|  | /* | 
|  | * Helper functions used by the EFI stub on multiple | 
|  | * architectures. This should be #included by the EFI stub | 
|  | * implementation files. | 
|  | * | 
|  | * Copyright 2011 Intel Corporation; author Matt Fleming | 
|  | * | 
|  | * This file is part of the Linux kernel, and is made available | 
|  | * under the terms of the GNU General Public License version 2. | 
|  | * | 
|  | */ | 
|  | #define EFI_READ_CHUNK_SIZE	(1024 * 1024) | 
|  |  | 
|  | /* error code which can't be mistaken for valid address */ | 
|  | #define EFI_ERROR	(~0UL) | 
|  |  | 
|  |  | 
|  | #define EFI_MMAP_NR_SLACK_SLOTS	8 | 
|  |  | 
|  | struct file_info { | 
|  | efi_file_handle_t *handle; | 
|  | u64 size; | 
|  | }; | 
|  |  | 
|  | static void efi_printk(efi_system_table_t *sys_table_arg, char *str) | 
|  | { | 
|  | char *s8; | 
|  |  | 
|  | for (s8 = str; *s8; s8++) { | 
|  | efi_char16_t ch[2] = { 0 }; | 
|  |  | 
|  | ch[0] = *s8; | 
|  | if (*s8 == '\n') { | 
|  | efi_char16_t nl[2] = { '\r', 0 }; | 
|  | efi_char16_printk(sys_table_arg, nl); | 
|  | } | 
|  |  | 
|  | efi_char16_printk(sys_table_arg, ch); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define pr_efi(sys_table, msg)     efi_printk(sys_table, "EFI stub: "msg) | 
|  | #define pr_efi_err(sys_table, msg) efi_printk(sys_table, "EFI stub: ERROR: "msg) | 
|  |  | 
|  |  | 
|  | static inline bool mmap_has_headroom(unsigned long buff_size, | 
|  | unsigned long map_size, | 
|  | unsigned long desc_size) | 
|  | { | 
|  | unsigned long slack = buff_size - map_size; | 
|  |  | 
|  | return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS; | 
|  | } | 
|  |  | 
|  | static efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg, | 
|  | struct efi_boot_memmap *map) | 
|  | { | 
|  | efi_memory_desc_t *m = NULL; | 
|  | efi_status_t status; | 
|  | unsigned long key; | 
|  | u32 desc_version; | 
|  |  | 
|  | *map->desc_size =	sizeof(*m); | 
|  | *map->map_size =	*map->desc_size * 32; | 
|  | *map->buff_size =	*map->map_size; | 
|  | again: | 
|  | status = efi_call_early(allocate_pool, EFI_LOADER_DATA, | 
|  | *map->map_size, (void **)&m); | 
|  | if (status != EFI_SUCCESS) | 
|  | goto fail; | 
|  |  | 
|  | *map->desc_size = 0; | 
|  | key = 0; | 
|  | status = efi_call_early(get_memory_map, map->map_size, m, | 
|  | &key, map->desc_size, &desc_version); | 
|  | if (status == EFI_BUFFER_TOO_SMALL || | 
|  | !mmap_has_headroom(*map->buff_size, *map->map_size, | 
|  | *map->desc_size)) { | 
|  | efi_call_early(free_pool, m); | 
|  | /* | 
|  | * Make sure there is some entries of headroom so that the | 
|  | * buffer can be reused for a new map after allocations are | 
|  | * no longer permitted.  Its unlikely that the map will grow to | 
|  | * exceed this headroom once we are ready to trigger | 
|  | * ExitBootServices() | 
|  | */ | 
|  | *map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS; | 
|  | *map->buff_size = *map->map_size; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (status != EFI_SUCCESS) | 
|  | efi_call_early(free_pool, m); | 
|  |  | 
|  | if (map->key_ptr && status == EFI_SUCCESS) | 
|  | *map->key_ptr = key; | 
|  | if (map->desc_ver && status == EFI_SUCCESS) | 
|  | *map->desc_ver = desc_version; | 
|  |  | 
|  | fail: | 
|  | *map->map = m; | 
|  | return status; | 
