|  | /* | 
|  | * Firmware Assisted dump: A robust mechanism to get reliable kernel crash | 
|  | * dump with assistance from firmware. This approach does not use kexec, | 
|  | * instead firmware assists in booting the kdump kernel while preserving | 
|  | * memory contents. The most of the code implementation has been adapted | 
|  | * from phyp assisted dump implementation written by Linas Vepstas and | 
|  | * Manish Ahuja | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | * | 
|  | * Copyright 2011 IBM Corporation | 
|  | * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> | 
|  | */ | 
|  |  | 
|  | #undef DEBUG | 
|  | #define pr_fmt(fmt) "fadump: " fmt | 
|  |  | 
|  | #include <linux/string.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/crash_dump.h> | 
|  | #include <linux/kobject.h> | 
|  | #include <linux/sysfs.h> | 
|  |  | 
|  | #include <asm/debugfs.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/rtas.h> | 
|  | #include <asm/fadump.h> | 
|  | #include <asm/setup.h> | 
|  |  | 
|  | static struct fw_dump fw_dump; | 
|  | static struct fadump_mem_struct fdm; | 
|  | static const struct fadump_mem_struct *fdm_active; | 
|  |  | 
|  | static DEFINE_MUTEX(fadump_mutex); | 
|  | struct fad_crash_memory_ranges *crash_memory_ranges; | 
|  | int crash_memory_ranges_size; | 
|  | int crash_mem_ranges; | 
|  | int max_crash_mem_ranges; | 
|  |  | 
|  | /* Scan the Firmware Assisted dump configuration details. */ | 
|  | int __init early_init_dt_scan_fw_dump(unsigned long node, | 
|  | const char *uname, int depth, void *data) | 
|  | { | 
|  | const __be32 *sections; | 
|  | int i, num_sections; | 
|  | int size; | 
|  | const __be32 *token; | 
|  |  | 
|  | if (depth != 1 || strcmp(uname, "rtas") != 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Check if Firmware Assisted dump is supported. if yes, check | 
|  | * if dump has been initiated on last reboot. | 
|  | */ | 
|  | token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL); | 
|  | if (!token) | 
|  | return 1; | 
|  |  | 
|  | fw_dump.fadump_supported = 1; | 
|  | fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token); | 
|  |  | 
|  | /* | 
|  | * The 'ibm,kernel-dump' rtas node is present only if there is | 
|  | * dump data waiting for us. | 
|  | */ | 
|  | fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL); | 
|  | if (fdm_active) | 
|  | fw_dump.dump_active = 1; | 
|  |  | 
|  | /* Get the sizes required to store dump data for the firmware provided | 
|  | * dump sections. | 
|  | * For each dump section type supported, a 32bit cell which defines | 
|  | * the ID of a supported section followed by two 32 bit cells which | 
|  | * gives teh size of the section in bytes. | 
|  | */ | 
|  | sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes", | 
|  | &size); | 
|  |  | 
|  | if (!sections) | 
|  | return 1; | 
|  |  | 
|  | num_sections = size / (3 * sizeof(u32)); | 
|  |  | 
|  | for (i = 0; i < num_sections; i++, sections += 3) { | 
|  | u32 type = (u32)of_read_number(sections, 1); | 
|  |  | 
|  | switch (type) { | 
|  | case FADUMP_CPU_STATE_DATA: | 
|  | fw_dump.cpu_state_data_size = | 
|  | of_read_ulong(§ions[1], 2); | 
|  | break; | 
|  | case FADUMP_HPTE_REGION: | 
|  | fw_dump.hpte_region_size = | 
|  | of_read_ulong(§ions[1], 2); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If fadump is registered, check if the memory provided | 
|  | * falls within boot memory area and reserved memory area. | 
|  | */ | 
|  | int is_fadump_memory_area(u64 addr, ulong size) | 
|  | { | 
|  | u64 d_start = fw_dump.reserve_dump_area_start; | 
|  | u64 d_end = d_start + fw_dump.reserve_dump_area_size; | 
|  |  | 
|  | if (!fw_dump.dump_registered) | 
|  | return 0; | 
|  |  | 
|  | if (((addr + size) > d_start) && (addr <= d_end)) | 
|  | return 1; | 
|  |  | 
|  | return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size; | 
|  | } | 
|  |  | 
|  | int should_fadump_crash(void) | 
|  | { | 
|  | if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int is_fadump_active(void) | 
|  | { | 
|  | return fw_dump.dump_active; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 1, if there are no holes in boot memory area, | 
|  | * 0 otherwise. | 
|  | */ | 
|  | static int is_boot_memory_area_contiguous(void) | 
|  | { | 
|  | struct memblock_region *reg; | 
|  | unsigned long tstart, tend; | 
|  | unsigned long start_pfn = PHYS_PFN(RMA_START); | 
|  | unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size); | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | for_each_memblock(memory, reg) { | 
|  | tstart = max(start_pfn, memblock_region_memory_base_pfn(reg)); | 
|  | tend = min(end_pfn, memblock_region_memory_end_pfn(reg)); | 
|  | if (tstart < tend) { | 
|  | /* Memory hole from start_pfn to tstart */ | 
|  | if (tstart > start_pfn) | 
|  | break; | 
|  |  | 
|  | if (tend == end_pfn) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | start_pfn = tend + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Print firmware assisted dump configurations for debugging purpose. */ | 
|  | static void fadump_show_config(void) | 
|  | { | 
|  | pr_debug("Support for firmware-assisted dump (fadump): %s\n", | 
|  | (fw_dump.fadump_supported ? "present" : "no support")); | 
|  |  | 
|  | if (!fw_dump.fadump_supported) | 
|  | return; | 
|  |  | 
|  | pr_debug("Fadump enabled    : %s\n", | 
|  | (fw_dump.fadump_enabled ? "yes" : "no")); | 
|  | pr_debug("Dump Active       : %s\n", | 
|  | (fw_dump.dump_active ? "yes" : "no")); | 
|  | pr_debug("Dump section sizes:\n"); | 
|  | pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size); | 
|  | pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size); | 
|  | pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size); | 
|  | } | 
|  |  | 
|  | static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm, | 
|  | unsigned long addr) | 
|  | { | 
|  | if (!fdm) | 
|  | return 0; | 
|  |  | 
|  | memset(fdm, 0, sizeof(struct fadump_mem_struct)); | 
|  | addr = addr & PAGE_MASK; | 
|  |  | 
|  | fdm->header.dump_format_version = cpu_to_be32(0x00000001); | 
|  | fdm->header.dump_num_sections = cpu_to_be16(3); | 
|  | fdm->header.dump_status_flag = 0; | 
|  | fdm->header.offset_first_dump_section = | 
|  | cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data)); | 
