|  | /* | 
|  | *  linux/drivers/scsi/esas2r/esas2r_init.c | 
|  | *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers | 
|  | * | 
|  | *  Copyright (c) 2001-2013 ATTO Technology, Inc. | 
|  | *  (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version 2 | 
|  | * of the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * NO WARRANTY | 
|  | * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR | 
|  | * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT | 
|  | * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, | 
|  | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is | 
|  | * solely responsible for determining the appropriateness of using and | 
|  | * distributing the Program and assumes all risks associated with its | 
|  | * exercise of rights under this Agreement, including but not limited to | 
|  | * the risks and costs of program errors, damage to or loss of data, | 
|  | * programs or equipment, and unavailability or interruption of operations. | 
|  | * | 
|  | * DISCLAIMER OF LIABILITY | 
|  | * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY | 
|  | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND | 
|  | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR | 
|  | * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | 
|  | * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED | 
|  | * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, | 
|  | * USA. | 
|  | */ | 
|  |  | 
|  | #include "esas2r.h" | 
|  |  | 
|  | static bool esas2r_initmem_alloc(struct esas2r_adapter *a, | 
|  | struct esas2r_mem_desc *mem_desc, | 
|  | u32 align) | 
|  | { | 
|  | mem_desc->esas2r_param = mem_desc->size + align; | 
|  | mem_desc->virt_addr = NULL; | 
|  | mem_desc->phys_addr = 0; | 
|  | mem_desc->esas2r_data = dma_alloc_coherent(&a->pcid->dev, | 
|  | (size_t)mem_desc-> | 
|  | esas2r_param, | 
|  | (dma_addr_t *)&mem_desc-> | 
|  | phys_addr, | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (mem_desc->esas2r_data == NULL) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "failed to allocate %lu bytes of consistent memory!", | 
|  | (long | 
|  | unsigned | 
|  | int)mem_desc->esas2r_param); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | mem_desc->virt_addr = PTR_ALIGN(mem_desc->esas2r_data, align); | 
|  | mem_desc->phys_addr = ALIGN(mem_desc->phys_addr, align); | 
|  | memset(mem_desc->virt_addr, 0, mem_desc->size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void esas2r_initmem_free(struct esas2r_adapter *a, | 
|  | struct esas2r_mem_desc *mem_desc) | 
|  | { | 
|  | if (mem_desc->virt_addr == NULL) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Careful!  phys_addr and virt_addr may have been adjusted from the | 
|  | * original allocation in order to return the desired alignment.  That | 
|  | * means we have to use the original address (in esas2r_data) and size | 
|  | * (esas2r_param) and calculate the original physical address based on | 
|  | * the difference between the requested and actual allocation size. | 
|  | */ | 
|  | if (mem_desc->phys_addr) { | 
|  | int unalign = ((u8 *)mem_desc->virt_addr) - | 
|  | ((u8 *)mem_desc->esas2r_data); | 
|  |  | 
|  | dma_free_coherent(&a->pcid->dev, | 
|  | (size_t)mem_desc->esas2r_param, | 
|  | mem_desc->esas2r_data, | 
|  | (dma_addr_t)(mem_desc->phys_addr - unalign)); | 
|  | } else { | 
|  | kfree(mem_desc->esas2r_data); | 
|  | } | 
|  |  | 
|  | mem_desc->virt_addr = NULL; | 
|  | } | 
|  |  | 
|  | static bool alloc_vda_req(struct esas2r_adapter *a, | 
|  | struct esas2r_request *rq) | 
|  | { | 
|  | struct esas2r_mem_desc *memdesc = kzalloc( | 
|  | sizeof(struct esas2r_mem_desc), GFP_KERNEL); | 
|  |  | 
|  | if (memdesc == NULL) { | 
|  | esas2r_hdebug("could not alloc mem for vda request memdesc\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | memdesc->size = sizeof(union atto_vda_req) + | 
|  | ESAS2R_DATA_BUF_LEN; | 
|  |  | 
|  | if (!esas2r_initmem_alloc(a, memdesc, 256)) { | 
|  | esas2r_hdebug("could not alloc mem for vda request\n"); | 
|  | kfree(memdesc); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | a->num_vrqs++; | 
|  | list_add(&memdesc->next_desc, &a->vrq_mds_head); | 
|  |  | 
|  | rq->vrq_md = memdesc; | 
|  | rq->vrq = (union atto_vda_req *)memdesc->virt_addr; | 
|  | rq->vrq->scsi.handle = a->num_vrqs; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void esas2r_unmap_regions(struct esas2r_adapter *a) | 
|  | { | 
|  | if (a->regs) | 
|  | iounmap((void __iomem *)a->regs); | 
|  |  | 
|  | a->regs = NULL; | 
|  |  | 
|  | pci_release_region(a->pcid, 2); | 
|  |  | 
|  | if (a->data_window) | 
|  | iounmap((void __iomem *)a->data_window); | 
|  |  | 
|  | a->data_window = NULL; | 
|  |  | 
|  | pci_release_region(a->pcid, 0); | 
|  | } | 
|  |  | 
|  | static int esas2r_map_regions(struct esas2r_adapter *a) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | a->regs = NULL; | 
|  | a->data_window = NULL; | 
|  |  | 
|  | error = pci_request_region(a->pcid, 2, a->name); | 
|  | if (error != 0) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "pci_request_region(2) failed, error %d", | 
|  | error); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | a->regs = (void __force *)ioremap(pci_resource_start(a->pcid, 2), | 
|  | pci_resource_len(a->pcid, 2)); | 
|  | if (a->regs == NULL) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "ioremap failed for regs mem region\n"); | 
|  | pci_release_region(a->pcid, 2); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | error = pci_request_region(a->pcid, 0, a->name); | 
|  | if (error != 0) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "pci_request_region(2) failed, error %d", | 
|  | error); | 
|  | esas2r_unmap_regions(a); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | a->data_window = (void __force *)ioremap(pci_resource_start(a->pcid, | 
|  | 0), | 
|  | pci_resource_len(a->pcid, 0)); | 
|  | if (a->data_window == NULL) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "ioremap failed for data_window mem region\n"); | 
|  | esas2r_unmap_regions(a); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void esas2r_setup_interrupts(struct esas2r_adapter *a, int intr_mode) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Set up interrupt mode based on the requested value */ | 
|  | switch (intr_mode) { | 
|  | case INTR_MODE_LEGACY: | 
|  | use_legacy_interrupts: | 
|  | a->intr_mode = INTR_MODE_LEGACY; | 
|  | break; | 
|  |  | 
|  | case INTR_MODE_MSI: | 
|  | i = pci_enable_msi(a->pcid); | 
|  | if (i != 0) { | 
|  | esas2r_log(ESAS2R_LOG_WARN, | 
|  | "failed to enable MSI for adapter %d, " | 
|  | "falling back to legacy interrupts " | 
|  | "(err=%d)", a->index, | 
|  | i); | 
|  | goto use_legacy_interrupts; | 
|  | } | 
|  | a->intr_mode = INTR_MODE_MSI; | 
|  | set_bit(AF2_MSI_ENABLED, &a->flags2); | 
|  | break; | 
|  |  | 
|  |  | 
|  | default: | 
|  | esas2r_log(ESAS2R_LOG_WARN, | 
|  | "unknown interrupt_mode %d requested, " | 
|  | "falling back to legacy interrupt", | 
|  | interrupt_mode); | 
|  | goto use_legacy_interrupts; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void esas2r_claim_interrupts(struct esas2r_adapter *a) | 