|  | } | 
|  |  | 
|  |  | 
|  | static unsigned long __init get_dram_base(efi_system_table_t *sys_table_arg) | 
|  | { | 
|  | efi_status_t status; | 
|  | unsigned long map_size, buff_size; | 
|  | unsigned long membase  = EFI_ERROR; | 
|  | struct efi_memory_map map; | 
|  | efi_memory_desc_t *md; | 
|  | struct efi_boot_memmap boot_map; | 
|  |  | 
|  | boot_map.map =		(efi_memory_desc_t **)&map.map; | 
|  | boot_map.map_size =	&map_size; | 
|  | boot_map.desc_size =	&map.desc_size; | 
|  | boot_map.desc_ver =	NULL; | 
|  | boot_map.key_ptr =	NULL; | 
|  | boot_map.buff_size =	&buff_size; | 
|  |  | 
|  | status = efi_get_memory_map(sys_table_arg, &boot_map); | 
|  | if (status != EFI_SUCCESS) | 
|  | return membase; | 
|  |  | 
|  | map.map_end = map.map + map_size; | 
|  |  | 
|  | for_each_efi_memory_desc(&map, md) | 
|  | if (md->attribute & EFI_MEMORY_WB) | 
|  | if (membase > md->phys_addr) | 
|  | membase = md->phys_addr; | 
|  |  | 
|  | efi_call_early(free_pool, map.map); | 
|  |  | 
|  | return membase; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate at the highest possible address that is not above 'max'. | 
|  | */ | 
|  | static efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg, | 
|  | unsigned long size, unsigned long align, | 
|  | unsigned long *addr, unsigned long max) | 
|  | { | 
|  | unsigned long map_size, desc_size, buff_size; | 
|  | efi_memory_desc_t *map; | 
|  | efi_status_t status; | 
|  | unsigned long nr_pages; | 
|  | u64 max_addr = 0; | 
|  | int i; | 
|  | struct efi_boot_memmap boot_map; | 
|  |  | 
|  | boot_map.map =		↦ | 
|  | boot_map.map_size =	&map_size; | 
|  | boot_map.desc_size =	&desc_size; | 
|  | boot_map.desc_ver =	NULL; | 
|  | boot_map.key_ptr =	NULL; | 
|  | boot_map.buff_size =	&buff_size; | 
|  |  | 
|  | status = efi_get_memory_map(sys_table_arg, &boot_map); | 
|  | if (status != EFI_SUCCESS) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * Enforce minimum alignment that EFI requires when requesting | 
|  | * a specific address.  We are doing page-based allocations, | 
|  | * so we must be aligned to a page. | 
|  | */ | 
|  | if (align < EFI_PAGE_SIZE) | 
|  | align = EFI_PAGE_SIZE; | 
|  |  | 
|  | nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; | 
|  | again: | 
|  | for (i = 0; i < map_size / desc_size; i++) { | 
|  | efi_memory_desc_t *desc; | 
|  | unsigned long m = (unsigned long)map; | 
|  | u64 start, end; | 
|  |  | 
|  | desc = (efi_memory_desc_t *)(m + (i * desc_size)); | 
|  | if (desc->type != EFI_CONVENTIONAL_MEMORY) | 
|  | continue; | 
|  |  | 
|  | if (desc->num_pages < nr_pages) | 
|  | continue; | 
|  |  | 
|  | start = desc->phys_addr; | 
|  | end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT); | 
|  |  | 
|  | if (end > max) | 
|  | end = max; | 
|  |  | 
|  | if ((start + size) > end) | 
|  | continue; | 
|  |  | 
|  | if (round_down(end - size, align) < start) | 
|  | continue; | 
|  |  | 
|  | start = round_down(end - size, align); | 
|  |  | 
|  | /* | 
|  | * Don't allocate at 0x0. It will confuse code that | 
|  | * checks pointers against NULL. | 
|  | */ | 
|  | if (start == 0x0) | 
|  | continue; | 
|  |  | 
|  | if (start > max_addr) | 
|  | max_addr = start; | 
|  | } | 
|  |  | 
|  | if (!max_addr) | 
|  | status = EFI_NOT_FOUND; | 
|  | else { | 
