| /* | 
 |  * Low level x86 E820 memory map handling functions. | 
 |  * | 
 |  * The firmware and bootloader passes us the "E820 table", which is the primary | 
 |  * physical memory layout description available about x86 systems. | 
 |  * | 
 |  * The kernel takes the E820 memory layout and optionally modifies it with | 
 |  * quirks and other tweaks, and feeds that into the generic Linux memory | 
 |  * allocation code routines via a platform independent interface (memblock, etc.). | 
 |  */ | 
 | #include <linux/crash_dump.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/suspend.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/firmware-map.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/sort.h> | 
 |  | 
 | #include <asm/e820/api.h> | 
 | #include <asm/setup.h> | 
 |  | 
 | /* | 
 |  * We organize the E820 table into three main data structures: | 
 |  * | 
 |  * - 'e820_table_firmware': the original firmware version passed to us by the | 
 |  *   bootloader - not modified by the kernel. It is composed of two parts: | 
 |  *   the first 128 E820 memory entries in boot_params.e820_table and the remaining | 
 |  *   (if any) entries of the SETUP_E820_EXT nodes. We use this to: | 
 |  * | 
 |  *       - inform the user about the firmware's notion of memory layout | 
 |  *         via /sys/firmware/memmap | 
 |  * | 
 |  *       - the hibernation code uses it to generate a kernel-independent MD5 | 
 |  *         fingerprint of the physical memory layout of a system. | 
 |  * | 
 |  * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version | 
 |  *   passed to us by the bootloader - the major difference between | 
 |  *   e820_table_firmware[] and this one is that, the latter marks the setup_data | 
 |  *   list created by the EFI boot stub as reserved, so that kexec can reuse the | 
 |  *   setup_data information in the second kernel. Besides, e820_table_kexec[] | 
 |  *   might also be modified by the kexec itself to fake a mptable. | 
 |  *   We use this to: | 
 |  * | 
 |  *       - kexec, which is a bootloader in disguise, uses the original E820 | 
 |  *         layout to pass to the kexec-ed kernel. This way the original kernel | 
 |  *         can have a restricted E820 map while the kexec()-ed kexec-kernel | 
 |  *         can have access to full memory - etc. | 
 |  * | 
 |  * - 'e820_table': this is the main E820 table that is massaged by the | 
 |  *   low level x86 platform code, or modified by boot parameters, before | 
 |  *   passed on to higher level MM layers. | 
 |  * | 
 |  * Once the E820 map has been converted to the standard Linux memory layout | 
 |  * information its role stops - modifying it has no effect and does not get | 
 |  * re-propagated. So itsmain role is a temporary bootstrap storage of firmware | 
 |  * specific memory layout data during early bootup. | 
 |  */ | 
 | static struct e820_table e820_table_init		__initdata; | 
 | static struct e820_table e820_table_kexec_init		__initdata; | 
 | static struct e820_table e820_table_firmware_init	__initdata; | 
 |  | 
 | struct e820_table *e820_table __refdata			= &e820_table_init; | 
 | struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init; | 
 | struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init; | 
 |  | 
 | /* For PCI or other memory-mapped resources */ | 
 | unsigned long pci_mem_start = 0xaeedbabe; | 
 | #ifdef CONFIG_PCI | 
 | EXPORT_SYMBOL(pci_mem_start); | 
 | #endif | 
 |  | 
 | /* | 
 |  * This function checks if any part of the range <start,end> is mapped | 
 |  * with type. | 
 |  */ | 
 | bool e820__mapped_any(u64 start, u64 end, enum e820_type type) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		struct e820_entry *entry = &e820_table->entries[i]; | 
 |  | 
 | 		if (type && entry->type != type) | 
 | 			continue; | 
 | 		if (entry->addr >= end || entry->addr + entry->size <= start) | 
 | 			continue; | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(e820__mapped_any); | 
 |  | 
 | /* | 
