|  | #ifndef _ASM_X86_PKEYS_H | 
|  | #define _ASM_X86_PKEYS_H | 
|  |  | 
|  | #define arch_max_pkey() (boot_cpu_has(X86_FEATURE_OSPKE) ? 16 : 1) | 
|  |  | 
|  | extern int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, | 
|  | unsigned long init_val); | 
|  |  | 
|  | /* | 
|  | * Try to dedicate one of the protection keys to be used as an | 
|  | * execute-only protection key. | 
|  | */ | 
|  | extern int __execute_only_pkey(struct mm_struct *mm); | 
|  | static inline int execute_only_pkey(struct mm_struct *mm) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_OSPKE)) | 
|  | return 0; | 
|  |  | 
|  | return __execute_only_pkey(mm); | 
|  | } | 
|  |  | 
|  | extern int __arch_override_mprotect_pkey(struct vm_area_struct *vma, | 
|  | int prot, int pkey); | 
|  | static inline int arch_override_mprotect_pkey(struct vm_area_struct *vma, | 
|  | int prot, int pkey) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_OSPKE)) | 
|  | return 0; | 
|  |  | 
|  | return __arch_override_mprotect_pkey(vma, prot, pkey); | 
|  | } | 
|  |  | 
|  | extern int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, | 
|  | unsigned long init_val); | 
|  |  | 
|  | #define ARCH_VM_PKEY_FLAGS (VM_PKEY_BIT0 | VM_PKEY_BIT1 | VM_PKEY_BIT2 | VM_PKEY_BIT3) | 
|  |  | 
|  | #define mm_pkey_allocation_map(mm)	(mm->context.pkey_allocation_map) | 
|  | #define mm_set_pkey_allocated(mm, pkey) do {		\ | 
|  | mm_pkey_allocation_map(mm) |= (1U << pkey);	\ | 
|  | } while (0) | 
|  | #define mm_set_pkey_free(mm, pkey) do {			\ | 
|  | mm_pkey_allocation_map(mm) &= ~(1U << pkey);	\ | 
|  | } while (0) | 
|  |  | 
|  | static inline | 
|  | bool mm_pkey_is_allocated(struct mm_struct *mm, int pkey) | 
|  | { | 
|  | /* | 
|  | * "Allocated" pkeys are those that have been returned | 
|  | * from pkey_alloc().  pkey 0 is special, and never | 
|  | * returned from pkey_alloc(). | 
|  | */ | 
|  | if (pkey <= 0) | 
|  | return false; | 
|  | if (pkey >= arch_max_pkey()) | 
|  | return false; | 
|  | return mm_pkey_allocation_map(mm) & (1U << pkey); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns a positive, 4-bit key on success, or -1 on failure. | 
|  | */ | 
|  | static inline | 
|  | int mm_pkey_alloc(struct mm_struct *mm) | 
|  | { | 
|  | /* | 
|  | * Note: this is the one and only place we make sure | 
|  | * that the pkey is valid as far as the hardware is | 
|  | * concerned.  The rest of the kernel trusts that | 
|  | * only good, valid pkeys come out of here. | 
|  | */ | 
|  | u16 all_pkeys_mask = ((1U << arch_max_pkey()) - 1); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Are we out of pkeys?  We must handle this specially | 
|  | * because ffz() behavior is undefined if there are no | 
|  | * zeros. | 
|  | */ | 
|  | if (mm_pkey_allocation_map(mm) == all_pkeys_mask) | 
|  | return -1; | 
|  |  | 
|  | ret = ffz(mm_pkey_allocation_map(mm)); | 
|  |  | 
|  | mm_set_pkey_allocated(mm, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | int mm_pkey_free(struct mm_struct *mm, int pkey) | 
|  | { | 
|  | if (!mm_pkey_is_allocated(mm, pkey)) | 
|  | return -EINVAL; | 
|  |  | 
|  | mm_set_pkey_free(mm, pkey); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | extern int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, | 
|  | unsigned long init_val); | 
|  | extern int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, | 
|  | unsigned long init_val); | 
|  | extern void copy_init_pkru_to_fpregs(void); | 
|  |  | 
|  | #endif /*_ASM_X86_PKEYS_H */ |