|  | status = efi_call_early(allocate_pages, | 
|  | EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, | 
|  | nr_pages, &max_addr); | 
|  | if (status != EFI_SUCCESS) { | 
|  | max = max_addr; | 
|  | max_addr = 0; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | *addr = max_addr; | 
|  | } | 
|  |  | 
|  | efi_call_early(free_pool, map); | 
|  | fail: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate at the lowest possible address. | 
|  | */ | 
|  | static efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg, | 
|  | unsigned long size, unsigned long align, | 
|  | unsigned long *addr) | 
|  | { | 
|  | unsigned long map_size, desc_size, buff_size; | 
|  | efi_memory_desc_t *map; | 
|  | efi_status_t status; | 
|  | unsigned long nr_pages; | 
|  | int i; | 
|  | struct efi_boot_memmap boot_map; | 
|  |  | 
|  | boot_map.map =		↦ | 
|  | boot_map.map_size =	&map_size; | 
|  | boot_map.desc_size =	&desc_size; | 
|  | boot_map.desc_ver =	NULL; | 
|  | boot_map.key_ptr =	NULL; | 
|  | boot_map.buff_size =	&buff_size; | 
|  |  | 
|  | status = efi_get_memory_map(sys_table_arg, &boot_map); | 
|  | if (status != EFI_SUCCESS) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * Enforce minimum alignment that EFI requires when requesting | 
|  | * a specific address.  We are doing page-based allocations, | 
|  | * so we must be aligned to a page. | 
|  | */ | 
|  | if (align < EFI_PAGE_SIZE) | 
|  | align = EFI_PAGE_SIZE; | 
|  |  | 
|  | nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; | 
|  | for (i = 0; i < map_size / desc_size; i++) { | 
|  | efi_memory_desc_t *desc; | 
|  | unsigned long m = (unsigned long)map; | 
|  | u64 start, end; | 
|  |  | 
|  | desc = (efi_memory_desc_t *)(m + (i * desc_size)); | 
|  |  | 
|  | if (desc->type != EFI_CONVENTIONAL_MEMORY) | 
|  | continue; | 
|  |  | 
|  | if (desc->num_pages < nr_pages) | 
|  | continue; | 
|  |  | 
|  | start = desc->phys_addr; | 
|  | end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Don't allocate at 0x0. It will confuse code that | 
|  | * checks pointers against NULL. Skip the first 8 | 
|  | * bytes so we start at a nice even number. | 
|  | */ | 
|  | if (start == 0x0) | 
|  | start += 8; | 
|  |  | 
|  | start = round_up(start, align); | 
|  | if ((start + size) > end) | 
|  | continue; | 
|  |  | 
|  | status = efi_call_early(allocate_pages, | 
|  | EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, | 
|  | nr_pages, &start); | 
|  | if (status == EFI_SUCCESS) { | 
|  | *addr = start; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == map_size / desc_size) | 
|  | status = EFI_NOT_FOUND; | 
|  |  | 
|  | efi_call_early(free_pool, map); | 
|  | fail: | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void efi_free(efi_system_table_t *sys_table_arg, unsigned long size, | 
|  | unsigned long addr) | 
|  | { | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | if (!size) | 
|  | return; | 
|  |  | 
|  | nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; | 
|  | efi_call_early(free_pages, addr, nr_pages); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Check the cmdline for a LILO-style file= arguments. | 
|  | * | 
|  | * We only support loading a file from the same filesystem as | 
|  | * the kernel image. | 
|  | */ | 
