs *regs) | 
|  | { | 
|  | int misc = 0; | 
|  |  | 
|  | if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { | 
|  | if (perf_guest_cbs->is_user_mode()) | 
|  | misc |= PERF_RECORD_MISC_GUEST_USER; | 
|  | else | 
|  | misc |= PERF_RECORD_MISC_GUEST_KERNEL; | 
|  | } else { | 
|  | if (user_mode(regs)) | 
|  | misc |= PERF_RECORD_MISC_USER; | 
|  | else | 
|  | misc |= PERF_RECORD_MISC_KERNEL; | 
|  | } | 
|  |  | 
|  | return misc; | 
|  | } |