 |  * This function checks if the entire <start,end> range is mapped with 'type'. | 
 |  * | 
 |  * Note: this function only works correctly once the E820 table is sorted and | 
 |  * not-overlapping (at least for the range specified), which is the case normally. | 
 |  */ | 
 | static struct e820_entry *__e820__mapped_all(u64 start, u64 end, | 
 | 					     enum e820_type type) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		struct e820_entry *entry = &e820_table->entries[i]; | 
 |  | 
 | 		if (type && entry->type != type) | 
 | 			continue; | 
 |  | 
 | 		/* Is the region (part) in overlap with the current region? */ | 
 | 		if (entry->addr >= end || entry->addr + entry->size <= start) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * If the region is at the beginning of <start,end> we move | 
 | 		 * 'start' to the end of the region since it's ok until there | 
 | 		 */ | 
 | 		if (entry->addr <= start) | 
 | 			start = entry->addr + entry->size; | 
 |  | 
 | 		/* | 
 | 		 * If 'start' is now at or beyond 'end', we're done, full | 
 | 		 * coverage of the desired range exists: | 
 | 		 */ | 
 | 		if (start >= end) | 
 | 			return entry; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * This function checks if the entire range <start,end> is mapped with type. | 
 |  */ | 
 | bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) | 
 | { | 
 | 	return __e820__mapped_all(start, end, type); | 
 | } | 
 |  | 
 | /* | 
 |  * This function returns the type associated with the range <start,end>. | 
 |  */ | 
 | int e820__get_entry_type(u64 start, u64 end) | 
 | { | 
 | 	struct e820_entry *entry = __e820__mapped_all(start, end, 0); | 
 |  | 
 | 	return entry ? entry->type : -EINVAL; | 
 | } | 
 |  | 
 | /* | 
 |  * Add a memory region to the kernel E820 map. | 
 |  */ | 
 | static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) | 
 | { | 
 | 	int x = table->nr_entries; | 
 |  | 
 | 	if (x >= ARRAY_SIZE(table->entries)) { | 
 | 		pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	table->entries[x].addr = start; | 
 | 	table->entries[x].size = size; | 
 | 	table->entries[x].type = type; | 
 | 	table->nr_entries++; | 
 | } | 
 |  | 
 | void __init e820__range_add(u64 start, u64 size, enum e820_type type) | 
 | { | 
 | 	__e820__range_add(e820_table, start, size, type); | 
 | } | 
 |  | 
 | static void __init e820_print_type(enum e820_type type) | 
 | { | 
 | 	switch (type) { | 
 | 	case E820_TYPE_RAM:		/* Fall through: */ | 
 | 	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break; | 
 | 	case E820_TYPE_RESERVED:	pr_cont("reserved");			break; | 
 | 	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break; | 
 | 	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break; | 
 | 	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break; | 
 | 	case E820_TYPE_PMEM:		/* Fall through: */ | 
 | 	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break; | 
 | 	default:			pr_cont("type %u", type);		break; | 
 | 	} | 
 | } | 
 |  | 
 | void __init e820__print_table(char *who) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		pr_info("%s: [mem %#018Lx-%#018Lx] ", who, | 
 | 		       e820_table->entries[i].addr, | 
 | 		       e820_table->entries[i].addr + e820_table->entries[i].size - 1); | 
 |  | 
 | 		e820_print_type(e820_table->entries[i].type); | 
 | 		pr_cont("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Sanitize an E820 map. | 
 |  * | 
 |  * Some E820 layouts include overlapping entries. The following | 
 |  * replaces the original E820 map with a new one, removing overlaps, | 
 |  * and resolving conflicting memory types in favor of highest | 
 |  * numbered type. | 
 |  * | 
 |  * The input parameter 'entries' points to an array of 'struct | 
 |  * e820_entry' which on entry has elements in the range [0, *nr_entries) | 
 |  * valid, and which has space for up to max_nr_entries entries. | 
 |  * On return, the resulting sanitized E820 map entries will be in | 
 |  * overwritten in the same location, starting at 'entries'. | 