|  | static efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg, | 
|  | efi_loaded_image_t *image, | 
|  | char *cmd_line, char *option_string, | 
|  | unsigned long max_addr, | 
|  | unsigned long *load_addr, | 
|  | unsigned long *load_size) | 
|  | { | 
|  | struct file_info *files; | 
|  | unsigned long file_addr; | 
|  | u64 file_size_total; | 
|  | efi_file_handle_t *fh = NULL; | 
|  | efi_status_t status; | 
|  | int nr_files; | 
|  | char *str; | 
|  | int i, j, k; | 
|  |  | 
|  | file_addr = 0; | 
|  | file_size_total = 0; | 
|  |  | 
|  | str = cmd_line; | 
|  |  | 
|  | j = 0;			/* See close_handles */ | 
|  |  | 
|  | if (!load_addr || !load_size) | 
|  | return EFI_INVALID_PARAMETER; | 
|  |  | 
|  | *load_addr = 0; | 
|  | *load_size = 0; | 
|  |  | 
|  | if (!str || !*str) | 
|  | return EFI_SUCCESS; | 
|  |  | 
|  | for (nr_files = 0; *str; nr_files++) { | 
|  | str = strstr(str, option_string); | 
|  | if (!str) | 
|  | break; | 
|  |  | 
|  | str += strlen(option_string); | 
|  |  | 
|  | /* Skip any leading slashes */ | 
|  | while (*str == '/' || *str == '\\') | 
|  | str++; | 
|  |  | 
|  | while (*str && *str != ' ' && *str != '\n') | 
|  | str++; | 
|  | } | 
|  |  | 
|  | if (!nr_files) | 
|  | return EFI_SUCCESS; | 
|  |  | 
|  | status = efi_call_early(allocate_pool, EFI_LOADER_DATA, | 
|  | nr_files * sizeof(*files), (void **)&files); | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | str = cmd_line; | 
|  | for (i = 0; i < nr_files; i++) { | 
|  | struct file_info *file; | 
|  | efi_char16_t filename_16[256]; | 
|  | efi_char16_t *p; | 
|  |  | 
|  | str = strstr(str, option_string); | 
|  | if (!str) | 
|  | break; | 
|  |  | 
|  | str += strlen(option_string); | 
|  |  | 
|  | file = &files[i]; | 
|  | p = filename_16; | 
|  |  | 
|  | /* Skip any leading slashes */ | 
|  | while (*str == '/' || *str == '\\') | 
|  | str++; | 
|  |  | 
|  | while (*str && *str != ' ' && *str != '\n') { | 
|  | if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16)) | 
|  | break; | 
|  |  | 
|  | if (*str == '/') { | 
|  | *p++ = '\\'; | 
|  | str++; | 
|  | } else { | 
|  | *p++ = *str++; | 
|  | } | 
|  | } | 
|  |  | 
|  | *p = '\0'; | 
|  |  | 
|  | /* Only open the volume once. */ | 
|  | if (!i) { | 
|  | status = efi_open_volume(sys_table_arg, image, | 
|  | (void **)&fh); | 
|  | if (status != EFI_SUCCESS) | 
|  | goto free_files; | 
|  | } | 
|  |  | 
|  | status = efi_file_size(sys_table_arg, fh, filename_16, | 
|  | (void **)&file->handle, &file->size); | 
|  | if (status != EFI_SUCCESS) | 
|  | goto close_handles; | 
|  |  | 
|  | file_size_total += file->size; | 
|  | } | 
|  |  | 
|  | if (file_size_total) { | 
|  | unsigned long addr; | 
|  |  | 
|  | /* | 
|  | * Multiple files need to be at consecutive addresses in memory, | 
|  | * so allocate enough memory for all the files.  This is used | 
|  | * for loading multiple files. | 
|  | */ | 
|  | status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000, | 
|  | &file_addr, max_addr); | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n"); | 
|  | goto close_handles; | 
|  | } | 
|  |  | 
|  | /* We've run out of free low memory. */ | 
|  | if (file_addr > max_addr) { | 
|  | pr_efi_err(sys_table_arg, "We've run out of free low memory\n"); | 
|  | status = EFI_INVALID_PARAMETER; | 
|  | goto free_file_total; | 
