| /* | 
 |  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the BSD-type | 
 |  * license below: | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  *      Redistributions of source code must retain the above copyright | 
 |  *      notice, this list of conditions and the following disclaimer. | 
 |  * | 
 |  *      Redistributions in binary form must reproduce the above | 
 |  *      copyright notice, this list of conditions and the following | 
 |  *      disclaimer in the documentation and/or other materials provided | 
 |  *      with the distribution. | 
 |  * | 
 |  *      Neither the name of the Network Appliance, Inc. nor the names of | 
 |  *      its contributors may be used to endorse or promote products | 
 |  *      derived from this software without specific prior written | 
 |  *      permission. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 |  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 |  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 |  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 |  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 |  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 |  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  */ | 
 |  | 
 | /* | 
 |  * transport.c | 
 |  * | 
 |  * This file contains the top-level implementation of an RPC RDMA | 
 |  * transport. | 
 |  * | 
 |  * Naming convention: functions beginning with xprt_ are part of the | 
 |  * transport switch. All others are RPC RDMA internal. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/seq_file.h> | 
 |  | 
 | #include "xprt_rdma.h" | 
 |  | 
 | #ifdef RPC_DEBUG | 
 | # define RPCDBG_FACILITY	RPCDBG_TRANS | 
 | #endif | 
 |  | 
 | MODULE_LICENSE("Dual BSD/GPL"); | 
 |  | 
 | MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS"); | 
 | MODULE_AUTHOR("Network Appliance, Inc."); | 
 |  | 
 | /* | 
 |  * tunables | 
 |  */ | 
 |  | 
 | static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; | 
 | static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; | 
 | static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; | 
 | static unsigned int xprt_rdma_inline_write_padding; | 
 | static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR; | 
 |                 int xprt_rdma_pad_optimize = 0; | 
 |  | 
 | #ifdef RPC_DEBUG | 
 |  | 
 | static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; | 
 | static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; | 
 | static unsigned int zero; | 
 | static unsigned int max_padding = PAGE_SIZE; | 
 | static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; | 
 | static unsigned int max_memreg = RPCRDMA_LAST - 1; | 
 |  | 
 | static struct ctl_table_header *sunrpc_table_header; | 
 |  | 
 | static ctl_table xr_tunables_table[] = { | 
 | 	{ | 
 | 		.procname	= "rdma_slot_table_entries", | 
 | 		.data		= &xprt_rdma_slot_table_entries, | 
 | 		.maxlen		= sizeof(unsigned int), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec_minmax, | 
 | 		.extra1		= &min_slot_table_size, | 
 | 		.extra2		= &max_slot_table_size | 
 | 	}, | 
 | 	{ | 
 | 		.procname	= "rdma_max_inline_read", | 
 | 		.data		= &xprt_rdma_max_inline_read, | 