|  | { | 
|  | unsigned long flags = 0; | 
|  |  | 
|  | if (a->intr_mode == INTR_MODE_LEGACY) | 
|  | flags |= IRQF_SHARED; | 
|  |  | 
|  | esas2r_log(ESAS2R_LOG_INFO, | 
|  | "esas2r_claim_interrupts irq=%d (%p, %s, %x)", | 
|  | a->pcid->irq, a, a->name, flags); | 
|  |  | 
|  | if (request_irq(a->pcid->irq, | 
|  | (a->intr_mode == | 
|  | INTR_MODE_LEGACY) ? esas2r_interrupt : | 
|  | esas2r_msi_interrupt, | 
|  | flags, | 
|  | a->name, | 
|  | a)) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, "unable to request IRQ %02X", | 
|  | a->pcid->irq); | 
|  | return; | 
|  | } | 
|  |  | 
|  | set_bit(AF2_IRQ_CLAIMED, &a->flags2); | 
|  | esas2r_log(ESAS2R_LOG_INFO, | 
|  | "claimed IRQ %d flags: 0x%lx", | 
|  | a->pcid->irq, flags); | 
|  | } | 
|  |  | 
|  | int esas2r_init_adapter(struct Scsi_Host *host, struct pci_dev *pcid, | 
|  | int index) | 
|  | { | 
|  | struct esas2r_adapter *a; | 
|  | u64 bus_addr = 0; | 
|  | int i; | 
|  | void *next_uncached; | 
|  | struct esas2r_request *first_request, *last_request; | 
|  |  | 
|  | if (index >= MAX_ADAPTERS) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "tried to init invalid adapter index %u!", | 
|  | index); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (esas2r_adapters[index]) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "tried to init existing adapter index %u!", | 
|  | index); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | a = (struct esas2r_adapter *)host->hostdata; | 
|  | memset(a, 0, sizeof(struct esas2r_adapter)); | 
|  | a->pcid = pcid; | 
|  | a->host = host; | 
|  |  | 
|  | if (sizeof(dma_addr_t) > 4) { | 
|  | const uint64_t required_mask = dma_get_required_mask | 
|  | (&pcid->dev); | 
|  | if (required_mask > DMA_BIT_MASK(32) | 
|  | && !pci_set_dma_mask(pcid, DMA_BIT_MASK(64)) | 
|  | && !pci_set_consistent_dma_mask(pcid, | 
|  | DMA_BIT_MASK(64))) { | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, | 
|  | &(a->pcid->dev), | 
|  | "64-bit PCI addressing enabled\n"); | 
|  | } else if (!pci_set_dma_mask(pcid, DMA_BIT_MASK(32)) | 
|  | && !pci_set_consistent_dma_mask(pcid, | 
|  | DMA_BIT_MASK(32))) { | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, | 
|  | &(a->pcid->dev), | 
|  | "32-bit PCI addressing enabled\n"); | 
|  | } else { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "failed to set DMA mask"); | 
|  | esas2r_kill_adapter(index); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (!pci_set_dma_mask(pcid, DMA_BIT_MASK(32)) | 
|  | && !pci_set_consistent_dma_mask(pcid, | 
|  | DMA_BIT_MASK(32))) { | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, | 
|  | &(a->pcid->dev), | 
|  | "32-bit PCI addressing enabled\n"); | 
|  | } else { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "failed to set DMA mask"); | 
|  | esas2r_kill_adapter(index); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | esas2r_adapters[index] = a; | 
|  | sprintf(a->name, ESAS2R_DRVR_NAME "_%02d", index); | 
|  | esas2r_debug("new adapter %p, name %s", a, a->name); | 
|  | spin_lock_init(&a->request_lock); | 
|  | spin_lock_init(&a->fw_event_lock); | 
|  | sema_init(&a->fm_api_semaphore, 1); | 
|  | sema_init(&a->fs_api_semaphore, 1); | 
|  | sema_init(&a->nvram_semaphore, 1); | 
|  |  | 
|  | esas2r_fw_event_off(a); | 
|  | snprintf(a->fw_event_q_name, ESAS2R_KOBJ_NAME_LEN, "esas2r/%d", | 
|  | a->index); | 
|  | a->fw_event_q = create_singlethread_workqueue(a->fw_event_q_name); | 
|  |  | 
|  | init_waitqueue_head(&a->buffered_ioctl_waiter); | 
|  | init_waitqueue_head(&a->nvram_waiter); | 
|  | init_waitqueue_head(&a->fm_api_waiter); | 
|  | init_waitqueue_head(&a->fs_api_waiter); | 
|  | init_waitqueue_head(&a->vda_waiter); | 
|  |  | 
|  | INIT_LIST_HEAD(&a->general_req.req_list); | 
|  | INIT_LIST_HEAD(&a->active_list); | 
|  | INIT_LIST_HEAD(&a->defer_list); | 
|  | INIT_LIST_HEAD(&a->free_sg_list_head); | 
|  | INIT_LIST_HEAD(&a->avail_request); | 
|  | INIT_LIST_HEAD(&a->vrq_mds_head); | 
|  | INIT_LIST_HEAD(&a->fw_event_list); | 
|  |  | 
|  | first_request = (struct esas2r_request *)((u8 *)(a + 1)); | 
|  |  | 
|  | for (last_request = first_request, i = 1; i < num_requests; | 
|  | last_request++, i++) { | 
|  | INIT_LIST_HEAD(&last_request->req_list); | 
|  | list_add_tail(&last_request->comp_list, &a->avail_request); | 
|  | if (!alloc_vda_req(a, last_request)) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "failed to allocate a VDA request!"); | 
|  | esas2r_kill_adapter(index); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | esas2r_debug("requests: %p to %p (%d, %d)", first_request, | 
|  | last_request, | 
|  | sizeof(*first_request), | 
|  | num_requests); | 
|  |  | 
|  | if (esas2r_map_regions(a) != 0) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, "could not map PCI regions!"); | 
|  | esas2r_kill_adapter(index); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | a->index = index; | 
|  |  | 
|  | /* interrupts will be disabled until we are done with init */ | 
|  | atomic_inc(&a->dis_ints_cnt); | 
|  | atomic_inc(&a->disable_cnt); | 
|  | set_bit(AF_CHPRST_PENDING, &a->flags); | 
|  | set_bit(AF_DISC_PENDING, &a->flags); | 
|  | set_bit(AF_FIRST_INIT, &a->flags); | 
|  | set_bit(AF_LEGACY_SGE_MODE, &a->flags); | 
|  |  | 
|  | a->init_msg = ESAS2R_INIT_MSG_START; | 
|  | a->max_vdareq_size = 128; | 
|  | a->build_sgl = esas2r_build_sg_list_sge; | 
|  |  | 
|  | esas2r_setup_interrupts(a, interrupt_mode); | 
|  |  | 
|  | a->uncached_size = esas2r_get_uncached_size(a); | 
|  | a->uncached = dma_alloc_coherent(&pcid->dev, | 
|  | (size_t)a->uncached_size, | 
|  | (dma_addr_t *)&bus_addr, | 
|  | GFP_KERNEL); | 
|  | if (a->uncached == NULL) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "failed to allocate %d bytes of consistent memory!", | 
|  | a->uncached_size); | 
|  | esas2r_kill_adapter(index); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | a->uncached_phys = bus_addr; | 
|  |  | 
|  | esas2r_debug("%d bytes uncached memory allocated @ %p (%x:%x)", | 
|  | a->uncached_size, | 
|  | a->uncached, | 
|  | upper_32_bits(bus_addr), | 
|  | lower_32_bits(bus_addr)); | 
|  | memset(a->uncached, 0, a->uncached_size); | 
|  | next_uncached = a->uncached; | 
|  |  | 
|  | if (!esas2r_init_adapter_struct(a, | 
|  | &next_uncached)) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "failed to initialize adapter structure (2)!"); | 
|  | esas2r_kill_adapter(index); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | tasklet_init(&a->tasklet, | 
|  | esas2r_adapter_tasklet, | 
|  | (unsigned long)a); | 
|  |  | 
|  | /* | 
|  | * Disable chip interrupts to prevent spurious interrupts | 
|  | * until we claim the IRQ. | 
|  | */ | 
|  | esas2r_disable_chip_interrupts(a); | 
|  | esas2r_check_adapter(a); | 
|  |  | 
|  | if (!esas2r_init_adapter_hw(a, true)) | 
|  | esas2r_log(ESAS2R_LOG_CRIT, "failed to initialize hardware!"); | 
|  | else | 
|  | esas2r_debug("esas2r_init_adapter ok"); | 
|  |  | 
|  | esas2r_claim_interrupts(a); | 
|  |  | 
|  | if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) | 