|  |  | 
|  | /* | 
|  | * Fields for disk dump option. | 
|  | * We are not using disk dump option, hence set these fields to 0. | 
|  | */ | 
|  | fdm->header.dd_block_size = 0; | 
|  | fdm->header.dd_block_offset = 0; | 
|  | fdm->header.dd_num_blocks = 0; | 
|  | fdm->header.dd_offset_disk_path = 0; | 
|  |  | 
|  | /* set 0 to disable an automatic dump-reboot. */ | 
|  | fdm->header.max_time_auto = 0; | 
|  |  | 
|  | /* Kernel dump sections */ | 
|  | /* cpu state data section. */ | 
|  | fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG); | 
|  | fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA); | 
|  | fdm->cpu_state_data.source_address = 0; | 
|  | fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size); | 
|  | fdm->cpu_state_data.destination_address = cpu_to_be64(addr); | 
|  | addr += fw_dump.cpu_state_data_size; | 
|  |  | 
|  | /* hpte region section */ | 
|  | fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG); | 
|  | fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION); | 
|  | fdm->hpte_region.source_address = 0; | 
|  | fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size); | 
|  | fdm->hpte_region.destination_address = cpu_to_be64(addr); | 
|  | addr += fw_dump.hpte_region_size; | 
|  |  | 
|  | /* RMA region section */ | 
|  | fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG); | 
|  | fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION); | 
|  | fdm->rmr_region.source_address = cpu_to_be64(RMA_START); | 
|  | fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size); | 
|  | fdm->rmr_region.destination_address = cpu_to_be64(addr); | 
|  | addr += fw_dump.boot_memory_size; | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM | 
|  | * | 
|  | * Function to find the largest memory size we need to reserve during early | 
|  | * boot process. This will be the size of the memory that is required for a | 
|  | * kernel to boot successfully. | 
|  | * | 
|  | * This function has been taken from phyp-assisted dump feature implementation. | 
|  | * | 
|  | * returns larger of 256MB or 5% rounded down to multiples of 256MB. | 
|  | * | 
|  | * TODO: Come up with better approach to find out more accurate memory size | 
|  | * that is required for a kernel to boot successfully. | 
|  | * | 
|  | */ | 
|  | static inline unsigned long fadump_calculate_reserve_size(void) | 
|  | { | 
|  | int ret; | 
|  | unsigned long long base, size; | 
|  |  | 
|  | if (fw_dump.reserve_bootvar) | 
|  | pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); | 
|  |  | 
|  | /* | 
|  | * Check if the size is specified through crashkernel= cmdline | 
|  | * option. If yes, then use that but ignore base as fadump reserves | 
|  | * memory at a predefined offset. | 
|  | */ | 
|  | ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), | 
|  | &size, &base); | 
|  | if (ret == 0 && size > 0) { | 
|  | unsigned long max_size; | 
|  |  | 
|  | if (fw_dump.reserve_bootvar) | 
|  | pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); | 
|  |  | 
|  | fw_dump.reserve_bootvar = (unsigned long)size; | 
|  |  | 
|  | /* | 
|  | * Adjust if the boot memory size specified is above | 
|  | * the upper limit. | 
|  | */ | 
|  | max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; | 
|  | if (fw_dump.reserve_bootvar > max_size) { | 
|  | fw_dump.reserve_bootvar = max_size; | 
|  | pr_info("Adjusted boot memory size to %luMB\n", | 
|  | (fw_dump.reserve_bootvar >> 20)); | 
|  | } | 
|  |  | 
|  | return fw_dump.reserve_bootvar; | 
|  | } else if (fw_dump.reserve_bootvar) { | 
|  | /* | 
|  | * 'fadump_reserve_mem=' is being used to reserve memory | 
|  | * for firmware-assisted dump. | 
|  | */ | 
|  | return fw_dump.reserve_bootvar; | 
|  | } | 
|  |  | 
|  | /* divide by 20 to get 5% of value */ | 
|  | size = memblock_phys_mem_size() / 20; | 
|  |  | 
|  | /* round it down in multiples of 256 */ | 
|  | size = size & ~0x0FFFFFFFUL; | 
|  |  | 
|  | /* Truncate to memory_limit. We don't want to over reserve the memory.*/ | 
|  | if (memory_limit && size > memory_limit) | 
|  | size = memory_limit; | 
|  |  | 
|  | return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the total memory size required to be reserved for | 
|  | * firmware-assisted dump registration. | 
|  | */ | 
|  | static unsigned long get_fadump_area_size(void) | 
|  | { | 
|  | unsigned long size = 0; | 
|  |  | 
|  | size += fw_dump.cpu_state_data_size; | 
|  | size += fw_dump.hpte_region_size; | 
|  | size += fw_dump.boot_memory_size; | 
|  | size += sizeof(struct fadump_crash_info_header); | 
|  | size += sizeof(struct elfhdr); /* ELF core header.*/ | 
|  | size += sizeof(struct elf_phdr); /* place holder for cpu notes */ | 
|  | /* Program headers for crash memory regions. */ | 
|  | size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2); | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | int __init fadump_reserve_mem(void) | 
|  | { | 
|  | unsigned long base, size, memory_boundary; | 
|  |  | 
|  | if (!fw_dump.fadump_enabled) | 
|  | return 0; | 
|  |  | 
|  | if (!fw_dump.fadump_supported) { | 
|  | printk(KERN_INFO "Firmware-assisted dump is not supported on" | 
|  | " this hardware\n"); | 
|  | fw_dump.fadump_enabled = 0; | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Initialize boot memory size | 
|  | * If dump is active then we have already calculated the size during | 
|  | * first kernel. | 
|  | */ | 
|  | if (fdm_active) | 
|  | fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len); | 
|  | else | 
|  | fw_dump.boot_memory_size = fadump_calculate_reserve_size(); | 
|  |  | 
|  | /* | 
|  | * Calculate the memory boundary. | 
|  | * If memory_limit is less than actual memory boundary then reserve | 
|  | * the memory for fadump beyond the memory_limit and adjust the | 
|  | * memory_limit accordingly, so that the running kernel can run with | 
|  | * specified memory_limit. | 
|  | */ | 
|  | if (memory_limit && memory_limit < memblock_end_of_DRAM()) { | 
|  | size = get_fadump_area_size(); | 
|  | if ((memory_limit + size) < memblock_end_of_DRAM()) | 
|  | memory_limit += size; | 
|  | else | 
|  | memory_limit = memblock_end_of_DRAM(); | 
|  | printk(KERN_INFO "Adjusted memory_limit for firmware-assisted" | 
|  | " dump, now %#016llx\n", memory_limit); | 
|  | } | 