 | 		.maxlen		= sizeof(unsigned int), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec, | 
 | 	}, | 
 | 	{ | 
 | 		.procname	= "rdma_max_inline_write", | 
 | 		.data		= &xprt_rdma_max_inline_write, | 
 | 		.maxlen		= sizeof(unsigned int), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec, | 
 | 	}, | 
 | 	{ | 
 | 		.procname	= "rdma_inline_write_padding", | 
 | 		.data		= &xprt_rdma_inline_write_padding, | 
 | 		.maxlen		= sizeof(unsigned int), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec_minmax, | 
 | 		.extra1		= &zero, | 
 | 		.extra2		= &max_padding, | 
 | 	}, | 
 | 	{ | 
 | 		.procname	= "rdma_memreg_strategy", | 
 | 		.data		= &xprt_rdma_memreg_strategy, | 
 | 		.maxlen		= sizeof(unsigned int), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec_minmax, | 
 | 		.extra1		= &min_memreg, | 
 | 		.extra2		= &max_memreg, | 
 | 	}, | 
 | 	{ | 
 | 		.procname	= "rdma_pad_optimize", | 
 | 		.data		= &xprt_rdma_pad_optimize, | 
 | 		.maxlen		= sizeof(unsigned int), | 
 | 		.mode		= 0644, | 
 | 		.proc_handler	= proc_dointvec, | 
 | 	}, | 
 | 	{ }, | 
 | }; | 
 |  | 
 | static ctl_table sunrpc_table[] = { | 
 | 	{ | 
 | 		.procname	= "sunrpc", | 
 | 		.mode		= 0555, | 
 | 		.child		= xr_tunables_table | 
 | 	}, | 
 | 	{ }, | 
 | }; | 
 |  | 
 | #endif | 
 |  | 
 | static struct rpc_xprt_ops xprt_rdma_procs;	/* forward reference */ | 
 |  | 
 | static void | 
 | xprt_rdma_format_addresses(struct rpc_xprt *xprt) | 
 | { | 
 | 	struct sockaddr *sap = (struct sockaddr *) | 
 | 					&rpcx_to_rdmad(xprt).addr; | 
 | 	struct sockaddr_in *sin = (struct sockaddr_in *)sap; | 
 | 	char buf[64]; | 
 |  | 
 | 	(void)rpc_ntop(sap, buf, sizeof(buf)); | 
 | 	xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); | 
 |  | 
 | 	snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); | 
 | 	xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); | 
 |  | 
 | 	xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; | 
 |  | 
 | 	snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); | 
 | 	xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); | 
 |  | 
 | 	snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); | 
 | 	xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); | 
 |  | 
 | 	/* netid */ | 
 | 	xprt->address_strings[RPC_DISPLAY_NETID] = "rdma"; | 
 | } | 
 |  | 
 | static void | 
 | xprt_rdma_free_addresses(struct rpc_xprt *xprt) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < RPC_DISPLAY_MAX; i++) | 
 | 		switch (i) { | 
 | 		case RPC_DISPLAY_PROTO: | 
 | 		case RPC_DISPLAY_NETID: | 
 | 			continue; | 
 | 		default: | 
 | 			kfree(xprt->address_strings[i]); | 
 | 		} | 
 | } | 
 |  | 
 | static void | 
 | xprt_rdma_connect_worker(struct work_struct *work) | 
 | { | 
 | 	struct rpcrdma_xprt *r_xprt = | 
 | 		container_of(work, struct rpcrdma_xprt, rdma_connect.work); | 
 | 	struct rpc_xprt *xprt = &r_xprt->xprt; | 
 | 	int rc = 0; | 
 |  | 
 | 	current->flags |= PF_FSTRANS; | 
 | 	xprt_clear_connected(xprt); | 
 |  | 
 | 	dprintk("RPC:       %s: %sconnect\n", __func__, | 
 | 			r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); | 
 | 	rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); | 
 | 	if (rc) | 
 | 		xprt_wake_pending_tasks(xprt, rc); | 
 |  | 
 | 	dprintk("RPC:       %s: exit\n", __func__); | 