|  | esas2r_enable_chip_interrupts(a); | 
|  |  | 
|  | set_bit(AF2_INIT_DONE, &a->flags2); | 
|  | if (!test_bit(AF_DEGRADED_MODE, &a->flags)) | 
|  | esas2r_kickoff_timer(a); | 
|  | esas2r_debug("esas2r_init_adapter done for %p (%d)", | 
|  | a, a->disable_cnt); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void esas2r_adapter_power_down(struct esas2r_adapter *a, | 
|  | int power_management) | 
|  | { | 
|  | struct esas2r_mem_desc *memdesc, *next; | 
|  |  | 
|  | if ((test_bit(AF2_INIT_DONE, &a->flags2)) | 
|  | &&  (!test_bit(AF_DEGRADED_MODE, &a->flags))) { | 
|  | if (!power_management) { | 
|  | del_timer_sync(&a->timer); | 
|  | tasklet_kill(&a->tasklet); | 
|  | } | 
|  | esas2r_power_down(a); | 
|  |  | 
|  | /* | 
|  | * There are versions of firmware that do not handle the sync | 
|  | * cache command correctly.  Stall here to ensure that the | 
|  | * cache is lazily flushed. | 
|  | */ | 
|  | mdelay(500); | 
|  | esas2r_debug("chip halted"); | 
|  | } | 
|  |  | 
|  | /* Remove sysfs binary files */ | 
|  | if (a->sysfs_fw_created) { | 
|  | sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_fw); | 
|  | a->sysfs_fw_created = 0; | 
|  | } | 
|  |  | 
|  | if (a->sysfs_fs_created) { | 
|  | sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_fs); | 
|  | a->sysfs_fs_created = 0; | 
|  | } | 
|  |  | 
|  | if (a->sysfs_vda_created) { | 
|  | sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_vda); | 
|  | a->sysfs_vda_created = 0; | 
|  | } | 
|  |  | 
|  | if (a->sysfs_hw_created) { | 
|  | sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_hw); | 
|  | a->sysfs_hw_created = 0; | 
|  | } | 
|  |  | 
|  | if (a->sysfs_live_nvram_created) { | 
|  | sysfs_remove_bin_file(&a->host->shost_dev.kobj, | 
|  | &bin_attr_live_nvram); | 
|  | a->sysfs_live_nvram_created = 0; | 
|  | } | 
|  |  | 
|  | if (a->sysfs_default_nvram_created) { | 
|  | sysfs_remove_bin_file(&a->host->shost_dev.kobj, | 
|  | &bin_attr_default_nvram); | 
|  | a->sysfs_default_nvram_created = 0; | 
|  | } | 
|  |  | 
|  | /* Clean up interrupts */ | 
|  | if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) { | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, | 
|  | &(a->pcid->dev), | 
|  | "free_irq(%d) called", a->pcid->irq); | 
|  |  | 
|  | free_irq(a->pcid->irq, a); | 
|  | esas2r_debug("IRQ released"); | 
|  | clear_bit(AF2_IRQ_CLAIMED, &a->flags2); | 
|  | } | 
|  |  | 
|  | if (test_bit(AF2_MSI_ENABLED, &a->flags2)) { | 
|  | pci_disable_msi(a->pcid); | 
|  | clear_bit(AF2_MSI_ENABLED, &a->flags2); | 
|  | esas2r_debug("MSI disabled"); | 
|  | } | 
|  |  | 
|  | if (a->inbound_list_md.virt_addr) | 
|  | esas2r_initmem_free(a, &a->inbound_list_md); | 
|  |  | 
|  | if (a->outbound_list_md.virt_addr) | 
|  | esas2r_initmem_free(a, &a->outbound_list_md); | 
|  |  | 
|  | list_for_each_entry_safe(memdesc, next, &a->free_sg_list_head, | 
|  | next_desc) { | 
|  | esas2r_initmem_free(a, memdesc); | 
|  | } | 
|  |  | 
|  | /* Following frees everything allocated via alloc_vda_req */ | 
|  | list_for_each_entry_safe(memdesc, next, &a->vrq_mds_head, next_desc) { | 
|  | esas2r_initmem_free(a, memdesc); | 
|  | list_del(&memdesc->next_desc); | 
|  | kfree(memdesc); | 
|  | } | 
|  |  | 
|  | kfree(a->first_ae_req); | 
|  | a->first_ae_req = NULL; | 
|  |  | 
|  | kfree(a->sg_list_mds); | 
|  | a->sg_list_mds = NULL; | 
|  |  | 
|  | kfree(a->req_table); | 
|  | a->req_table = NULL; | 
|  |  | 
|  | if (a->regs) { | 
|  | esas2r_unmap_regions(a); | 
|  | a->regs = NULL; | 
|  | a->data_window = NULL; | 
|  | esas2r_debug("regions unmapped"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Release/free allocated resources for specified adapters. */ | 
|  | void esas2r_kill_adapter(int i) | 
|  | { | 
|  | struct esas2r_adapter *a = esas2r_adapters[i]; | 
|  |  | 
|  | if (a) { | 
|  | unsigned long flags; | 
|  | struct workqueue_struct *wq; | 
|  | esas2r_debug("killing adapter %p [%d] ", a, i); | 
|  | esas2r_fw_event_off(a); | 
|  | esas2r_adapter_power_down(a, 0); | 
|  | if (esas2r_buffered_ioctl && | 
|  | (a->pcid == esas2r_buffered_ioctl_pcid)) { | 
|  | dma_free_coherent(&a->pcid->dev, | 
|  | (size_t)esas2r_buffered_ioctl_size, | 
|  | esas2r_buffered_ioctl, | 
|  | esas2r_buffered_ioctl_addr); | 
|  | esas2r_buffered_ioctl = NULL; | 
|  | } | 
|  |  | 
|  | if (a->vda_buffer) { | 
|  | dma_free_coherent(&a->pcid->dev, | 
|  | (size_t)VDA_MAX_BUFFER_SIZE, | 
|  | a->vda_buffer, | 
|  | (dma_addr_t)a->ppvda_buffer); | 
|  | a->vda_buffer = NULL; | 
|  | } | 
|  | if (a->fs_api_buffer) { | 
|  | dma_free_coherent(&a->pcid->dev, | 
|  | (size_t)a->fs_api_buffer_size, | 
|  | a->fs_api_buffer, | 
|  | (dma_addr_t)a->ppfs_api_buffer); | 
|  | a->fs_api_buffer = NULL; | 
|  | } | 
|  |  | 
|  | kfree(a->local_atto_ioctl); | 
|  | a->local_atto_ioctl = NULL; | 
|  |  | 
|  | spin_lock_irqsave(&a->fw_event_lock, flags); | 
|  | wq = a->fw_event_q; | 
|  | a->fw_event_q = NULL; | 
|  | spin_unlock_irqrestore(&a->fw_event_lock, flags); | 
|  | if (wq) | 
|  | destroy_workqueue(wq); | 
|  |  | 
|  | if (a->uncached) { | 
|  | dma_free_coherent(&a->pcid->dev, | 
|  | (size_t)a->uncached_size, | 
|  | a->uncached, | 
|  | (dma_addr_t)a->uncached_phys); | 
|  | a->uncached = NULL; | 
|  | esas2r_debug("uncached area freed"); | 
|  | } | 
|  |  | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, | 
|  | &(a->pcid->dev), | 
|  | "pci_disable_device() called.  msix_enabled: %d " | 
|  | "msi_enabled: %d irq: %d pin: %d", | 
|  | a->pcid->msix_enabled, | 
|  | a->pcid->msi_enabled, | 
|  | a->pcid->irq, | 
|  | a->pcid->pin); | 
|  |  | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, | 
|  | &(a->pcid->dev), | 
|  | "before pci_disable_device() enable_cnt: %d", | 
|  | a->pcid->enable_cnt.counter); | 
|  |  | 
|  | pci_disable_device(a->pcid); | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, | 
|  | &(a->pcid->dev), | 
|  | "after pci_disable_device() enable_cnt: %d", | 
|  | a->pcid->enable_cnt.counter); | 
|  |  | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, | 
|  | &(a->pcid->dev), | 
|  | "pci_set_drv_data(%p, NULL) called", | 
|  | a->pcid); | 
|  |  | 
|  | pci_set_drvdata(a->pcid, NULL); | 
|  | esas2r_adapters[i] = NULL; | 
|  |  | 
|  | if (test_bit(AF2_INIT_DONE, &a->flags2)) { | 
|  | clear_bit(AF2_INIT_DONE, &a->flags2); | 
|  |  | 
|  | set_bit(AF_DEGRADED_MODE, &a->flags); | 
|  |  | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, | 
|  | &(a->host->shost_gendev), | 
|  | "scsi_remove_host() called"); | 
|  |  | 
|  | scsi_remove_host(a->host); | 
|  |  | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, | 
|  | &(a->host->shost_gendev), | 
|  | "scsi_host_put() called"); | 
|  |  | 
|  | scsi_host_put(a->host); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int esas2r_cleanup(struct Scsi_Host *host) | 
|  | { | 
|  | struct esas2r_adapter *a; | 
|  | int index; | 
|  |  | 
|  | if (host == NULL) { | 
|  | int i; | 
|  |  | 
|  | esas2r_debug("esas2r_cleanup everything"); | 
|  | for (i = 0; i < MAX_ADAPTERS; i++) | 