 |  * | 
 |  * The integer pointed to by nr_entries must be valid on entry (the | 
 |  * current number of valid entries located at 'entries'). If the | 
 |  * sanitizing succeeds the *nr_entries will be updated with the new | 
 |  * number of valid entries (something no more than max_nr_entries). | 
 |  * | 
 |  * The return value from e820__update_table() is zero if it | 
 |  * successfully 'sanitized' the map entries passed in, and is -1 | 
 |  * if it did nothing, which can happen if either of (1) it was | 
 |  * only passed one map entry, or (2) any of the input map entries | 
 |  * were invalid (start + size < start, meaning that the size was | 
 |  * so big the described memory range wrapped around through zero.) | 
 |  * | 
 |  *	Visually we're performing the following | 
 |  *	(1,2,3,4 = memory types)... | 
 |  * | 
 |  *	Sample memory map (w/overlaps): | 
 |  *	   ____22__________________ | 
 |  *	   ______________________4_ | 
 |  *	   ____1111________________ | 
 |  *	   _44_____________________ | 
 |  *	   11111111________________ | 
 |  *	   ____________________33__ | 
 |  *	   ___________44___________ | 
 |  *	   __________33333_________ | 
 |  *	   ______________22________ | 
 |  *	   ___________________2222_ | 
 |  *	   _________111111111______ | 
 |  *	   _____________________11_ | 
 |  *	   _________________4______ | 
 |  * | 
 |  *	Sanitized equivalent (no overlap): | 
 |  *	   1_______________________ | 
 |  *	   _44_____________________ | 
 |  *	   ___1____________________ | 
 |  *	   ____22__________________ | 
 |  *	   ______11________________ | 
 |  *	   _________1______________ | 
 |  *	   __________3_____________ | 
 |  *	   ___________44___________ | 
 |  *	   _____________33_________ | 
 |  *	   _______________2________ | 
 |  *	   ________________1_______ | 
 |  *	   _________________4______ | 
 |  *	   ___________________2____ | 
 |  *	   ____________________33__ | 
 |  *	   ______________________4_ | 
 |  */ | 
 | struct change_member { | 
 | 	/* Pointer to the original entry: */ | 
 | 	struct e820_entry	*entry; | 
 | 	/* Address for this change point: */ | 
 | 	unsigned long long	addr; | 
 | }; | 
 |  | 
 | static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata; | 
 | static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata; | 
 | static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata; | 
 | static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata; | 
 |  | 
 | static int __init cpcompare(const void *a, const void *b) | 
 | { | 
 | 	struct change_member * const *app = a, * const *bpp = b; | 
 | 	const struct change_member *ap = *app, *bp = *bpp; | 
 |  | 
 | 	/* | 
 | 	 * Inputs are pointers to two elements of change_point[].  If their | 
 | 	 * addresses are not equal, their difference dominates.  If the addresses | 
 | 	 * are equal, then consider one that represents the end of its region | 
 | 	 * to be greater than one that does not. | 
 | 	 */ | 
 | 	if (ap->addr != bp->addr) | 
 | 		return ap->addr > bp->addr ? 1 : -1; | 
 |  | 
 | 	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); | 
 | } | 
 |  | 
 | int __init e820__update_table(struct e820_table *table) | 
 | { | 
 | 	struct e820_entry *entries = table->entries; | 
 | 	u32 max_nr_entries = ARRAY_SIZE(table->entries); | 
 | 	enum e820_type current_type, last_type; | 
 | 	unsigned long long last_addr; | 
 | 	u32 new_nr_entries, overlap_entries; | 
 | 	u32 i, chg_idx, chg_nr; | 
 |  | 
 | 	/* If there's only one memory region, don't bother: */ | 
 | 	if (table->nr_entries < 2) | 
 | 		return -1; | 
 |  | 
 | 	BUG_ON(table->nr_entries > max_nr_entries); | 
 |  | 
 | 	/* Bail out if we find any unreasonable addresses in the map: */ | 
 | 	for (i = 0; i < table->nr_entries; i++) { | 
 | 		if (entries[i].addr + entries[i].size < entries[i].addr) | 
 | 			return -1; | 
 | 	} | 
 |  | 
 | 	/* Create pointers for initial change-point information (for sorting): */ | 