 | 	xprt_clear_connecting(xprt); | 
 | 	current->flags &= ~PF_FSTRANS; | 
 | } | 
 |  | 
 | /* | 
 |  * xprt_rdma_destroy | 
 |  * | 
 |  * Destroy the xprt. | 
 |  * Free all memory associated with the object, including its own. | 
 |  * NOTE: none of the *destroy methods free memory for their top-level | 
 |  * objects, even though they may have allocated it (they do free | 
 |  * private memory). It's up to the caller to handle it. In this | 
 |  * case (RDMA transport), all structure memory is inlined with the | 
 |  * struct rpcrdma_xprt. | 
 |  */ | 
 | static void | 
 | xprt_rdma_destroy(struct rpc_xprt *xprt) | 
 | { | 
 | 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | 
 | 	int rc; | 
 |  | 
 | 	dprintk("RPC:       %s: called\n", __func__); | 
 |  | 
 | 	cancel_delayed_work_sync(&r_xprt->rdma_connect); | 
 |  | 
 | 	xprt_clear_connected(xprt); | 
 |  | 
 | 	rpcrdma_buffer_destroy(&r_xprt->rx_buf); | 
 | 	rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); | 
 | 	if (rc) | 
 | 		dprintk("RPC:       %s: rpcrdma_ep_destroy returned %i\n", | 
 | 			__func__, rc); | 
 | 	rpcrdma_ia_close(&r_xprt->rx_ia); | 
 |  | 
 | 	xprt_rdma_free_addresses(xprt); | 
 |  | 
 | 	xprt_free(xprt); | 
 |  | 
 | 	dprintk("RPC:       %s: returning\n", __func__); | 
 |  | 
 | 	module_put(THIS_MODULE); | 
 | } | 
 |  | 
 | static const struct rpc_timeout xprt_rdma_default_timeout = { | 
 | 	.to_initval = 60 * HZ, | 
 | 	.to_maxval = 60 * HZ, | 
 | }; | 
 |  | 
 | /** | 
 |  * xprt_setup_rdma - Set up transport to use RDMA | 
 |  * | 
 |  * @args: rpc transport arguments | 
 |  */ | 
 | static struct rpc_xprt * | 
 | xprt_setup_rdma(struct xprt_create *args) | 
 | { | 
 | 	struct rpcrdma_create_data_internal cdata; | 
 | 	struct rpc_xprt *xprt; | 
 | 	struct rpcrdma_xprt *new_xprt; | 
 | 	struct rpcrdma_ep *new_ep; | 
 | 	struct sockaddr_in *sin; | 
 | 	int rc; | 
 |  | 
 | 	if (args->addrlen > sizeof(xprt->addr)) { | 
 | 		dprintk("RPC:       %s: address too large\n", __func__); | 
 | 		return ERR_PTR(-EBADF); | 
 | 	} | 
 |  | 
 | 	xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), | 
 | 			xprt_rdma_slot_table_entries, | 
 | 			xprt_rdma_slot_table_entries); | 
 | 	if (xprt == NULL) { | 
 | 		dprintk("RPC:       %s: couldn't allocate rpcrdma_xprt\n", | 
 | 			__func__); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	/* 60 second timeout, no retries */ | 
 | 	xprt->timeout = &xprt_rdma_default_timeout; | 
 | 	xprt->bind_timeout = (60U * HZ); | 
 | 	xprt->reestablish_timeout = (5U * HZ); | 
 | 	xprt->idle_timeout = (5U * 60 * HZ); | 
 |  | 
 | 	xprt->resvport = 0;		/* privileged port not needed */ | 
 | 	xprt->tsh_size = 0;		/* RPC-RDMA handles framing */ | 
 | 	xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE; | 
 | 	xprt->ops = &xprt_rdma_procs; | 
 |  | 
 | 	/* | 
 | 	 * Set up RDMA-specific connect data. | 
 | 	 */ | 
 |  | 
 | 	/* Put server RDMA address in local cdata */ | 
 | 	memcpy(&cdata.addr, args->dstaddr, args->addrlen); | 
 |  | 
 | 	/* Ensure xprt->addr holds valid server TCP (not RDMA) | 
 | 	 * address, for any side protocols which peek at it */ | 
 | 	xprt->prot = IPPROTO_TCP; | 
 | 	xprt->addrlen = args->addrlen; | 
