|  | /* | 
|  | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/tracehook.h> | 
|  | #include <linux/signal.h> | 
|  | #include <asm/stack.h> | 
|  | #include <asm/switch_to.h> | 
|  | #include <asm/homecache.h> | 
|  | #include <asm/syscalls.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/setup.h> | 
|  | #ifdef CONFIG_HARDWALL | 
|  | #include <asm/hardwall.h> | 
|  | #endif | 
|  | #include <arch/chip.h> | 
|  | #include <arch/abi.h> | 
|  | #include <arch/sim_def.h> | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Use the (x86) "idle=poll" option to prefer low latency when leaving the | 
|  | * idle loop over low power while in the idle loop, e.g. if we have | 
|  | * one thread per core and we want to get threads out of futex waits fast. | 
|  | */ | 
|  | static int no_idle_nap; | 
|  | static int __init idle_setup(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!strcmp(str, "poll")) { | 
|  | pr_info("using polling idle threads.\n"); | 
|  | no_idle_nap = 1; | 
|  | } else if (!strcmp(str, "halt")) | 
|  | no_idle_nap = 0; | 
|  | else | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("idle", idle_setup); | 
|  |  | 
|  | /* | 
|  | * The idle thread. There's no useful work to be | 
|  | * done, so just try to conserve power and have a | 
|  | * low exit latency (ie sit in a loop waiting for | 
|  | * somebody to say that they'd like to reschedule) | 
|  | */ | 
|  | void cpu_idle(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  |  | 
|  | current_thread_info()->status |= TS_POLLING; | 
|  |  | 
|  | if (no_idle_nap) { | 
|  | while (1) { | 
|  | while (!need_resched()) | 
|  | cpu_relax(); | 
|  | schedule(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* endless idle loop with no priority at all */ | 
|  | while (1) { | 
|  | tick_nohz_idle_enter(); | 
|  | rcu_idle_enter(); | 
|  | while (!need_resched()) { | 
|  | if (cpu_is_offline(cpu)) | 
|  | BUG();  /* no HOTPLUG_CPU */ | 
|  |  | 
|  | local_irq_disable(); | 
|  | __get_cpu_var(irq_stat).idle_timestamp = jiffies; | 
|  | current_thread_info()->status &= ~TS_POLLING; | 
|  | /* | 
|  | * TS_POLLING-cleared state must be visible before we | 
|  | * test NEED_RESCHED: | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (!need_resched()) | 
|  | _cpu_idle(); | 
|  | else | 
|  | local_irq_enable(); | 
|  | current_thread_info()->status |= TS_POLLING; | 
|  | } | 
|  | rcu_idle_exit(); | 
|  | tick_nohz_idle_exit(); | 
|  | schedule_preempt_disabled(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a thread_info structure | 
|  | */ | 
|  | void arch_release_thread_info(struct thread_info *info) | 
|  | { | 
|  | struct single_step_state *step_state = info->step_state; | 
|  |  | 
|  | #ifdef CONFIG_HARDWALL | 
|  | /* | 
|  | * We free a thread_info from the context of the task that has | 
|  | * been scheduled next, so the original task is already dead. | 
|  | * Calling deactivate here just frees up the data structures. | 
|  | * If the task we're freeing held the last reference to a | 
|  | * hardwall fd, it would have been released prior to this point | 
|  | * anyway via exit_files(), and the hardwall_task.info pointers | 
|  | * would be NULL by now. | 
|  | */ | 
|  | hardwall_deactivate_all(info->task); | 
|  | #endif | 
|  |  | 
|  | if (step_state) { | 
|  |  | 
|  | /* | 
|  | * FIXME: we don't munmap step_state->buffer | 
|  | * because the mm_struct for this process (info->task->mm) | 
|  | * has already been zeroed in exit_mm().  Keeping a | 
|  | * reference to it here seems like a bad move, so this | 
|  | * means we can't munmap() the buffer, and therefore if we | 
|  | * ptrace multiple threads in a process, we will slowly | 
|  | * leak user memory.  (Note that as soon as the last | 
|  | * thread in a process dies, we will reclaim all user | 
|  | * memory including single-step buffers in the usual way.) | 
|  | * We should either assign a kernel VA to this buffer | 
|  | * somehow, or we should associate the buffer(s) with the | 
|  | * mm itself so we can clean them up that way. | 
|  | */ | 
|  | kfree(step_state); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void save_arch_state(struct thread_struct *t); | 
|  |  | 
|  | int copy_thread(unsigned long clone_flags, unsigned long sp, | 
|  | unsigned long arg, struct task_struct *p) | 
|  | { | 
|  | struct pt_regs *childregs = task_pt_regs(p); | 
|  | unsigned long ksp; | 
|  | unsigned long *callee_regs; | 
|  |  | 
|  | /* | 
