|  | #undef DEBUG | 
|  |  | 
|  | /* | 
|  | * ARM performance counter support. | 
|  | * | 
|  | * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles | 
|  | * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> | 
|  | * | 
|  | * This code is based on the sparc64 perf event code, which is in turn based | 
|  | * on the x86 code. Callchain code is based on the ARM OProfile backtrace | 
|  | * code. | 
|  | */ | 
|  | #define pr_fmt(fmt) "hw perfevents: " fmt | 
|  |  | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/irq_regs.h> | 
|  | #include <asm/pmu.h> | 
|  | #include <asm/stacktrace.h> | 
|  |  | 
|  | /* | 
|  | * ARMv6 supports a maximum of 3 events, starting from index 0. If we add | 
|  | * another platform that supports more, we need to increase this to be the | 
|  | * largest of all platforms. | 
|  | * | 
|  | * ARMv7 supports up to 32 events: | 
|  | *  cycle counter CCNT + 31 events counters CNT0..30. | 
|  | *  Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters. | 
|  | */ | 
|  | #define ARMPMU_MAX_HWEVENTS		32 | 
|  |  | 
|  | static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events); | 
|  | static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask); | 
|  | static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events); | 
|  |  | 
|  | #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu)) | 
|  |  | 
|  | /* Set at runtime when we know what CPU type we are. */ | 
|  | static struct arm_pmu *cpu_pmu; | 
|  |  | 
|  | const char *perf_pmu_name(void) | 
|  | { | 
|  | if (!cpu_pmu) | 
|  | return NULL; | 
|  |  | 
|  | return cpu_pmu->pmu.name; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_pmu_name); | 
|  |  | 
|  | int perf_num_counters(void) | 
|  | { | 
|  | int max_events = 0; | 
|  |  | 
|  | if (cpu_pmu != NULL) | 
|  | max_events = cpu_pmu->num_events; | 
|  |  | 
|  | return max_events; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_num_counters); | 
|  |  | 
|  | #define HW_OP_UNSUPPORTED		0xFFFF | 
|  |  | 
|  | #define C(_x) \ | 
|  | PERF_COUNT_HW_CACHE_##_x | 
|  |  | 
|  | #define CACHE_OP_UNSUPPORTED		0xFFFF | 
|  |  | 
|  | static int | 
|  | armpmu_map_cache_event(const unsigned (*cache_map) | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX], | 
|  | u64 config) | 
|  | { | 
|  | unsigned int cache_type, cache_op, cache_result, ret; | 
|  |  | 
|  | cache_type = (config >>  0) & 0xff; | 
|  | if (cache_type >= PERF_COUNT_HW_CACHE_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_op = (config >>  8) & 0xff; | 
|  | if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_result = (config >> 16) & 0xff; | 
|  | if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; | 
|  |  | 
|  | if (ret == CACHE_OP_UNSUPPORTED) | 
|  | return -ENOENT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) | 
|  | { | 
|  | int mapping = (*event_map)[config]; | 
|  | return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_map_raw_event(u32 raw_event_mask, u64 config) | 
|  | { | 
|  | return (int)(config & raw_event_mask); | 
|  | } | 
|  |  | 
|  | static int map_cpu_event(struct perf_event *event, | 
|  | const unsigned (*event_map)[PERF_COUNT_HW_MAX], | 
|  | const unsigned (*cache_map) | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX], | 
|  | u32 raw_event_mask) | 
|  | { | 
|  | u64 config = event->attr.config; | 
|  |  | 
|  | switch (event->attr.type) { | 
|  | case PERF_TYPE_HARDWARE: | 
|  | return armpmu_map_event(event_map, config); | 
|  | case PERF_TYPE_HW_CACHE: | 
|  | return armpmu_map_cache_event(cache_map, config); | 
|  | case PERF_TYPE_RAW: | 
|  | return armpmu_map_raw_event(raw_event_mask, config); | 
|  | } | 
|  |  | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | int | 
|  | armpmu_event_set_period(struct perf_event *event, | 
|  | struct hw_perf_event *hwc, | 
|  | int idx) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | s64 left = local64_read(&hwc->period_left); | 
|  | s64 period = hwc->sample_period; | 
|  | int ret = 0; | 
|  |  | 