|  | if (memory_limit) | 
|  | memory_boundary = memory_limit; | 
|  | else | 
|  | memory_boundary = memblock_end_of_DRAM(); | 
|  |  | 
|  | if (fw_dump.dump_active) { | 
|  | printk(KERN_INFO "Firmware-assisted dump is active.\n"); | 
|  | /* | 
|  | * If last boot has crashed then reserve all the memory | 
|  | * above boot_memory_size so that we don't touch it until | 
|  | * dump is written to disk by userspace tool. This memory | 
|  | * will be released for general use once the dump is saved. | 
|  | */ | 
|  | base = fw_dump.boot_memory_size; | 
|  | size = memory_boundary - base; | 
|  | memblock_reserve(base, size); | 
|  | printk(KERN_INFO "Reserved %ldMB of memory at %ldMB " | 
|  | "for saving crash dump\n", | 
|  | (unsigned long)(size >> 20), | 
|  | (unsigned long)(base >> 20)); | 
|  |  | 
|  | fw_dump.fadumphdr_addr = | 
|  | be64_to_cpu(fdm_active->rmr_region.destination_address) + | 
|  | be64_to_cpu(fdm_active->rmr_region.source_len); | 
|  | pr_debug("fadumphdr_addr = %p\n", | 
|  | (void *) fw_dump.fadumphdr_addr); | 
|  | } else { | 
|  | size = get_fadump_area_size(); | 
|  |  | 
|  | /* | 
|  | * Reserve memory at an offset closer to bottom of the RAM to | 
|  | * minimize the impact of memory hot-remove operation. We can't | 
|  | * use memblock_find_in_range() here since it doesn't allocate | 
|  | * from bottom to top. | 
|  | */ | 
|  | for (base = fw_dump.boot_memory_size; | 
|  | base <= (memory_boundary - size); | 
|  | base += size) { | 
|  | if (memblock_is_region_memory(base, size) && | 
|  | !memblock_is_region_reserved(base, size)) | 
|  | break; | 
|  | } | 
|  | if ((base > (memory_boundary - size)) || | 
|  | memblock_reserve(base, size)) { | 
|  | pr_err("Failed to reserve memory\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_info("Reserved %ldMB of memory at %ldMB for firmware-" | 
|  | "assisted dump (System RAM: %ldMB)\n", | 
|  | (unsigned long)(size >> 20), | 
|  | (unsigned long)(base >> 20), | 
|  | (unsigned long)(memblock_phys_mem_size() >> 20)); | 
|  | } | 
|  |  | 
|  | fw_dump.reserve_dump_area_start = base; | 
|  | fw_dump.reserve_dump_area_size = size; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned long __init arch_reserved_kernel_pages(void) | 
|  | { | 
|  | return memblock_reserved_size() / PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* Look for fadump= cmdline option. */ | 
|  | static int __init early_fadump_param(char *p) | 
|  | { | 
|  | if (!p) | 
|  | return 1; | 
|  |  | 
|  | if (strncmp(p, "on", 2) == 0) | 
|  | fw_dump.fadump_enabled = 1; | 
|  | else if (strncmp(p, "off", 3) == 0) | 
|  | fw_dump.fadump_enabled = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("fadump", early_fadump_param); | 
|  |  | 
|  | /* | 
|  | * Look for fadump_reserve_mem= cmdline option | 
|  | * TODO: Remove references to 'fadump_reserve_mem=' parameter, | 
|  | *       the sooner 'crashkernel=' parameter is accustomed to. | 
|  | */ | 
|  | static int __init early_fadump_reserve_mem(char *p) | 
|  | { | 
|  | if (p) | 
|  | fw_dump.reserve_bootvar = memparse(p, &p); | 
|  | return 0; | 
|  | } | 
|  | early_param("fadump_reserve_mem", early_fadump_reserve_mem); | 
|  |  | 
|  | static int register_fw_dump(struct fadump_mem_struct *fdm) | 
|  | { | 
|  | int rc, err; | 
|  | unsigned int wait_time; | 
|  |  | 
|  | pr_debug("Registering for firmware-assisted kernel dump...\n"); | 
|  |  | 
|  | /* TODO: Add upper time limit for the delay */ | 
|  | do { | 
|  | rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL, | 
|  | FADUMP_REGISTER, fdm, | 
|  | sizeof(struct fadump_mem_struct)); | 
|  |  | 
|  | wait_time = rtas_busy_delay_time(rc); | 
|  | if (wait_time) | 
|  | mdelay(wait_time); | 
|  |  | 
|  | } while (wait_time); | 
|  |  | 
|  | err = -EIO; | 
|  | switch (rc) { | 
|  | default: | 
|  | pr_err("Failed to register. Unknown Error(%d).\n", rc); | 
|  | break; | 
|  | case -1: | 
|  | printk(KERN_ERR "Failed to register firmware-assisted kernel" | 
|  | " dump. Hardware Error(%d).\n", rc); | 
|  | break; | 
|  | case -3: | 
|  | if (!is_boot_memory_area_contiguous()) | 
|  | pr_err("Can't have holes in boot memory area while " | 
|  | "registering fadump\n"); | 
|  |  | 
|  | printk(KERN_ERR "Failed to register firmware-assisted kernel" | 
|  | " dump. Parameter Error(%d).\n", rc); | 
|  | err = -EINVAL; | 
|  | break; | 
|  | case -9: | 
|  | printk(KERN_ERR "firmware-assisted kernel dump is already " | 
|  | " registered."); | 
|  | fw_dump.dump_registered = 1; | 
|  | err = -EEXIST; | 
|  | break; | 
|  | case 0: | 
|  | printk(KERN_INFO "firmware-assisted kernel dump registration" | 
|  | " is successful\n"); | 
|  | fw_dump.dump_registered = 1; | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void crash_fadump(struct pt_regs *regs, const char *str) | 
|  | { | 
|  | struct fadump_crash_info_header *fdh = NULL; | 
|  | int old_cpu, this_cpu; | 
|  |  | 
|  | if (!should_fadump_crash()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * old_cpu == -1 means this is the first CPU which has come here, | 
|  | * go ahead and trigger fadump. | 
|  | * | 
|  | * old_cpu != -1 means some other CPU has already on it's way | 
|  | * to trigger fadump, just keep looping here. | 
|  | */ | 
|  | this_cpu = smp_processor_id(); | 
|  | old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); | 
|  |  | 
|  | if (old_cpu != -1) { | 
|  | /* | 
|  | * We can't loop here indefinitely. Wait as long as fadump | 
|  | * is in force. If we race with fadump un-registration this | 
|  | * loop will break and then we go down to normal panic path | 
|  | * and reboot. If fadump is in force the first crashing | 
|  | * cpu will definitely trigger fadump. | 
|  | */ | 
|  | while (fw_dump.dump_registered) | 
|  | cpu_relax(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | fdh = __va(fw_dump.fadumphdr_addr); | 
|  | fdh->crashing_cpu = crashing_cpu; | 
|  | crash_save_vmcoreinfo(); | 
|  |  | 
|  | if (regs) | 
|  | fdh->regs = *regs; | 
|  | else | 
|  | ppc_save_regs(&fdh->regs); | 
|  |  | 
|  | fdh->online_mask = *cpu_online_mask; | 
|  |  | 
|  | /* Call ibm,os-term rtas call to trigger firmware assisted dump */ | 
|  | rtas_os_term((char *)str); | 
|  | } | 
|  |  | 
|  | #define GPR_MASK	0xffffff0000000000 | 
|  | static inline int fadump_gpr_index(u64 id) | 