|  | esas2r_kill_adapter(i); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | esas2r_debug("esas2r_cleanup called for host %p", host); | 
|  | a = (struct esas2r_adapter *)host->hostdata; | 
|  | index = a->index; | 
|  | esas2r_kill_adapter(index); | 
|  | return index; | 
|  | } | 
|  |  | 
|  | int esas2r_suspend(struct pci_dev *pdev, pm_message_t state) | 
|  | { | 
|  | struct Scsi_Host *host = pci_get_drvdata(pdev); | 
|  | u32 device_state; | 
|  | struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata; | 
|  |  | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "suspending adapter()"); | 
|  | if (!a) | 
|  | return -ENODEV; | 
|  |  | 
|  | esas2r_adapter_power_down(a, 1); | 
|  | device_state = pci_choose_state(pdev, state); | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), | 
|  | "pci_save_state() called"); | 
|  | pci_save_state(pdev); | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), | 
|  | "pci_disable_device() called"); | 
|  | pci_disable_device(pdev); | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), | 
|  | "pci_set_power_state() called"); | 
|  | pci_set_power_state(pdev, device_state); | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "esas2r_suspend(): 0"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int esas2r_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct Scsi_Host *host = pci_get_drvdata(pdev); | 
|  | struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata; | 
|  | int rez; | 
|  |  | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "resuming adapter()"); | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), | 
|  | "pci_set_power_state(PCI_D0) " | 
|  | "called"); | 
|  | pci_set_power_state(pdev, PCI_D0); | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), | 
|  | "pci_enable_wake(PCI_D0, 0) " | 
|  | "called"); | 
|  | pci_enable_wake(pdev, PCI_D0, 0); | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), | 
|  | "pci_restore_state() called"); | 
|  | pci_restore_state(pdev); | 
|  | esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), | 
|  | "pci_enable_device() called"); | 
|  | rez = pci_enable_device(pdev); | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | if (!a) { | 
|  | rez = -ENODEV; | 
|  | goto error_exit; | 
|  | } | 
|  |  | 
|  | if (esas2r_map_regions(a) != 0) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, "could not re-map PCI regions!"); | 
|  | rez = -ENOMEM; | 
|  | goto error_exit; | 
|  | } | 
|  |  | 
|  | /* Set up interupt mode */ | 
|  | esas2r_setup_interrupts(a, a->intr_mode); | 
|  |  | 
|  | /* | 
|  | * Disable chip interrupts to prevent spurious interrupts until we | 
|  | * claim the IRQ. | 
|  | */ | 
|  | esas2r_disable_chip_interrupts(a); | 
|  | if (!esas2r_power_up(a, true)) { | 
|  | esas2r_debug("yikes, esas2r_power_up failed"); | 
|  | rez = -ENOMEM; | 
|  | goto error_exit; | 
|  | } | 
|  |  | 
|  | esas2r_claim_interrupts(a); | 
|  |  | 
|  | if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) { | 
|  | /* | 
|  | * Now that system interrupt(s) are claimed, we can enable | 
|  | * chip interrupts. | 
|  | */ | 
|  | esas2r_enable_chip_interrupts(a); | 
|  | esas2r_kickoff_timer(a); | 
|  | } else { | 
|  | esas2r_debug("yikes, unable to claim IRQ"); | 
|  | esas2r_log(ESAS2R_LOG_CRIT, "could not re-claim IRQ!"); | 
|  | rez = -ENOMEM; | 
|  | goto error_exit; | 
|  | } | 
|  |  | 
|  | error_exit: | 
|  | esas2r_log_dev(ESAS2R_LOG_CRIT, &(pdev->dev), "esas2r_resume(): %d", | 
|  | rez); | 
|  | return rez; | 
|  | } | 
|  |  | 
|  | bool esas2r_set_degraded_mode(struct esas2r_adapter *a, char *error_str) | 
|  | { | 
|  | set_bit(AF_DEGRADED_MODE, &a->flags); | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "setting adapter to degraded mode: %s\n", error_str); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | u32 esas2r_get_uncached_size(struct esas2r_adapter *a) | 
|  | { | 
|  | return sizeof(struct esas2r_sas_nvram) | 
|  | + ALIGN(ESAS2R_DISC_BUF_LEN, 8) | 
|  | + ALIGN(sizeof(u32), 8) /* outbound list copy pointer */ | 
|  | + 8 | 
|  | + (num_sg_lists * (u16)sgl_page_size) | 
|  | + ALIGN((num_requests + num_ae_requests + 1 + | 
|  | ESAS2R_LIST_EXTRA) * | 
|  | sizeof(struct esas2r_inbound_list_source_entry), | 
|  | 8) | 
|  | + ALIGN((num_requests + num_ae_requests + 1 + | 
|  | ESAS2R_LIST_EXTRA) * | 
|  | sizeof(struct atto_vda_ob_rsp), 8) | 
|  | + 256; /* VDA request and buffer align */ | 
|  | } | 
|  |  | 
|  | static void esas2r_init_pci_cfg_space(struct esas2r_adapter *a) | 
|  | { | 
|  | int pcie_cap_reg; | 
|  |  | 
|  | pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP); | 
|  | if (pcie_cap_reg) { | 
|  | u16 devcontrol; | 
|  |  | 
|  | pci_read_config_word(a->pcid, pcie_cap_reg + PCI_EXP_DEVCTL, | 
|  | &devcontrol); | 
|  |  | 
|  | if ((devcontrol & PCI_EXP_DEVCTL_READRQ) > 0x2000) { | 
|  | esas2r_log(ESAS2R_LOG_INFO, | 
|  | "max read request size > 512B"); | 
|  |  | 
|  | devcontrol &= ~PCI_EXP_DEVCTL_READRQ; | 
|  | devcontrol |= 0x2000; | 
|  | pci_write_config_word(a->pcid, | 
|  | pcie_cap_reg + PCI_EXP_DEVCTL, | 
|  | devcontrol); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the organization of the uncached data area and | 
|  | * finish initializing the adapter structure | 
|  | */ | 
|  | bool esas2r_init_adapter_struct(struct esas2r_adapter *a, | 
|  | void **uncached_area) | 
|  | { | 
|  | u32 i; | 
|  | u8 *high; | 
|  | struct esas2r_inbound_list_source_entry *element; | 
|  | struct esas2r_request *rq; | 
|  | struct esas2r_mem_desc *sgl; | 
|  |  | 
|  | spin_lock_init(&a->sg_list_lock); | 
|  | spin_lock_init(&a->mem_lock); | 
|  | spin_lock_init(&a->queue_lock); | 
|  |  | 
|  | a->targetdb_end = &a->targetdb[ESAS2R_MAX_TARGETS]; | 
|  |  | 
|  | if (!alloc_vda_req(a, &a->general_req)) { | 
|  | esas2r_hdebug( | 
|  | "failed to allocate a VDA request for the general req!"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* allocate requests for asynchronous events */ | 
|  | a->first_ae_req = | 
|  | kzalloc(num_ae_requests * sizeof(struct esas2r_request), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (a->first_ae_req == NULL) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "failed to allocate memory for asynchronous events"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* allocate the S/G list memory descriptors */ | 
|  | a->sg_list_mds = kzalloc( | 
|  | num_sg_lists * sizeof(struct esas2r_mem_desc), GFP_KERNEL); | 
|  |  | 
|  | if (a->sg_list_mds == NULL) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "failed to allocate memory for s/g list descriptors"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* allocate the request table */ | 
|  | a->req_table = | 
|  | kzalloc((num_requests + num_ae_requests + | 
|  | 1) * sizeof(struct esas2r_request *), GFP_KERNEL); | 
|  |  | 
|  | if (a->req_table == NULL) { | 
|  | esas2r_log(ESAS2R_LOG_CRIT, | 
|  | "failed to allocate memory for the request table"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* initialize PCI configuration space */ | 
|  | esas2r_init_pci_cfg_space(a); | 
|  |  | 
|  | /* | 
|  | * the thunder_stream boards all have a serial flash part that has a | 