|  | if (unlikely(left <= -period)) { | 
|  | left = period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(left <= 0)) { | 
|  | left += period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (left > (s64)armpmu->max_period) | 
|  | left = armpmu->max_period; | 
|  |  | 
|  | local64_set(&hwc->prev_count, (u64)-left); | 
|  |  | 
|  | armpmu->write_counter(idx, (u64)(-left) & 0xffffffff); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | u64 | 
|  | armpmu_event_update(struct perf_event *event, | 
|  | struct hw_perf_event *hwc, | 
|  | int idx) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | u64 delta, prev_raw_count, new_raw_count; | 
|  |  | 
|  | again: | 
|  | prev_raw_count = local64_read(&hwc->prev_count); | 
|  | new_raw_count = armpmu->read_counter(idx); | 
|  |  | 
|  | if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, | 
|  | new_raw_count) != prev_raw_count) | 
|  | goto again; | 
|  |  | 
|  | delta = (new_raw_count - prev_raw_count) & armpmu->max_period; | 
|  |  | 
|  | local64_add(delta, &event->count); | 
|  | local64_sub(delta, &hwc->period_left); | 
|  |  | 
|  | return new_raw_count; | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_read(struct perf_event *event) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | /* Don't read disabled counters! */ | 
|  | if (hwc->idx < 0) | 
|  | return; | 
|  |  | 
|  | armpmu_event_update(event, hwc, hwc->idx); | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | /* | 
|  | * ARM pmu always has to update the counter, so ignore | 
|  | * PERF_EF_UPDATE, see comments in armpmu_start(). | 
|  | */ | 
|  | if (!(hwc->state & PERF_HES_STOPPED)) { | 
|  | armpmu->disable(hwc, hwc->idx); | 
|  | barrier(); /* why? */ | 
|  | armpmu_event_update(event, hwc, hwc->idx); | 
|  | hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_start(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | /* | 
|  | * ARM pmu always has to reprogram the period, so ignore | 
|  | * PERF_EF_RELOAD, see the comment below. | 
|  | */ | 
|  | if (flags & PERF_EF_RELOAD) | 
|  | WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); | 
|  |  | 
|  | hwc->state = 0; | 
|  | /* | 
|  | * Set the period again. Some counters can't be stopped, so when we | 
|  | * were stopped we simply disabled the IRQ source and the counter | 
|  | * may have been left counting. If we don't do this step then we may | 
|  | * get an interrupt too soon or *way* too late if the overflow has | 
|  | * happened since disabling. | 
|  | */ | 
|  | armpmu_event_set_period(event, hwc, hwc->idx); | 
|  | armpmu->enable(hwc, hwc->idx); | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_del(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct pmu_hw_events *hw_events = armpmu->get_hw_events(); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int idx = hwc->idx; | 
|  |  | 
|  | WARN_ON(idx < 0); | 
|  |  | 
|  | armpmu_stop(event, PERF_EF_UPDATE); | 
|  | hw_events->events[idx] = NULL; | 
|  | clear_bit(idx, hw_events->used_mask); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_add(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct pmu_hw_events *hw_events = armpmu->get_hw_events(); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int idx; | 
|  | int err = 0; | 
|  |  | 
|  | perf_pmu_disable(event->pmu); | 
|  |  | 
|  | /* If we don't have a space for the counter then finish early. */ | 
|  | idx = armpmu->get_event_idx(hw_events, hwc); | 
|  | if (idx < 0) { | 
|  | err = idx; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is an event in the counter we are going to use then make | 
|  | * sure it is disabled. | 
|  | */ | 
|  | event->hw.idx = idx; | 
|  | armpmu->disable(hwc, idx); | 
|  | hw_events->events[idx] = event; | 
|  |  | 
|  | hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | if (flags & PERF_EF_START) | 
|  | armpmu_start(event, PERF_EF_RELOAD); | 
|  |  | 
|  | /* Propagate our changes to the userspace mapping. */ | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | out: | 