 | 	memcpy(&xprt->addr, &cdata.addr, xprt->addrlen); | 
 |  | 
 | 	sin = (struct sockaddr_in *)&cdata.addr; | 
 | 	if (ntohs(sin->sin_port) != 0) | 
 | 		xprt_set_bound(xprt); | 
 |  | 
 | 	dprintk("RPC:       %s: %pI4:%u\n", | 
 | 		__func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port)); | 
 |  | 
 | 	/* Set max requests */ | 
 | 	cdata.max_requests = xprt->max_reqs; | 
 |  | 
 | 	/* Set some length limits */ | 
 | 	cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ | 
 | 	cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ | 
 |  | 
 | 	cdata.inline_wsize = xprt_rdma_max_inline_write; | 
 | 	if (cdata.inline_wsize > cdata.wsize) | 
 | 		cdata.inline_wsize = cdata.wsize; | 
 |  | 
 | 	cdata.inline_rsize = xprt_rdma_max_inline_read; | 
 | 	if (cdata.inline_rsize > cdata.rsize) | 
 | 		cdata.inline_rsize = cdata.rsize; | 
 |  | 
 | 	cdata.padding = xprt_rdma_inline_write_padding; | 
 |  | 
 | 	/* | 
 | 	 * Create new transport instance, which includes initialized | 
 | 	 *  o ia | 
 | 	 *  o endpoint | 
 | 	 *  o buffers | 
 | 	 */ | 
 |  | 
 | 	new_xprt = rpcx_to_rdmax(xprt); | 
 |  | 
 | 	rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr, | 
 | 				xprt_rdma_memreg_strategy); | 
 | 	if (rc) | 
 | 		goto out1; | 
 |  | 
 | 	/* | 
 | 	 * initialize and create ep | 
 | 	 */ | 
 | 	new_xprt->rx_data = cdata; | 
 | 	new_ep = &new_xprt->rx_ep; | 
 | 	new_ep->rep_remote_addr = cdata.addr; | 
 |  | 
 | 	rc = rpcrdma_ep_create(&new_xprt->rx_ep, | 
 | 				&new_xprt->rx_ia, &new_xprt->rx_data); | 
 | 	if (rc) | 
 | 		goto out2; | 
 |  | 
 | 	/* | 
 | 	 * Allocate pre-registered send and receive buffers for headers and | 
 | 	 * any inline data. Also specify any padding which will be provided | 
 | 	 * from a preregistered zero buffer. | 
 | 	 */ | 
 | 	rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia, | 
 | 				&new_xprt->rx_data); | 
 | 	if (rc) | 
 | 		goto out3; | 
 |  | 
 | 	/* | 
 | 	 * Register a callback for connection events. This is necessary because | 
 | 	 * connection loss notification is async. We also catch connection loss | 
 | 	 * when reaping receives. | 
 | 	 */ | 
 | 	INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker); | 
 | 	new_ep->rep_func = rpcrdma_conn_func; | 
 | 	new_ep->rep_xprt = xprt; | 
 |  | 
 | 	xprt_rdma_format_addresses(xprt); | 
 |  | 
 | 	if (!try_module_get(THIS_MODULE)) | 
 | 		goto out4; | 
 |  | 
 | 	return xprt; | 
 |  | 
 | out4: | 
 | 	xprt_rdma_free_addresses(xprt); | 
 | 	rc = -EINVAL; | 
 | out3: | 
 | 	(void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); | 
 | out2: | 
 | 	rpcrdma_ia_close(&new_xprt->rx_ia); | 
 | out1: | 
 | 	xprt_free(xprt); | 
 | 	return ERR_PTR(rc); | 
 | } | 
 |  | 
 | /* | 
 |  * Close a connection, during shutdown or timeout/reconnect | 
 |  */ | 
 | static void | 
 | xprt_rdma_close(struct rpc_xprt *xprt) | 
 | { | 
 | 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | 
 |  | 
 | 	dprintk("RPC:       %s: closing\n", __func__); | 
 | 	if (r_xprt->rx_ep.rep_connected > 0) | 
 | 		xprt->reestablish_timeout = 0; | 
 | 	xprt_disconnect_done(xprt); | 
 | 	(void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); | 
 | } | 
 |  | 
 | static void | 
 | xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) | 