|  | } | 
|  |  | 
|  | addr = file_addr; | 
|  | for (j = 0; j < nr_files; j++) { | 
|  | unsigned long size; | 
|  |  | 
|  | size = files[j].size; | 
|  | while (size) { | 
|  | unsigned long chunksize; | 
|  | if (size > EFI_READ_CHUNK_SIZE) | 
|  | chunksize = EFI_READ_CHUNK_SIZE; | 
|  | else | 
|  | chunksize = size; | 
|  |  | 
|  | status = efi_file_read(files[j].handle, | 
|  | &chunksize, | 
|  | (void *)addr); | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_efi_err(sys_table_arg, "Failed to read file\n"); | 
|  | goto free_file_total; | 
|  | } | 
|  | addr += chunksize; | 
|  | size -= chunksize; | 
|  | } | 
|  |  | 
|  | efi_file_close(files[j].handle); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | efi_call_early(free_pool, files); | 
|  |  | 
|  | *load_addr = file_addr; | 
|  | *load_size = file_size_total; | 
|  |  | 
|  | return status; | 
|  |  | 
|  | free_file_total: | 
|  | efi_free(sys_table_arg, file_size_total, file_addr); | 
|  |  | 
|  | close_handles: | 
|  | for (k = j; k < i; k++) | 
|  | efi_file_close(files[k].handle); | 
|  | free_files: | 
|  | efi_call_early(free_pool, files); | 
|  | fail: | 
|  | *load_addr = 0; | 
|  | *load_size = 0; | 
|  |  | 
|  | return status; | 
|  | } | 
|  | /* | 
|  | * Relocate a kernel image, either compressed or uncompressed. | 
|  | * In the ARM64 case, all kernel images are currently | 
|  | * uncompressed, and as such when we relocate it we need to | 
|  | * allocate additional space for the BSS segment. Any low | 
|  | * memory that this function should avoid needs to be | 
|  | * unavailable in the EFI memory map, as if the preferred | 
|  | * address is not available the lowest available address will | 
|  | * be used. | 
|  | */ | 
|  | static efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg, | 
|  | unsigned long *image_addr, | 
|  | unsigned long image_size, | 
|  | unsigned long alloc_size, | 
|  | unsigned long preferred_addr, | 
|  | unsigned long alignment) | 
|  | { | 
|  | unsigned long cur_image_addr; | 
|  | unsigned long new_addr = 0; | 
|  | efi_status_t status; | 
|  | unsigned long nr_pages; | 
|  | efi_physical_addr_t efi_addr = preferred_addr; | 
|  |  | 
|  | if (!image_addr || !image_size || !alloc_size) | 
|  | return EFI_INVALID_PARAMETER; | 
|  | if (alloc_size < image_size) | 
|  | return EFI_INVALID_PARAMETER; | 
|  |  | 
|  | cur_image_addr = *image_addr; | 
|  |  | 
|  | /* | 
|  | * The EFI firmware loader could have placed the kernel image | 
|  | * anywhere in memory, but the kernel has restrictions on the | 
|  | * max physical address it can run at.  Some architectures | 
|  | * also have a prefered address, so first try to relocate | 
|  | * to the preferred address.  If that fails, allocate as low | 
|  | * as possible while respecting the required alignment. | 
|  | */ | 
|  | nr_pages = round_up(alloc_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; | 
|  | status = efi_call_early(allocate_pages, | 
|  | EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, | 
|  | nr_pages, &efi_addr); | 
|  | new_addr = efi_addr; | 
|  | /* | 
|  | * If preferred address allocation failed allocate as low as | 
|  | * possible. | 
|  | */ | 
|  | if (status != EFI_SUCCESS) { | 
|  | status = efi_low_alloc(sys_table_arg, alloc_size, alignment, | 