|  | perf_pmu_enable(event->pmu); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int | 
|  | validate_event(struct pmu_hw_events *hw_events, | 
|  | struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event fake_event = event->hw; | 
|  | struct pmu *leader_pmu = event->group_leader->pmu; | 
|  |  | 
|  | if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF) | 
|  | return 1; | 
|  |  | 
|  | return armpmu->get_event_idx(hw_events, &fake_event) >= 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | validate_group(struct perf_event *event) | 
|  | { | 
|  | struct perf_event *sibling, *leader = event->group_leader; | 
|  | struct pmu_hw_events fake_pmu; | 
|  | DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS); | 
|  |  | 
|  | /* | 
|  | * Initialise the fake PMU. We only need to populate the | 
|  | * used_mask for the purposes of validation. | 
|  | */ | 
|  | memset(fake_used_mask, 0, sizeof(fake_used_mask)); | 
|  | fake_pmu.used_mask = fake_used_mask; | 
|  |  | 
|  | if (!validate_event(&fake_pmu, leader)) | 
|  | return -EINVAL; | 
|  |  | 
|  | list_for_each_entry(sibling, &leader->sibling_list, group_entry) { | 
|  | if (!validate_event(&fake_pmu, sibling)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!validate_event(&fake_pmu, event)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t armpmu_platform_irq(int irq, void *dev) | 
|  | { | 
|  | struct arm_pmu *armpmu = (struct arm_pmu *) dev; | 
|  | struct platform_device *plat_device = armpmu->plat_device; | 
|  | struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev); | 
|  |  | 
|  | return plat->handle_irq(irq, dev, armpmu->handle_irq); | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_release_hardware(struct arm_pmu *armpmu) | 
|  | { | 
|  | int i, irq, irqs; | 
|  | struct platform_device *pmu_device = armpmu->plat_device; | 
|  | struct arm_pmu_platdata *plat = | 
|  | dev_get_platdata(&pmu_device->dev); | 
|  |  | 
|  | irqs = min(pmu_device->num_resources, num_possible_cpus()); | 
|  |  | 
|  | for (i = 0; i < irqs; ++i) { | 
|  | if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs)) | 
|  | continue; | 
|  | irq = platform_get_irq(pmu_device, i); | 
|  | if (irq >= 0) { | 
|  | if (plat && plat->disable_irq) | 
|  | plat->disable_irq(irq); | 
|  | free_irq(irq, armpmu); | 
|  | } | 
|  | } | 
|  |  | 
|  | release_pmu(armpmu->type); | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_reserve_hardware(struct arm_pmu *armpmu) | 
|  | { | 
|  | struct arm_pmu_platdata *plat; | 
|  | irq_handler_t handle_irq; | 
|  | int i, err, irq, irqs; | 
|  | struct platform_device *pmu_device = armpmu->plat_device; | 
|  |  | 
|  | if (!pmu_device) | 
|  | return -ENODEV; | 
|  |  | 
|  | err = reserve_pmu(armpmu->type); | 
|  | if (err) { | 
|  | pr_warning("unable to reserve pmu\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | plat = dev_get_platdata(&pmu_device->dev); | 
|  | if (plat && plat->handle_irq) | 
|  | handle_irq = armpmu_platform_irq; | 
|  | else | 
|  | handle_irq = armpmu->handle_irq; | 
|  |  | 
|  | irqs = min(pmu_device->num_resources, num_possible_cpus()); | 
|  | if (irqs < 1) { | 
|  | pr_err("no irqs for PMUs defined\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < irqs; ++i) { | 
|  | err = 0; | 
|  | irq = platform_get_irq(pmu_device, i); | 
|  | if (irq < 0) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If we have a single PMU interrupt that we can't shift, | 
|  | * assume that we're running on a uniprocessor machine and | 
|  | * continue. Otherwise, continue without this interrupt. | 
|  | */ | 
|  | if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) { | 
|  | pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n", | 
|  | irq, i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | err = request_irq(irq, handle_irq, | 
|  | IRQF_DISABLED | IRQF_NOBALANCING, | 
|  | "arm-pmu", armpmu); | 
|  | if (err) { | 
|  | pr_err("unable to request IRQ%d for ARM PMU counters\n", | 
|  | irq); | 
|  | armpmu_release_hardware(armpmu); | 
|  | return err; | 
|  | } else if (plat && plat->enable_irq) | 