 | { | 
 | 	struct sockaddr_in *sap; | 
 |  | 
 | 	sap = (struct sockaddr_in *)&xprt->addr; | 
 | 	sap->sin_port = htons(port); | 
 | 	sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; | 
 | 	sap->sin_port = htons(port); | 
 | 	dprintk("RPC:       %s: %u\n", __func__, port); | 
 | } | 
 |  | 
 | static void | 
 | xprt_rdma_connect(struct rpc_task *task) | 
 | { | 
 | 	struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt; | 
 | 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | 
 |  | 
 | 	if (r_xprt->rx_ep.rep_connected != 0) { | 
 | 		/* Reconnect */ | 
 | 		schedule_delayed_work(&r_xprt->rdma_connect, | 
 | 			xprt->reestablish_timeout); | 
 | 		xprt->reestablish_timeout <<= 1; | 
 | 		if (xprt->reestablish_timeout > (30 * HZ)) | 
 | 			xprt->reestablish_timeout = (30 * HZ); | 
 | 		else if (xprt->reestablish_timeout < (5 * HZ)) | 
 | 			xprt->reestablish_timeout = (5 * HZ); | 
 | 	} else { | 
 | 		schedule_delayed_work(&r_xprt->rdma_connect, 0); | 
 | 		if (!RPC_IS_ASYNC(task)) | 
 | 			flush_delayed_work(&r_xprt->rdma_connect); | 
 | 	} | 
 | } | 
 |  | 
 | static int | 
 | xprt_rdma_reserve_xprt(struct rpc_xprt *xprt, struct rpc_task *task) | 
 | { | 
 | 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | 
 | 	int credits = atomic_read(&r_xprt->rx_buf.rb_credits); | 
 |  | 
 | 	/* == RPC_CWNDSCALE @ init, but *after* setup */ | 
 | 	if (r_xprt->rx_buf.rb_cwndscale == 0UL) { | 
 | 		r_xprt->rx_buf.rb_cwndscale = xprt->cwnd; | 
 | 		dprintk("RPC:       %s: cwndscale %lu\n", __func__, | 
 | 			r_xprt->rx_buf.rb_cwndscale); | 
 | 		BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0); | 
 | 	} | 
 | 	xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale; | 
 | 	return xprt_reserve_xprt_cong(xprt, task); | 
 | } | 
 |  | 
 | /* | 
 |  * The RDMA allocate/free functions need the task structure as a place | 
 |  * to hide the struct rpcrdma_req, which is necessary for the actual send/recv | 
 |  * sequence. For this reason, the recv buffers are attached to send | 
 |  * buffers for portions of the RPC. Note that the RPC layer allocates | 
 |  * both send and receive buffers in the same call. We may register | 
 |  * the receive buffer portion when using reply chunks. | 
 |  */ | 
 | static void * | 
 | xprt_rdma_allocate(struct rpc_task *task, size_t size) | 
 | { | 
 | 	struct rpc_xprt *xprt = task->tk_xprt; | 
 | 	struct rpcrdma_req *req, *nreq; | 
 |  | 
 | 	req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf); | 
 | 	BUG_ON(NULL == req); | 
 |  | 
 | 	if (size > req->rl_size) { | 
 | 		dprintk("RPC:       %s: size %zd too large for buffer[%zd]: " | 
 | 			"prog %d vers %d proc %d\n", | 
 | 			__func__, size, req->rl_size, | 
 | 			task->tk_client->cl_prog, task->tk_client->cl_vers, | 
 | 			task->tk_msg.rpc_proc->p_proc); | 
 | 		/* | 
 | 		 * Outgoing length shortage. Our inline write max must have | 
 | 		 * been configured to perform direct i/o. | 
 | 		 * | 
 | 		 * This is therefore a large metadata operation, and the | 
 | 		 * allocate call was made on the maximum possible message, | 
 | 		 * e.g. containing long filename(s) or symlink data. In | 
 | 		 * fact, while these metadata operations *might* carry | 