|  | * Set up the stack and stack pointer appropriately for the | 
|  | * new child to find itself woken up in __switch_to(). | 
|  | * The callee-saved registers must be on the stack to be read; | 
|  | * the new task will then jump to assembly support to handle | 
|  | * calling schedule_tail(), etc., and (for userspace tasks) | 
|  | * returning to the context set up in the pt_regs. | 
|  | */ | 
|  | ksp = (unsigned long) childregs; | 
|  | ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */ | 
|  | ((long *)ksp)[0] = ((long *)ksp)[1] = 0; | 
|  | ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long); | 
|  | callee_regs = (unsigned long *)ksp; | 
|  | ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */ | 
|  | ((long *)ksp)[0] = ((long *)ksp)[1] = 0; | 
|  | p->thread.ksp = ksp; | 
|  |  | 
|  | /* Record the pid of the task that created this one. */ | 
|  | p->thread.creator_pid = current->pid; | 
|  |  | 
|  | if (unlikely(p->flags & PF_KTHREAD)) { | 
|  | /* kernel thread */ | 
|  | memset(childregs, 0, sizeof(struct pt_regs)); | 
|  | memset(&callee_regs[2], 0, | 
|  | (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long)); | 
|  | callee_regs[0] = sp;   /* r30 = function */ | 
|  | callee_regs[1] = arg;  /* r31 = arg */ | 
|  | childregs->ex1 = PL_ICS_EX1(KERNEL_PL, 0); | 
|  | p->thread.pc = (unsigned long) ret_from_kernel_thread; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start new thread in ret_from_fork so it schedules properly | 
|  | * and then return from interrupt like the parent. | 
|  | */ | 
|  | p->thread.pc = (unsigned long) ret_from_fork; | 
|  |  | 
|  | /* | 
|  | * Do not clone step state from the parent; each thread | 
|  | * must make its own lazily. | 
|  | */ | 
|  | task_thread_info(p)->step_state = NULL; | 
|  |  | 
|  | /* | 
|  | * Copy the registers onto the kernel stack so the | 
|  | * return-from-interrupt code will reload it into registers. | 
|  | */ | 
|  | *childregs = *current_pt_regs(); | 
|  | childregs->regs[0] = 0;         /* return value is zero */ | 
|  | if (sp) | 
|  | childregs->sp = sp;  /* override with new user stack pointer */ | 
|  | memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG], | 
|  | CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long)); | 
|  |  | 
|  | /* Save user stack top pointer so we can ID the stack vm area later. */ | 
|  | p->thread.usp0 = childregs->sp; | 
|  |  | 
|  | /* | 
|  | * If CLONE_SETTLS is set, set "tp" in the new task to "r4", | 
|  | * which is passed in as arg #5 to sys_clone(). | 
|  | */ | 
|  | if (clone_flags & CLONE_SETTLS) | 
|  | childregs->tp = childregs->regs[4]; | 
|  |  | 
|  |  | 
|  | #if CHIP_HAS_TILE_DMA() | 
|  | /* | 
|  | * No DMA in the new thread.  We model this on the fact that | 
|  | * fork() clears the pending signals, alarms, and aio for the child. | 
|  | */ | 
|  | memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state)); | 
|  | memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb)); | 
|  | #endif | 
|  |  | 
|  | #if CHIP_HAS_SN_PROC() | 
|  | /* Likewise, the new thread is not running static processor code. */ | 
|  | p->thread.sn_proc_running = 0; | 
|  | memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb)); | 
|  | #endif | 
|  |  | 
|  | #if CHIP_HAS_PROC_STATUS_SPR() | 
|  | /* New thread has its miscellaneous processor state bits clear. */ | 
|  | p->thread.proc_status = 0; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HARDWALL | 
|  | /* New thread does not own any networks. */ | 
|  | memset(&p->thread.hardwall[0], 0, | 
|  | sizeof(struct hardwall_task) * HARDWALL_TYPES); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Start the new thread with the current architecture state | 
|  | * (user interrupt masks, etc.). | 
|  | */ | 
|  | save_arch_state(&p->thread); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return "current" if it looks plausible, or else a pointer to a dummy. | 
|  | * This can be helpful if we are just trying to emit a clean panic. | 
|  | */ | 
|  | struct task_struct *validate_current(void) | 
|  | { | 
|  | static struct task_struct corrupt = { .comm = "<corrupt>" }; | 
|  | struct task_struct *tsk = current; | 
|  | if (unlikely((unsigned long)tsk < PAGE_OFFSET || | 
|  | (high_memory && (void *)tsk > high_memory) || | 
|  | ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) { | 
|  | pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer); | 
|  | tsk = &corrupt; | 
|  | } | 
|  | return tsk; | 