|  | plat->enable_irq(irq); | 
|  |  | 
|  | cpumask_set_cpu(i, &armpmu->active_irqs); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | hw_perf_event_destroy(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | atomic_t *active_events	 = &armpmu->active_events; | 
|  | struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; | 
|  |  | 
|  | if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { | 
|  | armpmu_release_hardware(armpmu); | 
|  | mutex_unlock(pmu_reserve_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | event_requires_mode_exclusion(struct perf_event_attr *attr) | 
|  | { | 
|  | return attr->exclude_idle || attr->exclude_user || | 
|  | attr->exclude_kernel || attr->exclude_hv; | 
|  | } | 
|  |  | 
|  | static int | 
|  | __hw_perf_event_init(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int mapping, err; | 
|  |  | 
|  | mapping = armpmu->map_event(event); | 
|  |  | 
|  | if (mapping < 0) { | 
|  | pr_debug("event %x:%llx not supported\n", event->attr.type, | 
|  | event->attr.config); | 
|  | return mapping; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't assign an index until we actually place the event onto | 
|  | * hardware. Use -1 to signify that we haven't decided where to put it | 
|  | * yet. For SMP systems, each core has it's own PMU so we can't do any | 
|  | * clever allocation or constraints checking at this point. | 
|  | */ | 
|  | hwc->idx		= -1; | 
|  | hwc->config_base	= 0; | 
|  | hwc->config		= 0; | 
|  | hwc->event_base		= 0; | 
|  |  | 
|  | /* | 
|  | * Check whether we need to exclude the counter from certain modes. | 
|  | */ | 
|  | if ((!armpmu->set_event_filter || | 
|  | armpmu->set_event_filter(hwc, &event->attr)) && | 
|  | event_requires_mode_exclusion(&event->attr)) { | 
|  | pr_debug("ARM performance counters do not support " | 
|  | "mode exclusion\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store the event encoding into the config_base field. | 
|  | */ | 
|  | hwc->config_base	    |= (unsigned long)mapping; | 
|  |  | 
|  | if (!hwc->sample_period) { | 
|  | /* | 
|  | * For non-sampling runs, limit the sample_period to half | 
|  | * of the counter width. That way, the new counter value | 
|  | * is far less likely to overtake the previous one unless | 
|  | * you have some serious IRQ latency issues. | 
|  | */ | 
|  | hwc->sample_period  = armpmu->max_period >> 1; | 
|  | hwc->last_period    = hwc->sample_period; | 
|  | local64_set(&hwc->period_left, hwc->sample_period); | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | if (event->group_leader != event) { | 
|  | err = validate_group(event); | 
|  | if (err) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int armpmu_event_init(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | int err = 0; | 
|  | atomic_t *active_events = &armpmu->active_events; | 
|  |  | 
|  | /* does not support taken branch sampling */ | 
|  | if (has_branch_stack(event)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (armpmu->map_event(event) == -ENOENT) | 
|  | return -ENOENT; | 
|  |  | 
|  | event->destroy = hw_perf_event_destroy; | 
|  |  | 
|  | if (!atomic_inc_not_zero(active_events)) { | 
|  | mutex_lock(&armpmu->reserve_mutex); | 
|  | if (atomic_read(active_events) == 0) | 
|  | err = armpmu_reserve_hardware(armpmu); | 
|  |  | 
|  | if (!err) | 
|  | atomic_inc(active_events); | 
|  | mutex_unlock(&armpmu->reserve_mutex); | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = __hw_perf_event_init(event); | 
|  | if (err) | 
|  | hw_perf_event_destroy(event); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void armpmu_enable(struct pmu *pmu) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
|  | struct pmu_hw_events *hw_events = armpmu->get_hw_events(); | 
|  | int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); | 
|  |  | 
|  | if (enabled) | 
|  | armpmu->start(); | 
|  | } | 
|  |  | 
|  | static void armpmu_disable(struct pmu *pmu) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
|  | armpmu->stop(); | 