|  | { | 
|  | int i = -1; | 
|  | char str[3]; | 
|  |  | 
|  | if ((id & GPR_MASK) == REG_ID("GPR")) { | 
|  | /* get the digits at the end */ | 
|  | id &= ~GPR_MASK; | 
|  | id >>= 24; | 
|  | str[2] = '\0'; | 
|  | str[1] = id & 0xff; | 
|  | str[0] = (id >> 8) & 0xff; | 
|  | sscanf(str, "%d", &i); | 
|  | if (i > 31) | 
|  | i = -1; | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id, | 
|  | u64 reg_val) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | i = fadump_gpr_index(reg_id); | 
|  | if (i >= 0) | 
|  | regs->gpr[i] = (unsigned long)reg_val; | 
|  | else if (reg_id == REG_ID("NIA")) | 
|  | regs->nip = (unsigned long)reg_val; | 
|  | else if (reg_id == REG_ID("MSR")) | 
|  | regs->msr = (unsigned long)reg_val; | 
|  | else if (reg_id == REG_ID("CTR")) | 
|  | regs->ctr = (unsigned long)reg_val; | 
|  | else if (reg_id == REG_ID("LR")) | 
|  | regs->link = (unsigned long)reg_val; | 
|  | else if (reg_id == REG_ID("XER")) | 
|  | regs->xer = (unsigned long)reg_val; | 
|  | else if (reg_id == REG_ID("CR")) | 
|  | regs->ccr = (unsigned long)reg_val; | 
|  | else if (reg_id == REG_ID("DAR")) | 
|  | regs->dar = (unsigned long)reg_val; | 
|  | else if (reg_id == REG_ID("DSISR")) | 
|  | regs->dsisr = (unsigned long)reg_val; | 
|  | } | 
|  |  | 
|  | static struct fadump_reg_entry* | 
|  | fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs) | 
|  | { | 
|  | memset(regs, 0, sizeof(struct pt_regs)); | 
|  |  | 
|  | while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) { | 
|  | fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id), | 
|  | be64_to_cpu(reg_entry->reg_value)); | 
|  | reg_entry++; | 
|  | } | 
|  | reg_entry++; | 
|  | return reg_entry; | 
|  | } | 
|  |  | 
|  | static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) | 
|  | { | 
|  | struct elf_prstatus prstatus; | 
|  |  | 
|  | memset(&prstatus, 0, sizeof(prstatus)); | 
|  | /* | 
|  | * FIXME: How do i get PID? Do I really need it? | 
|  | * prstatus.pr_pid = ???? | 
|  | */ | 
|  | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); | 
|  | buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, | 
|  | &prstatus, sizeof(prstatus)); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static void fadump_update_elfcore_header(char *bufp) | 
|  | { | 
|  | struct elfhdr *elf; | 
|  | struct elf_phdr *phdr; | 
|  |  | 
|  | elf = (struct elfhdr *)bufp; | 
|  | bufp += sizeof(struct elfhdr); | 
|  |  | 
|  | /* First note is a place holder for cpu notes info. */ | 
|  | phdr = (struct elf_phdr *)bufp; | 
|  |  | 
|  | if (phdr->p_type == PT_NOTE) { | 
|  | phdr->p_paddr = fw_dump.cpu_notes_buf; | 
|  | phdr->p_offset	= phdr->p_paddr; | 
|  | phdr->p_filesz	= fw_dump.cpu_notes_buf_size; | 
|  | phdr->p_memsz = fw_dump.cpu_notes_buf_size; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void *fadump_cpu_notes_buf_alloc(unsigned long size) | 
|  | { | 
|  | void *vaddr; | 
|  | struct page *page; | 
|  | unsigned long order, count, i; | 
|  |  | 
|  | order = get_order(size); | 
|  | vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order); | 
|  | if (!vaddr) | 
|  | return NULL; | 
|  |  | 
|  | count = 1 << order; | 
|  | page = virt_to_page(vaddr); | 
|  | for (i = 0; i < count; i++) | 
|  | SetPageReserved(page + i); | 
|  | return vaddr; | 
|  | } | 
|  |  | 
|  | static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long order, count, i; | 
|  |  | 
|  | order = get_order(size); | 
|  | count = 1 << order; | 
|  | page = virt_to_page(vaddr); | 
|  | for (i = 0; i < count; i++) | 
|  | ClearPageReserved(page + i); | 
|  | __free_pages(page, order); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read CPU state dump data and convert it into ELF notes. | 
|  | * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be | 
|  | * used to access the data to allow for additional fields to be added without | 
|  | * affecting compatibility. Each list of registers for a CPU starts with | 
|  | * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes, | 
|  | * 8 Byte ASCII identifier and 8 Byte register value. The register entry | 
|  | * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part | 
|  | * of register value. For more details refer to PAPR document. | 
|  | * | 
|  | * Only for the crashing cpu we ignore the CPU dump data and get exact | 
|  | * state from fadump crash info structure populated by first kernel at the | 
|  | * time of crash. | 
|  | */ | 
|  | static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm) | 
|  | { | 
|  | struct fadump_reg_save_area_header *reg_header; | 
|  | struct fadump_reg_entry *reg_entry; | 
|  | struct fadump_crash_info_header *fdh = NULL; | 
|  | void *vaddr; | 
|  | unsigned long addr; | 
|  | u32 num_cpus, *note_buf; | 
|  | struct pt_regs regs; | 
|  | int i, rc = 0, cpu = 0; | 
|  |  | 
|  | if (!fdm->cpu_state_data.bytes_dumped) | 
|  | return -EINVAL; | 
|  |  | 
|  | addr = be64_to_cpu(fdm->cpu_state_data.destination_address); | 
|  | vaddr = __va(addr); | 
|  |  | 
|  | reg_header = vaddr; | 
|  | if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) { | 
|  | printk(KERN_ERR "Unable to read register save area.\n"); | 
|  | return -ENOENT; | 
|  | } | 
|  | pr_debug("--------CPU State Data------------\n"); | 
|  | pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number)); | 
|  | pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset)); | 
|  |  | 
|  | vaddr += be32_to_cpu(reg_header->num_cpu_offset); | 
|  | num_cpus = be32_to_cpu(*((__be32 *)(vaddr))); | 
|  | pr_debug("NumCpus     : %u\n", num_cpus); | 
|  | vaddr += sizeof(u32); | 
|  | reg_entry = (struct fadump_reg_entry *)vaddr; | 
|  |  | 
|  | /* Allocate buffer to hold cpu crash notes. */ | 
|  | fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); | 
|  | fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); | 
|  | note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size); | 
|  | if (!note_buf) { | 
|  | printk(KERN_ERR "Failed to allocate 0x%lx bytes for " | 
|  | "cpu notes buffer\n", fw_dump.cpu_notes_buf_size); | 
|  | return -ENOMEM; | 
|  | } | 
|  | fw_dump.cpu_notes_buf = __pa(note_buf); | 
|  |  | 
|  | pr_debug("Allocated buffer for cpu notes of size %ld at %p\n", | 
|  | (num_cpus * sizeof(note_buf_t)), note_buf); | 
|  |  | 