|  | } | 
|  |  | 
|  | /* Take and return the pointer to the previous task, for schedule_tail(). */ | 
|  | struct task_struct *sim_notify_fork(struct task_struct *prev) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT | | 
|  | (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS)); | 
|  | __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK | | 
|  | (tsk->pid << _SIM_CONTROL_OPERATOR_BITS)); | 
|  | return prev; | 
|  | } | 
|  |  | 
|  | int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) | 
|  | { | 
|  | struct pt_regs *ptregs = task_pt_regs(tsk); | 
|  | elf_core_copy_regs(regs, ptregs); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #if CHIP_HAS_TILE_DMA() | 
|  |  | 
|  | /* Allow user processes to access the DMA SPRs */ | 
|  | void grant_dma_mpls(void) | 
|  | { | 
|  | #if CONFIG_KERNEL_PL == 2 | 
|  | __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1); | 
|  | __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1); | 
|  | #else | 
|  | __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1); | 
|  | __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Forbid user processes from accessing the DMA SPRs */ | 
|  | void restrict_dma_mpls(void) | 
|  | { | 
|  | #if CONFIG_KERNEL_PL == 2 | 
|  | __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1); | 
|  | __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1); | 
|  | #else | 
|  | __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1); | 
|  | __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Pause the DMA engine, then save off its state registers. */ | 
|  | static void save_tile_dma_state(struct tile_dma_state *dma) | 
|  | { | 
|  | unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS); | 
|  | unsigned long post_suspend_state; | 
|  |  | 
|  | /* If we're running, suspend the engine. */ | 
|  | if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) | 
|  | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); | 
|  |  | 
|  | /* | 
|  | * Wait for the engine to idle, then save regs.  Note that we | 
|  | * want to record the "running" bit from before suspension, | 
|  | * and the "done" bit from after, so that we can properly | 
|  | * distinguish a case where the user suspended the engine from | 
|  | * the case where the kernel suspended as part of the context | 
|  | * swap. | 
|  | */ | 
|  | do { | 
|  | post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS); | 
|  | } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK); | 
|  |  | 
|  | dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR); | 
|  | dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR); | 
|  | dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR); | 
|  | dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR); | 
|  | dma->strides = __insn_mfspr(SPR_DMA_STRIDE); | 
|  | dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE); | 
|  | dma->byte = __insn_mfspr(SPR_DMA_BYTE); | 
|  | dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) | | 
|  | (post_suspend_state & SPR_DMA_STATUS__DONE_MASK); | 
|  | } | 
|  |  | 
|  | /* Restart a DMA that was running before we were context-switched out. */ | 
|  | static void restore_tile_dma_state(struct thread_struct *t) | 
|  | { | 
|  | const struct tile_dma_state *dma = &t->tile_dma_state; | 
|  |  | 
|  | /* | 
|  | * The only way to restore the done bit is to run a zero | 
|  | * length transaction. | 
|  | */ | 
|  | if ((dma->status & SPR_DMA_STATUS__DONE_MASK) && | 
|  | !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) { | 
|  | __insn_mtspr(SPR_DMA_BYTE, 0); | 
|  | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); | 
|  | while (__insn_mfspr(SPR_DMA_USER_STATUS) & | 
|  | SPR_DMA_STATUS__BUSY_MASK) | 
|  | ; | 
|  | } | 
|  |  | 
|  | __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src); | 
|  | __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk); | 
|  | __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest); | 
|  | __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk); | 
|  | __insn_mtspr(SPR_DMA_STRIDE, dma->strides); | 
|  | __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size); | 
|  | __insn_mtspr(SPR_DMA_BYTE, dma->byte); | 
|  |  | 
|  | /* | 
|  | * Restart the engine if we were running and not done. | 
|  | * Clear a pending async DMA fault that we were waiting on return | 
|  | * to user space to execute, since we expect the DMA engine | 
|  | * to regenerate those faults for us now.  Note that we don't | 