|  | * different base address on the AHB bus. | 
|  | */ | 
|  | if ((a->pcid->subsystem_vendor == ATTO_VENDOR_ID) | 
|  | && (a->pcid->subsystem_device & ATTO_SSDID_TBT)) | 
|  | a->flags2 |= AF2_THUNDERBOLT; | 
|  |  | 
|  | if (test_bit(AF2_THUNDERBOLT, &a->flags2)) | 
|  | a->flags2 |= AF2_SERIAL_FLASH; | 
|  |  | 
|  | if (a->pcid->subsystem_device == ATTO_TLSH_1068) | 
|  | a->flags2 |= AF2_THUNDERLINK; | 
|  |  | 
|  | /* Uncached Area */ | 
|  | high = (u8 *)*uncached_area; | 
|  |  | 
|  | /* initialize the scatter/gather table pages */ | 
|  |  | 
|  | for (i = 0, sgl = a->sg_list_mds; i < num_sg_lists; i++, sgl++) { | 
|  | sgl->size = sgl_page_size; | 
|  |  | 
|  | list_add_tail(&sgl->next_desc, &a->free_sg_list_head); | 
|  |  | 
|  | if (!esas2r_initmem_alloc(a, sgl, ESAS2R_SGL_ALIGN)) { | 
|  | /* Allow the driver to load if the minimum count met. */ | 
|  | if (i < NUM_SGL_MIN) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* compute the size of the lists */ | 
|  | a->list_size = num_requests + ESAS2R_LIST_EXTRA; | 
|  |  | 
|  | /* allocate the inbound list */ | 
|  | a->inbound_list_md.size = a->list_size * | 
|  | sizeof(struct | 
|  | esas2r_inbound_list_source_entry); | 
|  |  | 
|  | if (!esas2r_initmem_alloc(a, &a->inbound_list_md, ESAS2R_LIST_ALIGN)) { | 
|  | esas2r_hdebug("failed to allocate IB list"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* allocate the outbound list */ | 
|  | a->outbound_list_md.size = a->list_size * | 
|  | sizeof(struct atto_vda_ob_rsp); | 
|  |  | 
|  | if (!esas2r_initmem_alloc(a, &a->outbound_list_md, | 
|  | ESAS2R_LIST_ALIGN)) { | 
|  | esas2r_hdebug("failed to allocate IB list"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* allocate the NVRAM structure */ | 
|  | a->nvram = (struct esas2r_sas_nvram *)high; | 
|  | high += sizeof(struct esas2r_sas_nvram); | 
|  |  | 
|  | /* allocate the discovery buffer */ | 
|  | a->disc_buffer = high; | 
|  | high += ESAS2R_DISC_BUF_LEN; | 
|  | high = PTR_ALIGN(high, 8); | 
|  |  | 
|  | /* allocate the outbound list copy pointer */ | 
|  | a->outbound_copy = (u32 volatile *)high; | 
|  | high += sizeof(u32); | 
|  |  | 
|  | if (!test_bit(AF_NVR_VALID, &a->flags)) | 
|  | esas2r_nvram_set_defaults(a); | 
|  |  | 
|  | /* update the caller's uncached memory area pointer */ | 
|  | *uncached_area = (void *)high; | 
|  |  | 
|  | /* initialize the allocated memory */ | 
|  | if (test_bit(AF_FIRST_INIT, &a->flags)) { | 
|  | memset(a->req_table, 0, | 
|  | (num_requests + num_ae_requests + | 
|  | 1) * sizeof(struct esas2r_request *)); | 
|  |  | 
|  | esas2r_targ_db_initialize(a); | 
|  |  | 
|  | /* prime parts of the inbound list */ | 
|  | element = | 
|  | (struct esas2r_inbound_list_source_entry *)a-> | 
|  | inbound_list_md. | 
|  | virt_addr; | 
|  |  | 
|  | for (i = 0; i < a->list_size; i++) { | 
|  | element->address = 0; | 
|  | element->reserved = 0; | 
|  | element->length = cpu_to_le32(HWILSE_INTERFACE_F0 | 
|  | | (sizeof(union | 
|  | atto_vda_req) | 
|  | / | 
|  | sizeof(u32))); | 
|  | element++; | 
|  | } | 
|  |  | 
|  | /* init the AE requests */ | 
|  | for (rq = a->first_ae_req, i = 0; i < num_ae_requests; rq++, | 
|  | i++) { | 
|  | INIT_LIST_HEAD(&rq->req_list); | 
|  | if (!alloc_vda_req(a, rq)) { | 
|  | esas2r_hdebug( | 
|  | "failed to allocate a VDA request!"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | esas2r_rq_init_request(rq, a); | 
|  |  | 
|  | /* override the completion function */ | 
|  | rq->comp_cb = esas2r_ae_complete; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* This code will verify that the chip is operational. */ | 
|  | bool esas2r_check_adapter(struct esas2r_adapter *a) | 
|  | { | 
|  | u32 starttime; | 
|  | u32 doorbell; | 
|  | u64 ppaddr; | 
|  | u32 dw; | 
|  |  | 
|  | /* | 
|  | * if the chip reset detected flag is set, we can bypass a bunch of | 
|  | * stuff. | 
|  | */ | 
|  | if (test_bit(AF_CHPRST_DETECTED, &a->flags)) | 
|  | goto skip_chip_reset; | 
|  |  | 
|  | /* | 
|  | * BEFORE WE DO ANYTHING, disable the chip interrupts!  the boot driver | 
|  | * may have left them enabled or we may be recovering from a fault. | 
|  | */ | 
|  | esas2r_write_register_dword(a, MU_INT_MASK_OUT, ESAS2R_INT_DIS_MASK); | 
|  | esas2r_flush_register_dword(a, MU_INT_MASK_OUT); | 
|  |  | 
|  | /* | 
|  | * wait for the firmware to become ready by forcing an interrupt and | 
|  | * waiting for a response. | 
|  | */ | 
|  | starttime = jiffies_to_msecs(jiffies); | 
|  |  | 
|  | while (true) { | 
|  | esas2r_force_interrupt(a); | 
|  | doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); | 
|  | if (doorbell == 0xFFFFFFFF) { | 
|  | /* | 
|  | * Give the firmware up to two seconds to enable | 
|  | * register access after a reset. | 
|  | */ | 
|  | if ((jiffies_to_msecs(jiffies) - starttime) > 2000) | 
|  | return esas2r_set_degraded_mode(a, | 
|  | "unable to access registers"); | 
|  | } else if (doorbell & DRBL_FORCE_INT) { | 
|  | u32 ver = (doorbell & DRBL_FW_VER_MSK); | 
|  |  | 
|  | /* | 
|  | * This driver supports version 0 and version 1 of | 
|  | * the API | 
|  | */ | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_OUT, | 
|  | doorbell); | 
|  |  | 
|  | if (ver == DRBL_FW_VER_0) { | 
|  | set_bit(AF_LEGACY_SGE_MODE, &a->flags); | 
|  |  | 
|  | a->max_vdareq_size = 128; | 
|  | a->build_sgl = esas2r_build_sg_list_sge; | 
|  | } else if (ver == DRBL_FW_VER_1) { | 
|  | clear_bit(AF_LEGACY_SGE_MODE, &a->flags); | 
|  |  | 
|  | a->max_vdareq_size = 1024; | 
|  | a->build_sgl = esas2r_build_sg_list_prd; | 
|  | } else { | 
|  | return esas2r_set_degraded_mode(a, | 
|  | "unknown firmware version"); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | schedule_timeout_interruptible(msecs_to_jiffies(100)); | 
|  |  | 
|  | if ((jiffies_to_msecs(jiffies) - starttime) > 180000) { | 
|  | esas2r_hdebug("FW ready TMO"); | 
|  | esas2r_bugon(); | 
|  |  | 
|  | return esas2r_set_degraded_mode(a, | 
|  | "firmware start has timed out"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* purge any asynchronous events since we will repost them later */ | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_DOWN); | 
|  | starttime = jiffies_to_msecs(jiffies); | 
|  |  | 
|  | while (true) { | 
|  | doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); | 
|  | if (doorbell & DRBL_MSG_IFC_DOWN) { | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_OUT, | 
|  | doorbell); | 
|  | break; | 
|  | } | 
|  |  | 
|  | schedule_timeout_interruptible(msecs_to_jiffies(50)); | 
|  |  | 
|  | if ((jiffies_to_msecs(jiffies) - starttime) > 3000) { | 
|  | esas2r_hdebug("timeout waiting for interface down"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | skip_chip_reset: | 
|  | /* | 
|  | * first things first, before we go changing any of these registers | 
|  | * disable the communication lists. | 
|  | */ | 
|  | dw = esas2r_read_register_dword(a, MU_IN_LIST_CONFIG); | 
|  | dw &= ~MU_ILC_ENABLE; | 
|  | esas2r_write_register_dword(a, MU_IN_LIST_CONFIG, dw); | 
|  | dw = esas2r_read_register_dword(a, MU_OUT_LIST_CONFIG); | 