|  | } | 
|  |  | 
|  | static void __init armpmu_init(struct arm_pmu *armpmu) | 
|  | { | 
|  | atomic_set(&armpmu->active_events, 0); | 
|  | mutex_init(&armpmu->reserve_mutex); | 
|  |  | 
|  | armpmu->pmu = (struct pmu) { | 
|  | .pmu_enable	= armpmu_enable, | 
|  | .pmu_disable	= armpmu_disable, | 
|  | .event_init	= armpmu_event_init, | 
|  | .add		= armpmu_add, | 
|  | .del		= armpmu_del, | 
|  | .start		= armpmu_start, | 
|  | .stop		= armpmu_stop, | 
|  | .read		= armpmu_read, | 
|  | }; | 
|  | } | 
|  |  | 
|  | int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type) | 
|  | { | 
|  | armpmu_init(armpmu); | 
|  | return perf_pmu_register(&armpmu->pmu, name, type); | 
|  | } | 
|  |  | 
|  | /* Include the PMU-specific implementations. */ | 
|  | #include "perf_event_xscale.c" | 
|  | #include "perf_event_v6.c" | 
|  | #include "perf_event_v7.c" | 
|  |  | 
|  | /* | 
|  | * Ensure the PMU has sane values out of reset. | 
|  | * This requires SMP to be available, so exists as a separate initcall. | 
|  | */ | 
|  | static int __init | 
|  | cpu_pmu_reset(void) | 
|  | { | 
|  | if (cpu_pmu && cpu_pmu->reset) | 
|  | return on_each_cpu(cpu_pmu->reset, NULL, 1); | 
|  | return 0; | 
|  | } | 
|  | arch_initcall(cpu_pmu_reset); | 
|  |  | 
|  | /* | 
|  | * PMU platform driver and devicetree bindings. | 
|  | */ | 
|  | static struct of_device_id armpmu_of_device_ids[] = { | 
|  | {.compatible = "arm,cortex-a9-pmu"}, | 
|  | {.compatible = "arm,cortex-a8-pmu"}, | 
|  | {.compatible = "arm,arm1136-pmu"}, | 
|  | {.compatible = "arm,arm1176-pmu"}, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | static struct platform_device_id armpmu_plat_device_ids[] = { | 
|  | {.name = "arm-pmu"}, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | static int __devinit armpmu_device_probe(struct platform_device *pdev) | 
|  | { | 
|  | if (!cpu_pmu) | 
|  | return -ENODEV; | 
|  |  | 
|  | cpu_pmu->plat_device = pdev; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver armpmu_driver = { | 
|  | .driver		= { | 
|  | .name	= "arm-pmu", | 
|  | .of_match_table = armpmu_of_device_ids, | 
|  | }, | 
|  | .probe		= armpmu_device_probe, | 
|  | .id_table	= armpmu_plat_device_ids, | 
|  | }; | 
|  |  | 
|  | static int __init register_pmu_driver(void) | 
|  | { | 
|  | return platform_driver_register(&armpmu_driver); | 
|  | } | 
|  | device_initcall(register_pmu_driver); | 
|  |  | 
|  | static struct pmu_hw_events *armpmu_get_cpu_events(void) | 
|  | { | 
|  | return &__get_cpu_var(cpu_hw_events); | 
|  | } | 
|  |  | 
|  | static void __init cpu_pmu_init(struct arm_pmu *armpmu) | 
|  | { | 
|  | int cpu; | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu); | 
|  | events->events = per_cpu(hw_events, cpu); | 
|  | events->used_mask = per_cpu(used_mask, cpu); | 
|  | raw_spin_lock_init(&events->pmu_lock); | 
|  | } | 
|  | armpmu->get_hw_events = armpmu_get_cpu_events; | 
|  | armpmu->type = ARM_PMU_DEVICE_CPU; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PMU hardware loses all context when a CPU goes offline. | 
|  | * When a CPU is hotplugged back in, since some hardware registers are | 
|  | * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading | 
|  | * junk values out of them. | 
|  | */ | 
|  | static int __cpuinit pmu_cpu_notify(struct notifier_block *b, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | if (cpu_pmu && cpu_pmu->reset) | 
|  | cpu_pmu->reset(NULL); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block __cpuinitdata pmu_cpu_notifier = { | 
|  | .notifier_call = pmu_cpu_notify, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * CPU PMU identification and registration. | 
|  | */ | 
|  | static int __init | 
|  | init_hw_perf_events(void) | 
|  | { | 
|  | unsigned long cpuid = read_cpuid_id(); | 
|  | unsigned long implementor = (cpuid & 0xFF000000) >> 24; | 
|  | unsigned long part_number = (cpuid & 0xFFF0); | 
|  |  | 
|  | /* ARM Ltd CPUs. */ | 
|  | if (0x41 == implementor) { | 
|  | switch (part_number) { | 
|  | case 0xB360:	/* ARM1136 */ | 