|  | * try to clear the TIF_ASYNC_TLB flag, since it's relatively | 
|  | * harmless if set, and it covers both DMA and the SN processor. | 
|  | */ | 
|  | if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) { | 
|  | t->dma_async_tlb.fault_num = 0; | 
|  | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void save_arch_state(struct thread_struct *t) | 
|  | { | 
|  | #if CHIP_HAS_SPLIT_INTR_MASK() | 
|  | t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) | | 
|  | ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32); | 
|  | #else | 
|  | t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0); | 
|  | #endif | 
|  | t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0); | 
|  | t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1); | 
|  | t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0); | 
|  | t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1); | 
|  | t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2); | 
|  | t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3); | 
|  | t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS); | 
|  | #if CHIP_HAS_PROC_STATUS_SPR() | 
|  | t->proc_status = __insn_mfspr(SPR_PROC_STATUS); | 
|  | #endif | 
|  | #if !CHIP_HAS_FIXED_INTVEC_BASE() | 
|  | t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0); | 
|  | #endif | 
|  | #if CHIP_HAS_TILE_RTF_HWM() | 
|  | t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM); | 
|  | #endif | 
|  | #if CHIP_HAS_DSTREAM_PF() | 
|  | t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void restore_arch_state(const struct thread_struct *t) | 
|  | { | 
|  | #if CHIP_HAS_SPLIT_INTR_MASK() | 
|  | __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask); | 
|  | __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32); | 
|  | #else | 
|  | __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask); | 
|  | #endif | 
|  | __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]); | 
|  | __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]); | 
|  | __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]); | 
|  | __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]); | 
|  | __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]); | 
|  | __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]); | 
|  | __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0); | 
|  | #if CHIP_HAS_PROC_STATUS_SPR() | 
|  | __insn_mtspr(SPR_PROC_STATUS, t->proc_status); | 
|  | #endif | 
|  | #if !CHIP_HAS_FIXED_INTVEC_BASE() | 
|  | __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base); | 
|  | #endif | 
|  | #if CHIP_HAS_TILE_RTF_HWM() | 
|  | __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm); | 
|  | #endif | 
|  | #if CHIP_HAS_DSTREAM_PF() | 
|  | __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | void _prepare_arch_switch(struct task_struct *next) | 
|  | { | 
|  | #if CHIP_HAS_SN_PROC() | 
|  | int snctl; | 
|  | #endif | 
|  | #if CHIP_HAS_TILE_DMA() | 
|  | struct tile_dma_state *dma = ¤t->thread.tile_dma_state; | 
|  | if (dma->enabled) | 
|  | save_tile_dma_state(dma); | 
|  | #endif | 
|  | #if CHIP_HAS_SN_PROC() | 
|  | /* | 
|  | * Suspend the static network processor if it was running. | 
|  | * We do not suspend the fabric itself, just like we don't | 
|  | * try to suspend the UDN. | 
|  | */ | 
|  | snctl = __insn_mfspr(SPR_SNCTL); | 
|  | current->thread.sn_proc_running = | 
|  | (snctl & SPR_SNCTL__FRZPROC_MASK) == 0; | 
|  | if (current->thread.sn_proc_running) | 
|  | __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | struct task_struct *__sched _switch_to(struct task_struct *prev, | 
|  | struct task_struct *next) | 
|  | { | 
|  | /* DMA state is already saved; save off other arch state. */ | 
|  | save_arch_state(&prev->thread); | 
|  |  | 
|  | #if CHIP_HAS_TILE_DMA() | 
|  | /* | 
|  | * Restore DMA in new task if desired. | 
|  | * Note that it is only safe to restart here since interrupts | 
|  | * are disabled, so we can't take any DMATLB miss or access | 
|  | * interrupts before we have finished switching stacks. | 
|  | */ | 
|  | if (next->thread.tile_dma_state.enabled) { | 
|  | restore_tile_dma_state(&next->thread); | 
|  | grant_dma_mpls(); | 
|  | } else { | 
|  | restrict_dma_mpls(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Restore other arch state. */ | 
|  | restore_arch_state(&next->thread); | 
|  |  | 
|  | #if CHIP_HAS_SN_PROC() | 
|  | /* | 
|  | * Restart static network processor in the new process | 