|  | dw &= ~MU_OLC_ENABLE; | 
|  | esas2r_write_register_dword(a, MU_OUT_LIST_CONFIG, dw); | 
|  |  | 
|  | /* configure the communication list addresses */ | 
|  | ppaddr = a->inbound_list_md.phys_addr; | 
|  | esas2r_write_register_dword(a, MU_IN_LIST_ADDR_LO, | 
|  | lower_32_bits(ppaddr)); | 
|  | esas2r_write_register_dword(a, MU_IN_LIST_ADDR_HI, | 
|  | upper_32_bits(ppaddr)); | 
|  | ppaddr = a->outbound_list_md.phys_addr; | 
|  | esas2r_write_register_dword(a, MU_OUT_LIST_ADDR_LO, | 
|  | lower_32_bits(ppaddr)); | 
|  | esas2r_write_register_dword(a, MU_OUT_LIST_ADDR_HI, | 
|  | upper_32_bits(ppaddr)); | 
|  | ppaddr = a->uncached_phys + | 
|  | ((u8 *)a->outbound_copy - a->uncached); | 
|  | esas2r_write_register_dword(a, MU_OUT_LIST_COPY_PTR_LO, | 
|  | lower_32_bits(ppaddr)); | 
|  | esas2r_write_register_dword(a, MU_OUT_LIST_COPY_PTR_HI, | 
|  | upper_32_bits(ppaddr)); | 
|  |  | 
|  | /* reset the read and write pointers */ | 
|  | *a->outbound_copy = | 
|  | a->last_write = | 
|  | a->last_read = a->list_size - 1; | 
|  | set_bit(AF_COMM_LIST_TOGGLE, &a->flags); | 
|  | esas2r_write_register_dword(a, MU_IN_LIST_WRITE, MU_ILW_TOGGLE | | 
|  | a->last_write); | 
|  | esas2r_write_register_dword(a, MU_OUT_LIST_COPY, MU_OLC_TOGGLE | | 
|  | a->last_write); | 
|  | esas2r_write_register_dword(a, MU_IN_LIST_READ, MU_ILR_TOGGLE | | 
|  | a->last_write); | 
|  | esas2r_write_register_dword(a, MU_OUT_LIST_WRITE, | 
|  | MU_OLW_TOGGLE | a->last_write); | 
|  |  | 
|  | /* configure the interface select fields */ | 
|  | dw = esas2r_read_register_dword(a, MU_IN_LIST_IFC_CONFIG); | 
|  | dw &= ~(MU_ILIC_LIST | MU_ILIC_DEST); | 
|  | esas2r_write_register_dword(a, MU_IN_LIST_IFC_CONFIG, | 
|  | (dw | MU_ILIC_LIST_F0 | MU_ILIC_DEST_DDR)); | 
|  | dw = esas2r_read_register_dword(a, MU_OUT_LIST_IFC_CONFIG); | 
|  | dw &= ~(MU_OLIC_LIST | MU_OLIC_SOURCE); | 
|  | esas2r_write_register_dword(a, MU_OUT_LIST_IFC_CONFIG, | 
|  | (dw | MU_OLIC_LIST_F0 | | 
|  | MU_OLIC_SOURCE_DDR)); | 
|  |  | 
|  | /* finish configuring the communication lists */ | 
|  | dw = esas2r_read_register_dword(a, MU_IN_LIST_CONFIG); | 
|  | dw &= ~(MU_ILC_ENTRY_MASK | MU_ILC_NUMBER_MASK); | 
|  | dw |= MU_ILC_ENTRY_4_DW | MU_ILC_DYNAMIC_SRC | 
|  | | (a->list_size << MU_ILC_NUMBER_SHIFT); | 
|  | esas2r_write_register_dword(a, MU_IN_LIST_CONFIG, dw); | 
|  | dw = esas2r_read_register_dword(a, MU_OUT_LIST_CONFIG); | 
|  | dw &= ~(MU_OLC_ENTRY_MASK | MU_OLC_NUMBER_MASK); | 
|  | dw |= MU_OLC_ENTRY_4_DW | (a->list_size << MU_OLC_NUMBER_SHIFT); | 
|  | esas2r_write_register_dword(a, MU_OUT_LIST_CONFIG, dw); | 
|  |  | 
|  | /* | 
|  | * notify the firmware that we're done setting up the communication | 
|  | * list registers.  wait here until the firmware is done configuring | 
|  | * its lists.  it will signal that it is done by enabling the lists. | 
|  | */ | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_INIT); | 
|  | starttime = jiffies_to_msecs(jiffies); | 
|  |  | 
|  | while (true) { | 
|  | doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); | 
|  | if (doorbell & DRBL_MSG_IFC_INIT) { | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_OUT, | 
|  | doorbell); | 
|  | break; | 
|  | } | 
|  |  | 
|  | schedule_timeout_interruptible(msecs_to_jiffies(100)); | 
|  |  | 
|  | if ((jiffies_to_msecs(jiffies) - starttime) > 3000) { | 
|  | esas2r_hdebug( | 
|  | "timeout waiting for communication list init"); | 
|  | esas2r_bugon(); | 
|  | return esas2r_set_degraded_mode(a, | 
|  | "timeout waiting for communication list init"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * flag whether the firmware supports the power down doorbell.  we | 
|  | * determine this by reading the inbound doorbell enable mask. | 
|  | */ | 
|  | doorbell = esas2r_read_register_dword(a, MU_DOORBELL_IN_ENB); | 
|  | if (doorbell & DRBL_POWER_DOWN) | 
|  | set_bit(AF2_VDA_POWER_DOWN, &a->flags2); | 
|  | else | 
|  | clear_bit(AF2_VDA_POWER_DOWN, &a->flags2); | 
|  |  | 
|  | /* | 
|  | * enable assertion of outbound queue and doorbell interrupts in the | 
|  | * main interrupt cause register. | 
|  | */ | 
|  | esas2r_write_register_dword(a, MU_OUT_LIST_INT_MASK, MU_OLIS_MASK); | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_OUT_ENB, DRBL_ENB_MASK); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Process the initialization message just completed and format the next one. */ | 
|  | static bool esas2r_format_init_msg(struct esas2r_adapter *a, | 
|  | struct esas2r_request *rq) | 
|  | { | 
|  | u32 msg = a->init_msg; | 
|  | struct atto_vda_cfg_init *ci; | 
|  |  | 
|  | a->init_msg = 0; | 
|  |  | 
|  | switch (msg) { | 
|  | case ESAS2R_INIT_MSG_START: | 
|  | case ESAS2R_INIT_MSG_REINIT: | 
|  | { | 
|  | struct timeval now; | 
|  | do_gettimeofday(&now); | 
|  | esas2r_hdebug("CFG init"); | 
|  | esas2r_build_cfg_req(a, | 
|  | rq, | 
|  | VDA_CFG_INIT, | 
|  | 0, | 
|  | NULL); | 
|  | ci = (struct atto_vda_cfg_init *)&rq->vrq->cfg.data.init; | 
|  | ci->sgl_page_size = cpu_to_le32(sgl_page_size); | 
|  | ci->epoch_time = cpu_to_le32(now.tv_sec); | 
|  | rq->flags |= RF_FAILURE_OK; | 
|  | a->init_msg = ESAS2R_INIT_MSG_INIT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ESAS2R_INIT_MSG_INIT: | 
|  | if (rq->req_stat == RS_SUCCESS) { | 
|  | u32 major; | 
|  | u32 minor; | 
|  | u16 fw_release; | 
|  |  | 
|  | a->fw_version = le16_to_cpu( | 
|  | rq->func_rsp.cfg_rsp.vda_version); | 
|  | a->fw_build = rq->func_rsp.cfg_rsp.fw_build; | 
|  | fw_release = le16_to_cpu( | 
|  | rq->func_rsp.cfg_rsp.fw_release); | 
|  | major = LOBYTE(fw_release); | 
|  | minor = HIBYTE(fw_release); | 
|  | a->fw_version += (major << 16) + (minor << 24); | 
|  | } else { | 
|  | esas2r_hdebug("FAILED"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the 2.71 and earlier releases of R6xx firmware did not error | 
|  | * unsupported config requests correctly. | 
|  | */ | 
|  |  | 
|  | if ((test_bit(AF2_THUNDERBOLT, &a->flags2)) | 
|  | || (be32_to_cpu(a->fw_version) > 0x00524702)) { | 
|  | esas2r_hdebug("CFG get init"); | 
|  | esas2r_build_cfg_req(a, | 
|  | rq, | 
|  | VDA_CFG_GET_INIT2, | 
|  | sizeof(struct atto_vda_cfg_init), | 
|  | NULL); | 
|  |  | 
|  | rq->vrq->cfg.sg_list_offset = offsetof( | 
|  | struct atto_vda_cfg_req, | 
|  | data.sge); | 
|  | rq->vrq->cfg.data.prde.ctl_len = | 
|  | cpu_to_le32(sizeof(struct atto_vda_cfg_init)); | 
|  | rq->vrq->cfg.data.prde.address = cpu_to_le64( | 
|  | rq->vrq_md->phys_addr + | 
|  | sizeof(union atto_vda_req)); | 
|  | rq->flags |= RF_FAILURE_OK; | 
|  | a->init_msg = ESAS2R_INIT_MSG_GET_INIT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ESAS2R_INIT_MSG_GET_INIT: | 
|  | if (msg == ESAS2R_INIT_MSG_GET_INIT) { | 
|  | ci = (struct atto_vda_cfg_init *)rq->data_buf; | 
|  | if (rq->req_stat == RS_SUCCESS) { | 
|  | a->num_targets_backend = | 
|  | le32_to_cpu(ci->num_targets_backend); | 
|  | a->ioctl_tunnel = | 
|  | le32_to_cpu(ci->ioctl_tunnel); | 
|  | } else { | 
|  | esas2r_hdebug("FAILED"); | 
|  | } | 
|  | } | 
|  | /* fall through */ | 
|  |  | 
|  | default: | 