|  | if (fw_dump.fadumphdr_addr) | 
|  | fdh = __va(fw_dump.fadumphdr_addr); | 
|  |  | 
|  | for (i = 0; i < num_cpus; i++) { | 
|  | if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) { | 
|  | printk(KERN_ERR "Unable to read CPU state data\n"); | 
|  | rc = -ENOENT; | 
|  | goto error_out; | 
|  | } | 
|  | /* Lower 4 bytes of reg_value contains logical cpu id */ | 
|  | cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK; | 
|  | if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) { | 
|  | SKIP_TO_NEXT_CPU(reg_entry); | 
|  | continue; | 
|  | } | 
|  | pr_debug("Reading register data for cpu %d...\n", cpu); | 
|  | if (fdh && fdh->crashing_cpu == cpu) { | 
|  | regs = fdh->regs; | 
|  | note_buf = fadump_regs_to_elf_notes(note_buf, ®s); | 
|  | SKIP_TO_NEXT_CPU(reg_entry); | 
|  | } else { | 
|  | reg_entry++; | 
|  | reg_entry = fadump_read_registers(reg_entry, ®s); | 
|  | note_buf = fadump_regs_to_elf_notes(note_buf, ®s); | 
|  | } | 
|  | } | 
|  | final_note(note_buf); | 
|  |  | 
|  | if (fdh) { | 
|  | pr_debug("Updating elfcore header (%llx) with cpu notes\n", | 
|  | fdh->elfcorehdr_addr); | 
|  | fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr)); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | error_out: | 
|  | fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf), | 
|  | fw_dump.cpu_notes_buf_size); | 
|  | fw_dump.cpu_notes_buf = 0; | 
|  | fw_dump.cpu_notes_buf_size = 0; | 
|  | return rc; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate and process the dump data stored by firmware before exporting | 
|  | * it through '/proc/vmcore'. | 
|  | */ | 
|  | static int __init process_fadump(const struct fadump_mem_struct *fdm_active) | 
|  | { | 
|  | struct fadump_crash_info_header *fdh; | 
|  | int rc = 0; | 
|  |  | 
|  | if (!fdm_active || !fw_dump.fadumphdr_addr) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Check if the dump data is valid. */ | 
|  | if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) || | 
|  | (fdm_active->cpu_state_data.error_flags != 0) || | 
|  | (fdm_active->rmr_region.error_flags != 0)) { | 
|  | printk(KERN_ERR "Dump taken by platform is not valid\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if ((fdm_active->rmr_region.bytes_dumped != | 
|  | fdm_active->rmr_region.source_len) || | 
|  | !fdm_active->cpu_state_data.bytes_dumped) { | 
|  | printk(KERN_ERR "Dump taken by platform is incomplete\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Validate the fadump crash info header */ | 
|  | fdh = __va(fw_dump.fadumphdr_addr); | 
|  | if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) { | 
|  | printk(KERN_ERR "Crash info header is not valid.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rc = fadump_build_cpu_notes(fdm_active); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* | 
|  | * We are done validating dump info and elfcore header is now ready | 
|  | * to be exported. set elfcorehdr_addr so that vmcore module will | 
|  | * export the elfcore header through '/proc/vmcore'. | 
|  | */ | 
|  | elfcorehdr_addr = fdh->elfcorehdr_addr; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_crash_memory_ranges(void) | 
|  | { | 
|  | kfree(crash_memory_ranges); | 
|  | crash_memory_ranges = NULL; | 
|  | crash_memory_ranges_size = 0; | 
|  | max_crash_mem_ranges = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate or reallocate crash memory ranges array in incremental units | 
|  | * of PAGE_SIZE. | 
|  | */ | 
|  | static int allocate_crash_memory_ranges(void) | 
|  | { | 
|  | struct fad_crash_memory_ranges *new_array; | 
|  | u64 new_size; | 
|  |  | 
|  | new_size = crash_memory_ranges_size + PAGE_SIZE; | 
|  | pr_debug("Allocating %llu bytes of memory for crash memory ranges\n", | 
|  | new_size); | 
|  |  | 
|  | new_array = krealloc(crash_memory_ranges, new_size, GFP_KERNEL); | 
|  | if (new_array == NULL) { | 
|  | pr_err("Insufficient memory for setting up crash memory ranges\n"); | 
|  | free_crash_memory_ranges(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | crash_memory_ranges = new_array; | 
|  | crash_memory_ranges_size = new_size; | 
|  | max_crash_mem_ranges = (new_size / | 
|  | sizeof(struct fad_crash_memory_ranges)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int fadump_add_crash_memory(unsigned long long base, | 
|  | unsigned long long end) | 
|  | { | 
|  | if (base == end) | 
|  | return 0; | 
|  |  | 
|  | if (crash_mem_ranges == max_crash_mem_ranges) { | 
|  | int ret; | 
|  |  | 
|  | ret = allocate_crash_memory_ranges(); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", | 
|  | crash_mem_ranges, base, end - 1, (end - base)); | 
|  | crash_memory_ranges[crash_mem_ranges].base = base; | 
|  | crash_memory_ranges[crash_mem_ranges].size = end - base; | 
|  | crash_mem_ranges++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fadump_exclude_reserved_area(unsigned long long start, | 
|  | unsigned long long end) | 
|  | { | 
|  | unsigned long long ra_start, ra_end; | 
|  | int ret = 0; | 
|  |  | 
|  | ra_start = fw_dump.reserve_dump_area_start; | 
|  | ra_end = ra_start + fw_dump.reserve_dump_area_size; | 
|  |  | 
|  | if ((ra_start < end) && (ra_end > start)) { | 
|  | if ((start < ra_start) && (end > ra_end)) { | 
|  | ret = fadump_add_crash_memory(start, ra_start); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = fadump_add_crash_memory(ra_end, end); | 
|  | } else if (start < ra_start) { | 
|  | ret = fadump_add_crash_memory(start, ra_start); | 
|  | } else if (ra_end < end) { | 
|  | ret = fadump_add_crash_memory(ra_end, end); | 
|  | } | 
|  | } else | 
|  | ret = fadump_add_crash_memory(start, end); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int fadump_init_elfcore_header(char *bufp) | 
|  | { | 
|  | struct elfhdr *elf; | 
|  |  | 
|  | elf = (struct elfhdr *) bufp; | 
|  | bufp += sizeof(struct elfhdr); | 
|  | memcpy(elf->e_ident, ELFMAG, SELFMAG); | 
|  | elf->e_ident[EI_CLASS] = ELF_CLASS; | 
|  | elf->e_ident[EI_DATA] = ELF_DATA; | 
|  | elf->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf->e_ident[EI_OSABI] = ELF_OSABI; | 
|  | memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); | 
|  | elf->e_type = ET_CORE; | 
|  | elf->e_machine = ELF_ARCH; | 
|  | elf->e_version = EV_CURRENT; | 
|  | elf->e_entry = 0; | 