 | 		 * large outgoing payloads, they rarely *do*. However, we | 
 | 		 * have to commit to the request here, so reallocate and | 
 | 		 * register it now. The data path will never require this | 
 | 		 * reallocation. | 
 | 		 * | 
 | 		 * If the allocation or registration fails, the RPC framework | 
 | 		 * will (doggedly) retry. | 
 | 		 */ | 
 | 		if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy == | 
 | 				RPCRDMA_BOUNCEBUFFERS) { | 
 | 			/* forced to "pure inline" */ | 
 | 			dprintk("RPC:       %s: too much data (%zd) for inline " | 
 | 					"(r/w max %d/%d)\n", __func__, size, | 
 | 					rpcx_to_rdmad(xprt).inline_rsize, | 
 | 					rpcx_to_rdmad(xprt).inline_wsize); | 
 | 			size = req->rl_size; | 
 | 			rpc_exit(task, -EIO);		/* fail the operation */ | 
 | 			rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; | 
 | 			goto out; | 
 | 		} | 
 | 		if (task->tk_flags & RPC_TASK_SWAPPER) | 
 | 			nreq = kmalloc(sizeof *req + size, GFP_ATOMIC); | 
 | 		else | 
 | 			nreq = kmalloc(sizeof *req + size, GFP_NOFS); | 
 | 		if (nreq == NULL) | 
 | 			goto outfail; | 
 |  | 
 | 		if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia, | 
 | 				nreq->rl_base, size + sizeof(struct rpcrdma_req) | 
 | 				- offsetof(struct rpcrdma_req, rl_base), | 
 | 				&nreq->rl_handle, &nreq->rl_iov)) { | 
 | 			kfree(nreq); | 
 | 			goto outfail; | 
 | 		} | 
 | 		rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size; | 
 | 		nreq->rl_size = size; | 
 | 		nreq->rl_niovs = 0; | 
 | 		nreq->rl_nchunks = 0; | 
 | 		nreq->rl_buffer = (struct rpcrdma_buffer *)req; | 
 | 		nreq->rl_reply = req->rl_reply; | 
 | 		memcpy(nreq->rl_segments, | 
 | 			req->rl_segments, sizeof nreq->rl_segments); | 
 | 		/* flag the swap with an unused field */ | 
 | 		nreq->rl_iov.length = 0; | 
 | 		req->rl_reply = NULL; | 
 | 		req = nreq; | 
 | 	} | 
 | 	dprintk("RPC:       %s: size %zd, request 0x%p\n", __func__, size, req); | 
 | out: | 
 | 	req->rl_connect_cookie = 0;	/* our reserved value */ | 
 | 	return req->rl_xdr_buf; | 
 |  | 
 | outfail: | 
 | 	rpcrdma_buffer_put(req); | 
 | 	rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * This function returns all RDMA resources to the pool. | 
 |  */ | 
 | static void | 
 | xprt_rdma_free(void *buffer) | 
 | { | 
 | 	struct rpcrdma_req *req; | 
 | 	struct rpcrdma_xprt *r_xprt; | 
 | 	struct rpcrdma_rep *rep; | 
 | 	int i; | 
 |  | 
 | 	if (buffer == NULL) | 
 | 		return; | 
 |  | 
 | 	req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]); | 
 | 	if (req->rl_iov.length == 0) {	/* see allocate above */ | 
 | 		r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer, | 
 | 				      struct rpcrdma_xprt, rx_buf); | 
 | 	} else | 
 | 		r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); | 
 | 	rep = req->rl_reply; | 
 |  | 
 | 	dprintk("RPC:       %s: called on 0x%p%s\n", | 
 | 		__func__, rep, (rep && rep->rr_func) ? " (with waiter)" : ""); | 
 |  | 
 | 	/* | 
 | 	 * Finish the deregistration. When using mw bind, this was | 
 | 	 * begun in rpcrdma_reply_handler(). In all other modes, we | 
 | 	 * do it here, in thread context. The process is considered | 
 | 	 * complete when the rr_func vector becomes NULL - this | 
 | 	 * was put in place during rpcrdma_reply_handler() - the wait | 