|  | rq->req_stat = RS_SUCCESS; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform initialization messages via the request queue.  Messages are | 
|  | * performed with interrupts disabled. | 
|  | */ | 
|  | bool esas2r_init_msgs(struct esas2r_adapter *a) | 
|  | { | 
|  | bool success = true; | 
|  | struct esas2r_request *rq = &a->general_req; | 
|  |  | 
|  | esas2r_rq_init_request(rq, a); | 
|  | rq->comp_cb = esas2r_dummy_complete; | 
|  |  | 
|  | if (a->init_msg == 0) | 
|  | a->init_msg = ESAS2R_INIT_MSG_REINIT; | 
|  |  | 
|  | while (a->init_msg) { | 
|  | if (esas2r_format_init_msg(a, rq)) { | 
|  | unsigned long flags; | 
|  | while (true) { | 
|  | spin_lock_irqsave(&a->queue_lock, flags); | 
|  | esas2r_start_vda_request(a, rq); | 
|  | spin_unlock_irqrestore(&a->queue_lock, flags); | 
|  | esas2r_wait_request(a, rq); | 
|  | if (rq->req_stat != RS_PENDING) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rq->req_stat == RS_SUCCESS | 
|  | || ((rq->flags & RF_FAILURE_OK) | 
|  | && rq->req_stat != RS_TIMEOUT)) | 
|  | continue; | 
|  |  | 
|  | esas2r_log(ESAS2R_LOG_CRIT, "init message %x failed (%x, %x)", | 
|  | a->init_msg, rq->req_stat, rq->flags); | 
|  | a->init_msg = ESAS2R_INIT_MSG_START; | 
|  | success = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | esas2r_rq_destroy_request(rq, a); | 
|  | return success; | 
|  | } | 
|  |  | 
|  | /* Initialize the adapter chip */ | 
|  | bool esas2r_init_adapter_hw(struct esas2r_adapter *a, bool init_poll) | 
|  | { | 
|  | bool rslt = false; | 
|  | struct esas2r_request *rq; | 
|  | u32 i; | 
|  |  | 
|  | if (test_bit(AF_DEGRADED_MODE, &a->flags)) | 
|  | goto exit; | 
|  |  | 
|  | if (!test_bit(AF_NVR_VALID, &a->flags)) { | 
|  | if (!esas2r_nvram_read_direct(a)) | 
|  | esas2r_log(ESAS2R_LOG_WARN, | 
|  | "invalid/missing NVRAM parameters"); | 
|  | } | 
|  |  | 
|  | if (!esas2r_init_msgs(a)) { | 
|  | esas2r_set_degraded_mode(a, "init messages failed"); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* The firmware is ready. */ | 
|  | clear_bit(AF_DEGRADED_MODE, &a->flags); | 
|  | clear_bit(AF_CHPRST_PENDING, &a->flags); | 
|  |  | 
|  | /* Post all the async event requests */ | 
|  | for (i = 0, rq = a->first_ae_req; i < num_ae_requests; i++, rq++) | 
|  | esas2r_start_ae_request(a, rq); | 
|  |  | 
|  | if (!a->flash_rev[0]) | 
|  | esas2r_read_flash_rev(a); | 
|  |  | 
|  | if (!a->image_type[0]) | 
|  | esas2r_read_image_type(a); | 
|  |  | 
|  | if (a->fw_version == 0) | 
|  | a->fw_rev[0] = 0; | 
|  | else | 
|  | sprintf(a->fw_rev, "%1d.%02d", | 
|  | (int)LOBYTE(HIWORD(a->fw_version)), | 
|  | (int)HIBYTE(HIWORD(a->fw_version))); | 
|  |  | 
|  | esas2r_hdebug("firmware revision: %s", a->fw_rev); | 
|  |  | 
|  | if (test_bit(AF_CHPRST_DETECTED, &a->flags) | 
|  | && (test_bit(AF_FIRST_INIT, &a->flags))) { | 
|  | esas2r_enable_chip_interrupts(a); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* initialize discovery */ | 
|  | esas2r_disc_initialize(a); | 
|  |  | 
|  | /* | 
|  | * wait for the device wait time to expire here if requested.  this is | 
|  | * usually requested during initial driver load and possibly when | 
|  | * resuming from a low power state.  deferred device waiting will use | 
|  | * interrupts.  chip reset recovery always defers device waiting to | 
|  | * avoid being in a TASKLET too long. | 
|  | */ | 
|  | if (init_poll) { | 
|  | u32 currtime = a->disc_start_time; | 
|  | u32 nexttick = 100; | 
|  | u32 deltatime; | 
|  |  | 
|  | /* | 
|  | * Block Tasklets from getting scheduled and indicate this is | 
|  | * polled discovery. | 
|  | */ | 
|  | set_bit(AF_TASKLET_SCHEDULED, &a->flags); | 
|  | set_bit(AF_DISC_POLLED, &a->flags); | 
|  |  | 
|  | /* | 
|  | * Temporarily bring the disable count to zero to enable | 
|  | * deferred processing.  Note that the count is already zero | 
|  | * after the first initialization. | 
|  | */ | 
|  | if (test_bit(AF_FIRST_INIT, &a->flags)) | 
|  | atomic_dec(&a->disable_cnt); | 
|  |  | 
|  | while (test_bit(AF_DISC_PENDING, &a->flags)) { | 
|  | schedule_timeout_interruptible(msecs_to_jiffies(100)); | 
|  |  | 
|  | /* | 
|  | * Determine the need for a timer tick based on the | 
|  | * delta time between this and the last iteration of | 
|  | * this loop.  We don't use the absolute time because | 
|  | * then we would have to worry about when nexttick | 
|  | * wraps and currtime hasn't yet. | 
|  | */ | 
|  | deltatime = jiffies_to_msecs(jiffies) - currtime; | 
|  | currtime += deltatime; | 
|  |  | 
|  | /* | 
|  | * Process any waiting discovery as long as the chip is | 
|  | * up.  If a chip reset happens during initial polling, | 
|  | * we have to make sure the timer tick processes the | 
|  | * doorbell indicating the firmware is ready. | 
|  | */ | 
|  | if (!test_bit(AF_CHPRST_PENDING, &a->flags)) | 
|  | esas2r_disc_check_for_work(a); | 
|  |  | 
|  | /* Simulate a timer tick. */ | 
|  | if (nexttick <= deltatime) { | 
|  |  | 
|  | /* Time for a timer tick */ | 
|  | nexttick += 100; | 
|  | esas2r_timer_tick(a); | 
|  | } | 
|  |  | 
|  | if (nexttick > deltatime) | 
|  | nexttick -= deltatime; | 
|  |  | 
|  | /* Do any deferred processing */ | 
|  | if (esas2r_is_tasklet_pending(a)) | 
|  | esas2r_do_tasklet_tasks(a); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (test_bit(AF_FIRST_INIT, &a->flags)) | 
|  | atomic_inc(&a->disable_cnt); | 
|  |  | 
|  | clear_bit(AF_DISC_POLLED, &a->flags); | 
|  | clear_bit(AF_TASKLET_SCHEDULED, &a->flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | esas2r_targ_db_report_changes(a); | 
|  |  | 
|  | /* | 
|  | * For cases where (a) the initialization messages processing may | 
|  | * handle an interrupt for a port event and a discovery is waiting, but | 
|  | * we are not waiting for devices, or (b) the device wait time has been | 
|  | * exhausted but there is still discovery pending, start any leftover | 
|  | * discovery in interrupt driven mode. | 
|  | */ | 
|  | esas2r_disc_start_waiting(a); | 
|  |  | 
|  | /* Enable chip interrupts */ | 
|  | a->int_mask = ESAS2R_INT_STS_MASK; | 
|  | esas2r_enable_chip_interrupts(a); | 
|  | esas2r_enable_heartbeat(a); | 
|  | rslt = true; | 
|  |  | 
|  | exit: | 
|  | /* | 
|  | * Regardless of whether initialization was successful, certain things | 
|  | * need to get done before we exit. | 
|  | */ | 
|  |  | 
|  | if (test_bit(AF_CHPRST_DETECTED, &a->flags) && | 
|  | test_bit(AF_FIRST_INIT, &a->flags)) { | 
|  | /* | 
|  | * Reinitialization was performed during the first | 
|  | * initialization.  Only clear the chip reset flag so the | 
|  | * original device polling is not cancelled. | 
|  | */ | 
|  | if (!rslt) | 
|  | clear_bit(AF_CHPRST_PENDING, &a->flags); | 
|  | } else { | 
|  | /* First initialization or a subsequent re-init is complete. */ | 
|  | if (!rslt) { | 
|  | clear_bit(AF_CHPRST_PENDING, &a->flags); | 
|  | clear_bit(AF_DISC_PENDING, &a->flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Enable deferred processing after the first initialization. */ | 
|  | if (test_bit(AF_FIRST_INIT, &a->flags)) { | 
|  | clear_bit(AF_FIRST_INIT, &a->flags); | 
|  |  | 