|  | elf->e_phoff = sizeof(struct elfhdr); | 
|  | elf->e_shoff = 0; | 
|  | #if defined(_CALL_ELF) | 
|  | elf->e_flags = _CALL_ELF; | 
|  | #else | 
|  | elf->e_flags = 0; | 
|  | #endif | 
|  | elf->e_ehsize = sizeof(struct elfhdr); | 
|  | elf->e_phentsize = sizeof(struct elf_phdr); | 
|  | elf->e_phnum = 0; | 
|  | elf->e_shentsize = 0; | 
|  | elf->e_shnum = 0; | 
|  | elf->e_shstrndx = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Traverse through memblock structure and setup crash memory ranges. These | 
|  | * ranges will be used create PT_LOAD program headers in elfcore header. | 
|  | */ | 
|  | static int fadump_setup_crash_memory_ranges(void) | 
|  | { | 
|  | struct memblock_region *reg; | 
|  | unsigned long long start, end; | 
|  | int ret; | 
|  |  | 
|  | pr_debug("Setup crash memory ranges.\n"); | 
|  | crash_mem_ranges = 0; | 
|  | /* | 
|  | * add the first memory chunk (RMA_START through boot_memory_size) as | 
|  | * a separate memory chunk. The reason is, at the time crash firmware | 
|  | * will move the content of this memory chunk to different location | 
|  | * specified during fadump registration. We need to create a separate | 
|  | * program header for this chunk with the correct offset. | 
|  | */ | 
|  | ret = fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for_each_memblock(memory, reg) { | 
|  | start = (unsigned long long)reg->base; | 
|  | end = start + (unsigned long long)reg->size; | 
|  |  | 
|  | /* | 
|  | * skip the first memory chunk that is already added (RMA_START | 
|  | * through boot_memory_size). This logic needs a relook if and | 
|  | * when RMA_START changes to a non-zero value. | 
|  | */ | 
|  | BUILD_BUG_ON(RMA_START != 0); | 
|  | if (start < fw_dump.boot_memory_size) { | 
|  | if (end > fw_dump.boot_memory_size) | 
|  | start = fw_dump.boot_memory_size; | 
|  | else | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* add this range excluding the reserved dump area. */ | 
|  | ret = fadump_exclude_reserved_area(start, end); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the given physical address falls within the boot memory region then | 
|  | * return the relocated address that points to the dump region reserved | 
|  | * for saving initial boot memory contents. | 
|  | */ | 
|  | static inline unsigned long fadump_relocate(unsigned long paddr) | 
|  | { | 
|  | if (paddr > RMA_START && paddr < fw_dump.boot_memory_size) | 
|  | return be64_to_cpu(fdm.rmr_region.destination_address) + paddr; | 
|  | else | 
|  | return paddr; | 
|  | } | 
|  |  | 
|  | static int fadump_create_elfcore_headers(char *bufp) | 
|  | { | 
|  | struct elfhdr *elf; | 
|  | struct elf_phdr *phdr; | 
|  | int i; | 
|  |  | 
|  | fadump_init_elfcore_header(bufp); | 
|  | elf = (struct elfhdr *)bufp; | 
|  | bufp += sizeof(struct elfhdr); | 
|  |  | 
|  | /* | 
|  | * setup ELF PT_NOTE, place holder for cpu notes info. The notes info | 
|  | * will be populated during second kernel boot after crash. Hence | 
|  | * this PT_NOTE will always be the first elf note. | 
|  | * | 
|  | * NOTE: Any new ELF note addition should be placed after this note. | 
|  | */ | 
|  | phdr = (struct elf_phdr *)bufp; | 
|  | bufp += sizeof(struct elf_phdr); | 
|  | phdr->p_type = PT_NOTE; | 
|  | phdr->p_flags = 0; | 
|  | phdr->p_vaddr = 0; | 
|  | phdr->p_align = 0; | 
|  |  | 
|  | phdr->p_offset = 0; | 
|  | phdr->p_paddr = 0; | 
|  | phdr->p_filesz = 0; | 
|  | phdr->p_memsz = 0; | 
|  |  | 
|  | (elf->e_phnum)++; | 
|  |  | 
|  | /* setup ELF PT_NOTE for vmcoreinfo */ | 
|  | phdr = (struct elf_phdr *)bufp; | 
|  | bufp += sizeof(struct elf_phdr); | 
|  | phdr->p_type	= PT_NOTE; | 
|  | phdr->p_flags	= 0; | 
|  | phdr->p_vaddr	= 0; | 
|  | phdr->p_align	= 0; | 
|  |  | 
|  | phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note()); | 
|  | phdr->p_offset	= phdr->p_paddr; | 
|  | phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE; | 
|  |  | 
|  | /* Increment number of program headers. */ | 
|  | (elf->e_phnum)++; | 
|  |  | 
|  | /* setup PT_LOAD sections. */ | 
|  |  | 
|  | for (i = 0; i < crash_mem_ranges; i++) { | 
|  | unsigned long long mbase, msize; | 
|  | mbase = crash_memory_ranges[i].base; | 
|  | msize = crash_memory_ranges[i].size; | 
|  |  | 
|  | if (!msize) | 
|  | continue; | 
|  |  | 
|  | phdr = (struct elf_phdr *)bufp; | 
|  | bufp += sizeof(struct elf_phdr); | 
|  | phdr->p_type	= PT_LOAD; | 
|  | phdr->p_flags	= PF_R|PF_W|PF_X; | 
|  | phdr->p_offset	= mbase; | 
|  |  | 
|  | if (mbase == RMA_START) { | 
|  | /* | 
|  | * The entire RMA region will be moved by firmware | 
|  | * to the specified destination_address. Hence set | 
|  | * the correct offset. | 
|  | */ | 
|  | phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address); | 
|  | } | 
|  |  | 
|  | phdr->p_paddr = mbase; | 
|  | phdr->p_vaddr = (unsigned long)__va(mbase); | 
|  | phdr->p_filesz = msize; | 
|  | phdr->p_memsz = msize; | 
|  | phdr->p_align = 0; | 
|  |  | 
|  | /* Increment number of program headers. */ | 
|  | (elf->e_phnum)++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long init_fadump_header(unsigned long addr) | 
|  | { | 
|  | struct fadump_crash_info_header *fdh; | 
|  |  | 
|  | if (!addr) | 
|  | return 0; | 
|  |  | 
|  | fw_dump.fadumphdr_addr = addr; | 
|  | fdh = __va(addr); | 
|  | addr += sizeof(struct fadump_crash_info_header); | 
|  |  | 
|  | memset(fdh, 0, sizeof(struct fadump_crash_info_header)); | 
|  | fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; | 
|  | fdh->elfcorehdr_addr = addr; | 
|  | /* We will set the crashing cpu id in crash_fadump() during crash. */ | 
|  | fdh->crashing_cpu = CPU_UNKNOWN; | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static int register_fadump(void) | 
|  | { | 
|  | unsigned long addr; | 
|  | void *vaddr; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If no memory is reserved then we can not register for firmware- | 
|  | * assisted dump. | 
|  | */ | 
|  | if (!fw_dump.reserve_dump_area_size) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = fadump_setup_crash_memory_ranges(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len); | 
|  | /* Initialize fadump crash info header. */ | 
|  | addr = init_fadump_header(addr); | 
|  | vaddr = __va(addr); | 
|  |  | 
|  | pr_debug("Creating ELF core headers at %#016lx\n", addr); | 