|  | &new_addr); | 
|  | } | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n"); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We know source/dest won't overlap since both memory ranges | 
|  | * have been allocated by UEFI, so we can safely use memcpy. | 
|  | */ | 
|  | memcpy((void *)new_addr, (void *)cur_image_addr, image_size); | 
|  |  | 
|  | /* Return the new address of the relocated image. */ | 
|  | *image_addr = new_addr; | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the number of UTF-8 bytes corresponding to an UTF-16 character. | 
|  | * This overestimates for surrogates, but that is okay. | 
|  | */ | 
|  | static int efi_utf8_bytes(u16 c) | 
|  | { | 
|  | return 1 + (c >= 0x80) + (c >= 0x800); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert an UTF-16 string, not necessarily null terminated, to UTF-8. | 
|  | */ | 
|  | static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n) | 
|  | { | 
|  | unsigned int c; | 
|  |  | 
|  | while (n--) { | 
|  | c = *src++; | 
|  | if (n && c >= 0xd800 && c <= 0xdbff && | 
|  | *src >= 0xdc00 && *src <= 0xdfff) { | 
|  | c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff); | 
|  | src++; | 
|  | n--; | 
|  | } | 
|  | if (c >= 0xd800 && c <= 0xdfff) | 
|  | c = 0xfffd; /* Unmatched surrogate */ | 
|  | if (c < 0x80) { | 
|  | *dst++ = c; | 
|  | continue; | 
|  | } | 
|  | if (c < 0x800) { | 
|  | *dst++ = 0xc0 + (c >> 6); | 
|  | goto t1; | 
|  | } | 
|  | if (c < 0x10000) { | 
|  | *dst++ = 0xe0 + (c >> 12); | 
|  | goto t2; | 
|  | } | 
|  | *dst++ = 0xf0 + (c >> 18); | 
|  | *dst++ = 0x80 + ((c >> 12) & 0x3f); | 
|  | t2: | 
|  | *dst++ = 0x80 + ((c >> 6) & 0x3f); | 
|  | t1: | 
|  | *dst++ = 0x80 + (c & 0x3f); | 
|  | } | 
|  |  | 
|  | return dst; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert the unicode UEFI command line to ASCII to pass to kernel. | 
|  | * Size of memory allocated return in *cmd_line_len. | 
|  | * Returns NULL on error. | 
|  | */ | 
|  | static char *efi_convert_cmdline(efi_system_table_t *sys_table_arg, | 
|  | efi_loaded_image_t *image, | 
|  | int *cmd_line_len) | 
|  | { | 
|  | const u16 *s2; | 
|  | u8 *s1 = NULL; | 
|  | unsigned long cmdline_addr = 0; | 
|  | int load_options_chars = image->load_options_size / 2; /* UTF-16 */ | 
|  | const u16 *options = image->load_options; | 
|  | int options_bytes = 0;  /* UTF-8 bytes */ | 
|  | int options_chars = 0;  /* UTF-16 chars */ | 
|  | efi_status_t status; | 
|  | u16 zero = 0; | 
|  |  | 
|  | if (options) { | 
|  | s2 = options; | 
|  | while (*s2 && *s2 != '\n' | 
|  | && options_chars < load_options_chars) { | 
|  | options_bytes += efi_utf8_bytes(*s2++); | 
|  | options_chars++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!options_chars) { | 
|  | /* No command line options, so return empty string*/ | 
|  | options = &zero; | 
|  | } | 
|  |  | 
|  | options_bytes++;	/* NUL termination */ | 
|  |  | 
|  | status = efi_low_alloc(sys_table_arg, options_bytes, 0, &cmdline_addr); | 
|  | if (status != EFI_SUCCESS) | 
|  | return NULL; | 
|  |  | 
|  | s1 = (u8 *)cmdline_addr; | 
|  | s2 = (const u16 *)options; | 
|  |  | 
|  | s1 = efi_utf16_to_utf8(s1, s2, options_chars); | 
|  | *s1 = '\0'; | 
|  |  | 
|  | *cmd_line_len = options_bytes; | 
|  | return (char *)cmdline_addr; | 
|  | } |