|  | if (atomic_dec_return(&a->disable_cnt) == 0) | 
|  | esas2r_do_deferred_processes(a); | 
|  | } | 
|  | } | 
|  |  | 
|  | return rslt; | 
|  | } | 
|  |  | 
|  | void esas2r_reset_adapter(struct esas2r_adapter *a) | 
|  | { | 
|  | set_bit(AF_OS_RESET, &a->flags); | 
|  | esas2r_local_reset_adapter(a); | 
|  | esas2r_schedule_tasklet(a); | 
|  | } | 
|  |  | 
|  | void esas2r_reset_chip(struct esas2r_adapter *a) | 
|  | { | 
|  | if (!esas2r_is_adapter_present(a)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Before we reset the chip, save off the VDA core dump.  The VDA core | 
|  | * dump is located in the upper 512KB of the onchip SRAM.  Make sure | 
|  | * to not overwrite a previous crash that was saved. | 
|  | */ | 
|  | if (test_bit(AF2_COREDUMP_AVAIL, &a->flags2) && | 
|  | !test_bit(AF2_COREDUMP_SAVED, &a->flags2)) { | 
|  | esas2r_read_mem_block(a, | 
|  | a->fw_coredump_buff, | 
|  | MW_DATA_ADDR_SRAM + 0x80000, | 
|  | ESAS2R_FWCOREDUMP_SZ); | 
|  |  | 
|  | set_bit(AF2_COREDUMP_SAVED, &a->flags2); | 
|  | } | 
|  |  | 
|  | clear_bit(AF2_COREDUMP_AVAIL, &a->flags2); | 
|  |  | 
|  | /* Reset the chip */ | 
|  | if (a->pcid->revision == MVR_FREY_B2) | 
|  | esas2r_write_register_dword(a, MU_CTL_STATUS_IN_B2, | 
|  | MU_CTL_IN_FULL_RST2); | 
|  | else | 
|  | esas2r_write_register_dword(a, MU_CTL_STATUS_IN, | 
|  | MU_CTL_IN_FULL_RST); | 
|  |  | 
|  |  | 
|  | /* Stall a little while to let the reset condition clear */ | 
|  | mdelay(10); | 
|  | } | 
|  |  | 
|  | static void esas2r_power_down_notify_firmware(struct esas2r_adapter *a) | 
|  | { | 
|  | u32 starttime; | 
|  | u32 doorbell; | 
|  |  | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_POWER_DOWN); | 
|  | starttime = jiffies_to_msecs(jiffies); | 
|  |  | 
|  | while (true) { | 
|  | doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); | 
|  | if (doorbell & DRBL_POWER_DOWN) { | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_OUT, | 
|  | doorbell); | 
|  | break; | 
|  | } | 
|  |  | 
|  | schedule_timeout_interruptible(msecs_to_jiffies(100)); | 
|  |  | 
|  | if ((jiffies_to_msecs(jiffies) - starttime) > 30000) { | 
|  | esas2r_hdebug("Timeout waiting for power down"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform power management processing including managing device states, adapter | 
|  | * states, interrupts, and I/O. | 
|  | */ | 
|  | void esas2r_power_down(struct esas2r_adapter *a) | 
|  | { | 
|  | set_bit(AF_POWER_MGT, &a->flags); | 
|  | set_bit(AF_POWER_DOWN, &a->flags); | 
|  |  | 
|  | if (!test_bit(AF_DEGRADED_MODE, &a->flags)) { | 
|  | u32 starttime; | 
|  | u32 doorbell; | 
|  |  | 
|  | /* | 
|  | * We are currently running OK and will be reinitializing later. | 
|  | * increment the disable count to coordinate with | 
|  | * esas2r_init_adapter.  We don't have to do this in degraded | 
|  | * mode since we never enabled interrupts in the first place. | 
|  | */ | 
|  | esas2r_disable_chip_interrupts(a); | 
|  | esas2r_disable_heartbeat(a); | 
|  |  | 
|  | /* wait for any VDA activity to clear before continuing */ | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_IN, | 
|  | DRBL_MSG_IFC_DOWN); | 
|  | starttime = jiffies_to_msecs(jiffies); | 
|  |  | 
|  | while (true) { | 
|  | doorbell = | 
|  | esas2r_read_register_dword(a, MU_DOORBELL_OUT); | 
|  | if (doorbell & DRBL_MSG_IFC_DOWN) { | 
|  | esas2r_write_register_dword(a, MU_DOORBELL_OUT, | 
|  | doorbell); | 
|  | break; | 
|  | } | 
|  |  | 
|  | schedule_timeout_interruptible(msecs_to_jiffies(100)); | 
|  |  | 
|  | if ((jiffies_to_msecs(jiffies) - starttime) > 3000) { | 
|  | esas2r_hdebug( | 
|  | "timeout waiting for interface down"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For versions of firmware that support it tell them the driver | 
|  | * is powering down. | 
|  | */ | 
|  | if (test_bit(AF2_VDA_POWER_DOWN, &a->flags2)) | 
|  | esas2r_power_down_notify_firmware(a); | 
|  | } | 
|  |  | 
|  | /* Suspend I/O processing. */ | 
|  | set_bit(AF_OS_RESET, &a->flags); | 
|  | set_bit(AF_DISC_PENDING, &a->flags); | 
|  | set_bit(AF_CHPRST_PENDING, &a->flags); | 
|  |  | 
|  | esas2r_process_adapter_reset(a); | 
|  |  | 
|  | /* Remove devices now that I/O is cleaned up. */ | 
|  | a->prev_dev_cnt = esas2r_targ_db_get_tgt_cnt(a); | 
|  | esas2r_targ_db_remove_all(a, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform power management processing including managing device states, adapter | 
|  | * states, interrupts, and I/O. | 
|  | */ | 
|  | bool esas2r_power_up(struct esas2r_adapter *a, bool init_poll) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | clear_bit(AF_POWER_DOWN, &a->flags); | 
|  | esas2r_init_pci_cfg_space(a); | 
|  | set_bit(AF_FIRST_INIT, &a->flags); | 
|  | atomic_inc(&a->disable_cnt); | 
|  |  | 
|  | /* reinitialize the adapter */ | 
|  | ret = esas2r_check_adapter(a); | 
|  | if (!esas2r_init_adapter_hw(a, init_poll)) | 
|  | ret = false; | 
|  |  | 
|  | /* send the reset asynchronous event */ | 
|  | esas2r_send_reset_ae(a, true); | 
|  |  | 
|  | /* clear this flag after initialization. */ | 
|  | clear_bit(AF_POWER_MGT, &a->flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool esas2r_is_adapter_present(struct esas2r_adapter *a) | 
|  | { | 
|  | if (test_bit(AF_NOT_PRESENT, &a->flags)) | 
|  | return false; | 
|  |  | 
|  | if (esas2r_read_register_dword(a, MU_DOORBELL_OUT) == 0xFFFFFFFF) { | 
|  | set_bit(AF_NOT_PRESENT, &a->flags); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const char *esas2r_get_model_name(struct esas2r_adapter *a) | 
|  | { | 
|  | switch (a->pcid->subsystem_device) { | 
|  | case ATTO_ESAS_R680: | 
|  | return "ATTO ExpressSAS R680"; | 
|  |  | 
|  | case ATTO_ESAS_R608: | 
|  | return "ATTO ExpressSAS R608"; | 
|  |  | 
|  | case ATTO_ESAS_R60F: | 
|  | return "ATTO ExpressSAS R60F"; | 
|  |  | 
|  | case ATTO_ESAS_R6F0: | 
|  | return "ATTO ExpressSAS R6F0"; | 
|  |  | 
|  | case ATTO_ESAS_R644: | 
|  | return "ATTO ExpressSAS R644"; | 
|  |  | 
|  | case ATTO_ESAS_R648: | 
|  | return "ATTO ExpressSAS R648"; | 
|  |  | 
|  | case ATTO_TSSC_3808: | 
|  | return "ATTO ThunderStream SC 3808D"; | 
|  |  | 
|  | case ATTO_TSSC_3808E: | 
|  | return "ATTO ThunderStream SC 3808E"; | 
|  |  | 
|  | case ATTO_TLSH_1068: | 
|  | return "ATTO ThunderLink SH 1068"; | 
|  | } | 
|  |  | 
|  | return "ATTO SAS Controller"; | 
|  | } | 
|  |  | 
|  | const char *esas2r_get_model_name_short(struct esas2r_adapter *a) | 
|  | { | 
|  | switch (a->pcid->subsystem_device) { | 
|  | case ATTO_ESAS_R680: | 
|  | return "R680"; | 
|  |  | 
|  | case ATTO_ESAS_R608: | 
|  | return "R608"; | 
|  |  | 
|  | case ATTO_ESAS_R60F: | 
|  | return "R60F"; | 
|  |  | 
|  | case ATTO_ESAS_R6F0: | 
|  | return "R6F0"; | 
|  |  | 
|  | case ATTO_ESAS_R644: | 
|  | return "R644"; | 
|  |  | 
|  | case ATTO_ESAS_R648: | 
|  | return "R648"; | 
|  |  | 
|  | case ATTO_TSSC_3808: | 
|  | return "SC 3808D"; | 
|  |  | 
|  | case ATTO_TSSC_3808E: | 
|  | return "SC 3808E"; | 
|  |  | 
|  | case ATTO_TLSH_1068: | 
|  | return "SH 1068"; | 
|  | } | 
|  |  | 
|  | return "unknown"; | 
|  | } |