|  | fadump_create_elfcore_headers(vaddr); | 
|  |  | 
|  | /* register the future kernel dump with firmware. */ | 
|  | return register_fw_dump(&fdm); | 
|  | } | 
|  |  | 
|  | static int fadump_unregister_dump(struct fadump_mem_struct *fdm) | 
|  | { | 
|  | int rc = 0; | 
|  | unsigned int wait_time; | 
|  |  | 
|  | pr_debug("Un-register firmware-assisted dump\n"); | 
|  |  | 
|  | /* TODO: Add upper time limit for the delay */ | 
|  | do { | 
|  | rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL, | 
|  | FADUMP_UNREGISTER, fdm, | 
|  | sizeof(struct fadump_mem_struct)); | 
|  |  | 
|  | wait_time = rtas_busy_delay_time(rc); | 
|  | if (wait_time) | 
|  | mdelay(wait_time); | 
|  | } while (wait_time); | 
|  |  | 
|  | if (rc) { | 
|  | printk(KERN_ERR "Failed to un-register firmware-assisted dump." | 
|  | " unexpected error(%d).\n", rc); | 
|  | return rc; | 
|  | } | 
|  | fw_dump.dump_registered = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fadump_invalidate_dump(struct fadump_mem_struct *fdm) | 
|  | { | 
|  | int rc = 0; | 
|  | unsigned int wait_time; | 
|  |  | 
|  | pr_debug("Invalidating firmware-assisted dump registration\n"); | 
|  |  | 
|  | /* TODO: Add upper time limit for the delay */ | 
|  | do { | 
|  | rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL, | 
|  | FADUMP_INVALIDATE, fdm, | 
|  | sizeof(struct fadump_mem_struct)); | 
|  |  | 
|  | wait_time = rtas_busy_delay_time(rc); | 
|  | if (wait_time) | 
|  | mdelay(wait_time); | 
|  | } while (wait_time); | 
|  |  | 
|  | if (rc) { | 
|  | pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc); | 
|  | return rc; | 
|  | } | 
|  | fw_dump.dump_active = 0; | 
|  | fdm_active = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void fadump_cleanup(void) | 
|  | { | 
|  | /* Invalidate the registration only if dump is active. */ | 
|  | if (fw_dump.dump_active) { | 
|  | init_fadump_mem_struct(&fdm, | 
|  | be64_to_cpu(fdm_active->cpu_state_data.destination_address)); | 
|  | fadump_invalidate_dump(&fdm); | 
|  | } else if (fw_dump.dump_registered) { | 
|  | /* Un-register Firmware-assisted dump if it was registered. */ | 
|  | fadump_unregister_dump(&fdm); | 
|  | free_crash_memory_ranges(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fadump_free_reserved_memory(unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  | unsigned long time_limit = jiffies + HZ; | 
|  |  | 
|  | pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", | 
|  | PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
|  | free_reserved_page(pfn_to_page(pfn)); | 
|  |  | 
|  | if (time_after(jiffies, time_limit)) { | 
|  | cond_resched(); | 
|  | time_limit = jiffies + HZ; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Skip memory holes and free memory that was actually reserved. | 
|  | */ | 
|  | static void fadump_release_reserved_area(unsigned long start, unsigned long end) | 
|  | { | 
|  | struct memblock_region *reg; | 
|  | unsigned long tstart, tend; | 
|  | unsigned long start_pfn = PHYS_PFN(start); | 
|  | unsigned long end_pfn = PHYS_PFN(end); | 
|  |  | 
|  | for_each_memblock(memory, reg) { | 
|  | tstart = max(start_pfn, memblock_region_memory_base_pfn(reg)); | 
|  | tend = min(end_pfn, memblock_region_memory_end_pfn(reg)); | 
|  | if (tstart < tend) { | 
|  | fadump_free_reserved_memory(tstart, tend); | 
|  |  | 
|  | if (tend == end_pfn) | 
|  | break; | 
|  |  | 
|  | start_pfn = tend + 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the memory that was reserved in early boot to preserve the memory | 
|  | * contents. The released memory will be available for general use. | 
|  | */ | 
|  | static void fadump_release_memory(unsigned long begin, unsigned long end) | 
|  | { | 
|  | unsigned long ra_start, ra_end; | 
|  |  | 
|  | ra_start = fw_dump.reserve_dump_area_start; | 
|  | ra_end = ra_start + fw_dump.reserve_dump_area_size; | 
|  |  | 
|  | /* | 
|  | * exclude the dump reserve area. Will reuse it for next | 
|  | * fadump registration. | 
|  | */ | 
|  | if (begin < ra_end && end > ra_start) { | 
|  | if (begin < ra_start) | 
|  | fadump_release_reserved_area(begin, ra_start); | 
|  | if (end > ra_end) | 
|  | fadump_release_reserved_area(ra_end, end); | 
|  | } else | 
|  | fadump_release_reserved_area(begin, end); | 
|  | } | 
|  |  | 
|  | static void fadump_invalidate_release_mem(void) | 
|  | { | 
|  | unsigned long reserved_area_start, reserved_area_end; | 
|  | unsigned long destination_address; | 
|  |  | 
|  | mutex_lock(&fadump_mutex); | 
|  | if (!fw_dump.dump_active) { | 
|  | mutex_unlock(&fadump_mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address); | 
|  | fadump_cleanup(); | 
|  | mutex_unlock(&fadump_mutex); | 
|  |  | 
|  | /* | 
|  | * Save the current reserved memory bounds we will require them | 
|  | * later for releasing the memory for general use. | 
|  | */ | 
|  | reserved_area_start = fw_dump.reserve_dump_area_start; | 
|  | reserved_area_end = reserved_area_start + | 
|  | fw_dump.reserve_dump_area_size; | 
|  | /* | 
|  | * Setup reserve_dump_area_start and its size so that we can | 
|  | * reuse this reserved memory for Re-registration. | 
|  | */ | 
|  | fw_dump.reserve_dump_area_start = destination_address; | 
|  | fw_dump.reserve_dump_area_size = get_fadump_area_size(); | 
|  |  | 
|  | fadump_release_memory(reserved_area_start, reserved_area_end); | 
|  | if (fw_dump.cpu_notes_buf) { | 
|  | fadump_cpu_notes_buf_free( | 
|  | (unsigned long)__va(fw_dump.cpu_notes_buf), | 
|  | fw_dump.cpu_notes_buf_size); | 
|  | fw_dump.cpu_notes_buf = 0; | 
|  | fw_dump.cpu_notes_buf_size = 0; | 
|  | } | 
|  | /* Initialize the kernel dump memory structure for FAD registration. */ | 
|  | init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start); | 
|  | } | 
|  |  | 
|  | static ssize_t fadump_release_memory_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | if (!fw_dump.dump_active) | 
|  | return -EPERM; | 
|  |  | 
|  | if (buf[0] == '1') { | 
|  | /* | 
|  | * Take away the '/proc/vmcore'. We are releasing the dump | 
|  | * memory, hence it will not be valid anymore. | 
|  | */ | 
|  | #ifdef CONFIG_PROC_VMCORE | 
|  | vmcore_cleanup(); | 
|  | #endif | 
|  | fadump_invalidate_release_mem(); | 
|  |  | 
|  | } else | 