|  | * if it was running before. | 
|  | */ | 
|  | if (next->thread.sn_proc_running) { | 
|  | int snctl = __insn_mfspr(SPR_SNCTL); | 
|  | __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HARDWALL | 
|  | /* Enable or disable access to the network registers appropriately. */ | 
|  | hardwall_switch_tasks(prev, next); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Switch kernel SP, PC, and callee-saved registers. | 
|  | * In the context of the new task, return the old task pointer | 
|  | * (i.e. the task that actually called __switch_to). | 
|  | * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp. | 
|  | */ | 
|  | return __switch_to(prev, next, next_current_ksp0(next)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called on return from interrupt if any of the | 
|  | * TIF_WORK_MASK flags are set in thread_info->flags.  It is | 
|  | * entered with interrupts disabled so we don't miss an event | 
|  | * that modified the thread_info flags.  If any flag is set, we | 
|  | * handle it and return, and the calling assembly code will | 
|  | * re-disable interrupts, reload the thread flags, and call back | 
|  | * if more flags need to be handled. | 
|  | * | 
|  | * We return whether we need to check the thread_info flags again | 
|  | * or not.  Note that we don't clear TIF_SINGLESTEP here, so it's | 
|  | * important that it be tested last, and then claim that we don't | 
|  | * need to recheck the flags. | 
|  | */ | 
|  | int do_work_pending(struct pt_regs *regs, u32 thread_info_flags) | 
|  | { | 
|  | /* If we enter in kernel mode, do nothing and exit the caller loop. */ | 
|  | if (!user_mode(regs)) | 
|  | return 0; | 
|  |  | 
|  | /* Enable interrupts; they are disabled again on return to caller. */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | if (thread_info_flags & _TIF_NEED_RESCHED) { | 
|  | schedule(); | 
|  | return 1; | 
|  | } | 
|  | #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() | 
|  | if (thread_info_flags & _TIF_ASYNC_TLB) { | 
|  | do_async_page_fault(regs); | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  | if (thread_info_flags & _TIF_SIGPENDING) { | 
|  | do_signal(regs); | 
|  | return 1; | 
|  | } | 
|  | if (thread_info_flags & _TIF_NOTIFY_RESUME) { | 
|  | clear_thread_flag(TIF_NOTIFY_RESUME); | 
|  | tracehook_notify_resume(regs); | 
|  | return 1; | 
|  | } | 
|  | if (thread_info_flags & _TIF_SINGLESTEP) { | 
|  | single_step_once(regs); | 
|  | return 0; | 
|  | } | 
|  | panic("work_pending: bad flags %#x\n", thread_info_flags); | 
|  | } | 
|  |  | 
|  | unsigned long get_wchan(struct task_struct *p) | 
|  | { | 
|  | struct KBacktraceIterator kbt; | 
|  |  | 
|  | if (!p || p == current || p->state == TASK_RUNNING) | 
|  | return 0; | 
|  |  | 
|  | for (KBacktraceIterator_init(&kbt, p, NULL); | 
|  | !KBacktraceIterator_end(&kbt); | 
|  | KBacktraceIterator_next(&kbt)) { | 
|  | if (!in_sched_functions(kbt.it.pc)) | 
|  | return kbt.it.pc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Flush thread state. */ | 
|  | void flush_thread(void) | 
|  | { | 
|  | /* Nothing */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free current thread data structures etc.. | 
|  | */ | 
|  | void exit_thread(void) | 
|  | { | 
|  | /* Nothing */ | 
|  | } | 
|  |  | 
|  | void show_regs(struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *tsk = validate_current(); | 
|  | int i; | 
|  |  | 
|  | pr_err("\n"); | 
|  | pr_err(" Pid: %d, comm: %20s, CPU: %d\n", | 
|  | tsk->pid, tsk->comm, smp_processor_id()); | 
|  | #ifdef __tilegx__ | 
|  | for (i = 0; i < 51; i += 3) | 
|  | pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n", | 
|  | i, regs->regs[i], i+1, regs->regs[i+1], | 
|  | i+2, regs->regs[i+2]); | 
|  | pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n", | 
|  | regs->regs[51], regs->regs[52], regs->tp); | 
|  | pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr); | 
|  | #else | 
|  | for (i = 0; i < 52; i += 4) | 
|  | pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT | 
|  | " r%-2d: "REGFMT" r%-2d: "REGFMT"\n", | 
|  | i, regs->regs[i], i+1, regs->regs[i+1], | 
|  | i+2, regs->regs[i+2], i+3, regs->regs[i+3]); | 
|  | pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n", | 
|  | regs->regs[52], regs->tp, regs->sp, regs->lr); | 
|  | #endif | 
|  | pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld\n", | 
|  | regs->pc, regs->ex1, regs->faultnum); | 
|  |  | 
|  | dump_stack_regs(regs); | 
|  | } |