 | 	 * call below will not block if the dereg is "done". If | 
 | 	 * interrupted, our framework will clean up. | 
 | 	 */ | 
 | 	for (i = 0; req->rl_nchunks;) { | 
 | 		--req->rl_nchunks; | 
 | 		i += rpcrdma_deregister_external( | 
 | 			&req->rl_segments[i], r_xprt, NULL); | 
 | 	} | 
 |  | 
 | 	if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) { | 
 | 		rep->rr_func = NULL;	/* abandon the callback */ | 
 | 		req->rl_reply = NULL; | 
 | 	} | 
 |  | 
 | 	if (req->rl_iov.length == 0) {	/* see allocate above */ | 
 | 		struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer; | 
 | 		oreq->rl_reply = req->rl_reply; | 
 | 		(void) rpcrdma_deregister_internal(&r_xprt->rx_ia, | 
 | 						   req->rl_handle, | 
 | 						   &req->rl_iov); | 
 | 		kfree(req); | 
 | 		req = oreq; | 
 | 	} | 
 |  | 
 | 	/* Put back request+reply buffers */ | 
 | 	rpcrdma_buffer_put(req); | 
 | } | 
 |  | 
 | /* | 
 |  * send_request invokes the meat of RPC RDMA. It must do the following: | 
 |  *  1.  Marshal the RPC request into an RPC RDMA request, which means | 
 |  *	putting a header in front of data, and creating IOVs for RDMA | 
 |  *	from those in the request. | 
 |  *  2.  In marshaling, detect opportunities for RDMA, and use them. | 
 |  *  3.  Post a recv message to set up asynch completion, then send | 
 |  *	the request (rpcrdma_ep_post). | 
 |  *  4.  No partial sends are possible in the RPC-RDMA protocol (as in UDP). | 
 |  */ | 
 |  | 
 | static int | 
 | xprt_rdma_send_request(struct rpc_task *task) | 
 | { | 
 | 	struct rpc_rqst *rqst = task->tk_rqstp; | 
 | 	struct rpc_xprt *xprt = task->tk_xprt; | 
 | 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst); | 
 | 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | 
 |  | 
 | 	/* marshal the send itself */ | 
 | 	if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) { | 
 | 		r_xprt->rx_stats.failed_marshal_count++; | 
 | 		dprintk("RPC:       %s: rpcrdma_marshal_req failed\n", | 
 | 			__func__); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (req->rl_reply == NULL) 		/* e.g. reconnection */ | 
 | 		rpcrdma_recv_buffer_get(req); | 
 |  | 
 | 	if (req->rl_reply) { | 
 | 		req->rl_reply->rr_func = rpcrdma_reply_handler; | 
 | 		/* this need only be done once, but... */ | 
 | 		req->rl_reply->rr_xprt = xprt; | 
 | 	} | 
 |  | 
 | 	/* Must suppress retransmit to maintain credits */ | 
 | 	if (req->rl_connect_cookie == xprt->connect_cookie) | 
 | 		goto drop_connection; | 
 | 	req->rl_connect_cookie = xprt->connect_cookie; | 
 |  | 
 | 	if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) | 
 | 		goto drop_connection; | 
 |  | 
 | 	rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len; | 
 | 	rqst->rq_bytes_sent = 0; | 
 | 	return 0; | 
 |  | 
 | drop_connection: | 
 | 	xprt_disconnect_done(xprt); | 
 | 	return -ENOTCONN;	/* implies disconnect */ | 
 | } | 
 |  | 
 | static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) | 
 | { | 
 | 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | 
 | 	long idle_time = 0; | 
 |  | 
 | 	if (xprt_connected(xprt)) | 
 | 		idle_time = (long)(jiffies - xprt->last_used) / HZ; | 
 |  | 
 | 	seq_printf(seq, | 
 | 	  "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu " | 