|  | case 0xB560:	/* ARM1156 */ | 
|  | case 0xB760:	/* ARM1176 */ | 
|  | cpu_pmu = armv6pmu_init(); | 
|  | break; | 
|  | case 0xB020:	/* ARM11mpcore */ | 
|  | cpu_pmu = armv6mpcore_pmu_init(); | 
|  | break; | 
|  | case 0xC080:	/* Cortex-A8 */ | 
|  | cpu_pmu = armv7_a8_pmu_init(); | 
|  | break; | 
|  | case 0xC090:	/* Cortex-A9 */ | 
|  | cpu_pmu = armv7_a9_pmu_init(); | 
|  | break; | 
|  | case 0xC050:	/* Cortex-A5 */ | 
|  | cpu_pmu = armv7_a5_pmu_init(); | 
|  | break; | 
|  | case 0xC0F0:	/* Cortex-A15 */ | 
|  | cpu_pmu = armv7_a15_pmu_init(); | 
|  | break; | 
|  | case 0xC070:	/* Cortex-A7 */ | 
|  | cpu_pmu = armv7_a7_pmu_init(); | 
|  | break; | 
|  | } | 
|  | /* Intel CPUs [xscale]. */ | 
|  | } else if (0x69 == implementor) { | 
|  | part_number = (cpuid >> 13) & 0x7; | 
|  | switch (part_number) { | 
|  | case 1: | 
|  | cpu_pmu = xscale1pmu_init(); | 
|  | break; | 
|  | case 2: | 
|  | cpu_pmu = xscale2pmu_init(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cpu_pmu) { | 
|  | pr_info("enabled with %s PMU driver, %d counters available\n", | 
|  | cpu_pmu->name, cpu_pmu->num_events); | 
|  | cpu_pmu_init(cpu_pmu); | 
|  | register_cpu_notifier(&pmu_cpu_notifier); | 
|  | armpmu_register(cpu_pmu, cpu_pmu->name, PERF_TYPE_RAW); | 
|  | } else { | 
|  | pr_info("no hardware support available\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_initcall(init_hw_perf_events); | 
|  |  | 
|  | /* | 
|  | * Callchain handling code. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The registers we're interested in are at the end of the variable | 
|  | * length saved register structure. The fp points at the end of this | 
|  | * structure so the address of this struct is: | 
|  | * (struct frame_tail *)(xxx->fp)-1 | 
|  | * | 
|  | * This code has been adapted from the ARM OProfile support. | 
|  | */ | 
|  | struct frame_tail { | 
|  | struct frame_tail __user *fp; | 
|  | unsigned long sp; | 
|  | unsigned long lr; | 
|  | } __attribute__((packed)); | 
|  |  | 
|  | /* | 
|  | * Get the return address for a single stackframe and return a pointer to the | 
|  | * next frame tail. | 
|  | */ | 
|  | static struct frame_tail __user * | 
|  | user_backtrace(struct frame_tail __user *tail, | 
|  | struct perf_callchain_entry *entry) | 
|  | { | 
|  | struct frame_tail buftail; | 
|  |  | 
|  | /* Also check accessibility of one struct frame_tail beyond */ | 
|  | if (!access_ok(VERIFY_READ, tail, sizeof(buftail))) | 
|  | return NULL; | 
|  | if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail))) | 
|  | return NULL; | 
|  |  | 
|  | perf_callchain_store(entry, buftail.lr); | 
|  |  | 
|  | /* | 
|  | * Frame pointers should strictly progress back up the stack | 
|  | * (towards higher addresses). | 
|  | */ | 
|  | if (tail + 1 >= buftail.fp) | 
|  | return NULL; | 
|  |  | 
|  | return buftail.fp - 1; | 
|  | } | 
|  |  | 
|  | void | 
|  | perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) | 
|  | { | 
|  | struct frame_tail __user *tail; | 
|  |  | 
|  |  | 
|  | tail = (struct frame_tail __user *)regs->ARM_fp - 1; | 
|  |  | 
|  | while ((entry->nr < PERF_MAX_STACK_DEPTH) && | 
|  | tail && !((unsigned long)tail & 0x3)) | 
|  | tail = user_backtrace(tail, entry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gets called by walk_stackframe() for every stackframe. This will be called | 
|  | * whist unwinding the stackframe and is like a subroutine return so we use | 
|  | * the PC. | 
|  | */ | 
|  | static int | 
|  | callchain_trace(struct stackframe *fr, | 
|  | void *data) | 
|  | { | 
|  | struct perf_callchain_entry *entry = data; | 
|  | perf_callchain_store(entry, fr->pc); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void | 
|  | perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) | 
|  | { | 
|  | struct stackframe fr; | 
|  |  | 
|  | fr.fp = regs->ARM_fp; | 
|  | fr.sp = regs->ARM_sp; | 
|  | fr.lr = regs->ARM_lr; | 
|  | fr.pc = regs->ARM_pc; | 
|  | walk_stackframe(&fr, callchain_trace, entry); | 
|  | } |