|  | return -EINVAL; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t fadump_enabled_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", fw_dump.fadump_enabled); | 
|  | } | 
|  |  | 
|  | static ssize_t fadump_register_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", fw_dump.dump_registered); | 
|  | } | 
|  |  | 
|  | static ssize_t fadump_register_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!fw_dump.fadump_enabled || fdm_active) | 
|  | return -EPERM; | 
|  |  | 
|  | mutex_lock(&fadump_mutex); | 
|  |  | 
|  | switch (buf[0]) { | 
|  | case '0': | 
|  | if (fw_dump.dump_registered == 0) { | 
|  | goto unlock_out; | 
|  | } | 
|  | /* Un-register Firmware-assisted dump */ | 
|  | fadump_unregister_dump(&fdm); | 
|  | break; | 
|  | case '1': | 
|  | if (fw_dump.dump_registered == 1) { | 
|  | ret = -EEXIST; | 
|  | goto unlock_out; | 
|  | } | 
|  | /* Register Firmware-assisted dump */ | 
|  | ret = register_fadump(); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | unlock_out: | 
|  | mutex_unlock(&fadump_mutex); | 
|  | return ret < 0 ? ret : count; | 
|  | } | 
|  |  | 
|  | static int fadump_region_show(struct seq_file *m, void *private) | 
|  | { | 
|  | const struct fadump_mem_struct *fdm_ptr; | 
|  |  | 
|  | if (!fw_dump.fadump_enabled) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&fadump_mutex); | 
|  | if (fdm_active) | 
|  | fdm_ptr = fdm_active; | 
|  | else { | 
|  | mutex_unlock(&fadump_mutex); | 
|  | fdm_ptr = &fdm; | 
|  | } | 
|  |  | 
|  | seq_printf(m, | 
|  | "CPU : [%#016llx-%#016llx] %#llx bytes, " | 
|  | "Dumped: %#llx\n", | 
|  | be64_to_cpu(fdm_ptr->cpu_state_data.destination_address), | 
|  | be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) + | 
|  | be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1, | 
|  | be64_to_cpu(fdm_ptr->cpu_state_data.source_len), | 
|  | be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped)); | 
|  | seq_printf(m, | 
|  | "HPTE: [%#016llx-%#016llx] %#llx bytes, " | 
|  | "Dumped: %#llx\n", | 
|  | be64_to_cpu(fdm_ptr->hpte_region.destination_address), | 
|  | be64_to_cpu(fdm_ptr->hpte_region.destination_address) + | 
|  | be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1, | 
|  | be64_to_cpu(fdm_ptr->hpte_region.source_len), | 
|  | be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped)); | 
|  | seq_printf(m, | 
|  | "DUMP: [%#016llx-%#016llx] %#llx bytes, " | 
|  | "Dumped: %#llx\n", | 
|  | be64_to_cpu(fdm_ptr->rmr_region.destination_address), | 
|  | be64_to_cpu(fdm_ptr->rmr_region.destination_address) + | 
|  | be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1, | 
|  | be64_to_cpu(fdm_ptr->rmr_region.source_len), | 
|  | be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped)); | 
|  |  | 
|  | if (!fdm_active || | 
|  | (fw_dump.reserve_dump_area_start == | 
|  | be64_to_cpu(fdm_ptr->cpu_state_data.destination_address))) | 
|  | goto out; | 
|  |  | 
|  | /* Dump is active. Show reserved memory region. */ | 
|  | seq_printf(m, | 
|  | "    : [%#016llx-%#016llx] %#llx bytes, " | 
|  | "Dumped: %#llx\n", | 
|  | (unsigned long long)fw_dump.reserve_dump_area_start, | 
|  | be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1, | 
|  | be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - | 
|  | fw_dump.reserve_dump_area_start, | 
|  | be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - | 
|  | fw_dump.reserve_dump_area_start); | 
|  | out: | 
|  | if (fdm_active) | 
|  | mutex_unlock(&fadump_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem, | 
|  | 0200, NULL, | 
|  | fadump_release_memory_store); | 
|  | static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled, | 
|  | 0444, fadump_enabled_show, | 
|  | NULL); | 
|  | static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered, | 
|  | 0644, fadump_register_show, | 
|  | fadump_register_store); | 
|  |  | 
|  | static int fadump_region_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, fadump_region_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations fadump_region_fops = { | 
|  | .open    = fadump_region_open, | 
|  | .read    = seq_read, | 
|  | .llseek  = seq_lseek, | 
|  | .release = single_release, | 
|  | }; | 
|  |  | 
|  | static void fadump_init_files(void) | 
|  | { | 
|  | struct dentry *debugfs_file; | 
|  | int rc = 0; | 
|  |  | 
|  | rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr); | 
|  | if (rc) | 
|  | printk(KERN_ERR "fadump: unable to create sysfs file" | 
|  | " fadump_enabled (%d)\n", rc); | 
|  |  | 
|  | rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr); | 
|  | if (rc) | 
|  | printk(KERN_ERR "fadump: unable to create sysfs file" | 
|  | " fadump_registered (%d)\n", rc); | 
|  |  | 
|  | debugfs_file = debugfs_create_file("fadump_region", 0444, | 
|  | powerpc_debugfs_root, NULL, | 
|  | &fadump_region_fops); | 
|  | if (!debugfs_file) | 
|  | printk(KERN_ERR "fadump: unable to create debugfs file" | 
|  | " fadump_region\n"); | 
|  |  | 
|  | if (fw_dump.dump_active) { | 
|  | rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr); | 
|  | if (rc) | 
|  | printk(KERN_ERR "fadump: unable to create sysfs file" | 
|  | " fadump_release_mem (%d)\n", rc); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare for firmware-assisted dump. | 
|  | */ | 
|  | int __init setup_fadump(void) | 
|  | { | 
|  | if (!fw_dump.fadump_enabled) | 
|  | return 0; | 
|  |  | 
|  | if (!fw_dump.fadump_supported) { | 
|  | printk(KERN_ERR "Firmware-assisted dump is not supported on" | 
|  | " this hardware\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | fadump_show_config(); | 
|  | /* | 
|  | * If dump data is available then see if it is valid and prepare for | 
|  | * saving it to the disk. | 
|  | */ | 
|  | if (fw_dump.dump_active) { | 
|  | /* | 
|  | * if dump process fails then invalidate the registration | 
|  | * and release memory before proceeding for re-registration. | 
|  | */ | 
|  | if (process_fadump(fdm_active) < 0) | 
|  | fadump_invalidate_release_mem(); | 
|  | } | 
|  | /* Initialize the kernel dump memory structure for FAD registration. */ | 
|  | else if (fw_dump.reserve_dump_area_size) | 
|  | init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start); | 
|  | fadump_init_files(); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | subsys_initcall(setup_fadump); |