 | 	  "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n", | 
 |  | 
 | 	   0,	/* need a local port? */ | 
 | 	   xprt->stat.bind_count, | 
 | 	   xprt->stat.connect_count, | 
 | 	   xprt->stat.connect_time, | 
 | 	   idle_time, | 
 | 	   xprt->stat.sends, | 
 | 	   xprt->stat.recvs, | 
 | 	   xprt->stat.bad_xids, | 
 | 	   xprt->stat.req_u, | 
 | 	   xprt->stat.bklog_u, | 
 |  | 
 | 	   r_xprt->rx_stats.read_chunk_count, | 
 | 	   r_xprt->rx_stats.write_chunk_count, | 
 | 	   r_xprt->rx_stats.reply_chunk_count, | 
 | 	   r_xprt->rx_stats.total_rdma_request, | 
 | 	   r_xprt->rx_stats.total_rdma_reply, | 
 | 	   r_xprt->rx_stats.pullup_copy_count, | 
 | 	   r_xprt->rx_stats.fixup_copy_count, | 
 | 	   r_xprt->rx_stats.hardway_register_count, | 
 | 	   r_xprt->rx_stats.failed_marshal_count, | 
 | 	   r_xprt->rx_stats.bad_reply_count); | 
 | } | 
 |  | 
 | /* | 
 |  * Plumbing for rpc transport switch and kernel module | 
 |  */ | 
 |  | 
 | static struct rpc_xprt_ops xprt_rdma_procs = { | 
 | 	.reserve_xprt		= xprt_rdma_reserve_xprt, | 
 | 	.release_xprt		= xprt_release_xprt_cong, /* sunrpc/xprt.c */ | 
 | 	.alloc_slot		= xprt_alloc_slot, | 
 | 	.release_request	= xprt_release_rqst_cong,       /* ditto */ | 
 | 	.set_retrans_timeout	= xprt_set_retrans_timeout_def, /* ditto */ | 
 | 	.rpcbind		= rpcb_getport_async,	/* sunrpc/rpcb_clnt.c */ | 
 | 	.set_port		= xprt_rdma_set_port, | 
 | 	.connect		= xprt_rdma_connect, | 
 | 	.buf_alloc		= xprt_rdma_allocate, | 
 | 	.buf_free		= xprt_rdma_free, | 
 | 	.send_request		= xprt_rdma_send_request, | 
 | 	.close			= xprt_rdma_close, | 
 | 	.destroy		= xprt_rdma_destroy, | 
 | 	.print_stats		= xprt_rdma_print_stats | 
 | }; | 
 |  | 
 | static struct xprt_class xprt_rdma = { | 
 | 	.list			= LIST_HEAD_INIT(xprt_rdma.list), | 
 | 	.name			= "rdma", | 
 | 	.owner			= THIS_MODULE, | 
 | 	.ident			= XPRT_TRANSPORT_RDMA, | 
 | 	.setup			= xprt_setup_rdma, | 
 | }; | 
 |  | 
 | static void __exit xprt_rdma_cleanup(void) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n"); | 
 | #ifdef RPC_DEBUG | 
 | 	if (sunrpc_table_header) { | 
 | 		unregister_sysctl_table(sunrpc_table_header); | 
 | 		sunrpc_table_header = NULL; | 
 | 	} | 
 | #endif | 
 | 	rc = xprt_unregister_transport(&xprt_rdma); | 
 | 	if (rc) | 
 | 		dprintk("RPC:       %s: xprt_unregister returned %i\n", | 
 | 			__func__, rc); | 
 | } | 
 |  | 
 | static int __init xprt_rdma_init(void) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = xprt_register_transport(&xprt_rdma); | 
 |  | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n"); | 
 |  | 
 | 	dprintk(KERN_INFO "Defaults:\n"); | 
 | 	dprintk(KERN_INFO "\tSlots %d\n" | 
 | 		"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", | 
 | 		xprt_rdma_slot_table_entries, | 
 | 		xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); | 
 | 	dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n", | 
 | 		xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); | 
 |  | 
 | #ifdef RPC_DEBUG | 
 | 	if (!sunrpc_table_header) | 
 | 		sunrpc_table_header = register_sysctl_table(sunrpc_table); | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | module_init(xprt_rdma_init); | 
 | module_exit(xprt_rdma_cleanup); |