 | 	for (i = 0; i < 2 * table->nr_entries; i++) | 
 | 		change_point[i] = &change_point_list[i]; | 
 |  | 
 | 	/* | 
 | 	 * Record all known change-points (starting and ending addresses), | 
 | 	 * omitting empty memory regions: | 
 | 	 */ | 
 | 	chg_idx = 0; | 
 | 	for (i = 0; i < table->nr_entries; i++)	{ | 
 | 		if (entries[i].size != 0) { | 
 | 			change_point[chg_idx]->addr	= entries[i].addr; | 
 | 			change_point[chg_idx++]->entry	= &entries[i]; | 
 | 			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size; | 
 | 			change_point[chg_idx++]->entry	= &entries[i]; | 
 | 		} | 
 | 	} | 
 | 	chg_nr = chg_idx; | 
 |  | 
 | 	/* Sort change-point list by memory addresses (low -> high): */ | 
 | 	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); | 
 |  | 
 | 	/* Create a new memory map, removing overlaps: */ | 
 | 	overlap_entries = 0;	 /* Number of entries in the overlap table */ | 
 | 	new_nr_entries = 0;	 /* Index for creating new map entries */ | 
 | 	last_type = 0;		 /* Start with undefined memory type */ | 
 | 	last_addr = 0;		 /* Start with 0 as last starting address */ | 
 |  | 
 | 	/* Loop through change-points, determining effect on the new map: */ | 
 | 	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { | 
 | 		/* Keep track of all overlapping entries */ | 
 | 		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { | 
 | 			/* Add map entry to overlap list (> 1 entry implies an overlap) */ | 
 | 			overlap_list[overlap_entries++] = change_point[chg_idx]->entry; | 
 | 		} else { | 
 | 			/* Remove entry from list (order independent, so swap with last): */ | 
 | 			for (i = 0; i < overlap_entries; i++) { | 
 | 				if (overlap_list[i] == change_point[chg_idx]->entry) | 
 | 					overlap_list[i] = overlap_list[overlap_entries-1]; | 
 | 			} | 
 | 			overlap_entries--; | 
 | 		} | 
 | 		/* | 
 | 		 * If there are overlapping entries, decide which | 
 | 		 * "type" to use (larger value takes precedence -- | 
 | 		 * 1=usable, 2,3,4,4+=unusable) | 
 | 		 */ | 
 | 		current_type = 0; | 
 | 		for (i = 0; i < overlap_entries; i++) { | 
 | 			if (overlap_list[i]->type > current_type) | 
 | 				current_type = overlap_list[i]->type; | 
 | 		} | 
 |  | 
 | 		/* Continue building up new map based on this information: */ | 
 | 		if (current_type != last_type || current_type == E820_TYPE_PRAM) { | 
 | 			if (last_type != 0)	 { | 
 | 				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; | 
 | 				/* Move forward only if the new size was non-zero: */ | 
 | 				if (new_entries[new_nr_entries].size != 0) | 
 | 					/* No more space left for new entries? */ | 
 | 					if (++new_nr_entries >= max_nr_entries) | 
 | 						break; | 
 | 			} | 
 | 			if (current_type != 0)	{ | 
 | 				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; | 
 | 				new_entries[new_nr_entries].type = current_type; | 
 | 				last_addr = change_point[chg_idx]->addr; | 
 | 			} | 
 | 			last_type = current_type; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Copy the new entries into the original location: */ | 
 | 	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); | 
 | 	table->nr_entries = new_nr_entries; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) | 
 | { | 
 | 	struct boot_e820_entry *entry = entries; | 
 |  | 
 | 	while (nr_entries) { | 
 | 		u64 start = entry->addr; | 
 | 		u64 size = entry->size; | 
 | 		u64 end = start + size - 1; | 
 | 		u32 type = entry->type; | 
 |  | 
 | 		/* Ignore the entry on 64-bit overflow: */ | 
 | 		if (start > end && likely(size)) | 
 | 			return -1; | 
 |  | 
 | 		e820__range_add(start, size, type); | 
 |  | 
 | 		entry++; | 
 | 		nr_entries--; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Copy the BIOS E820 map into a safe place. | 
 |  * | 
 |  * Sanity-check it while we're at it.. | 
 |  * | 
 |  * If we're lucky and live on a modern system, the setup code | 
 |  * will have given us a memory map that we can use to properly | 
 |  * set up memory.  If we aren't, we'll fake a memory map. | 
 |  */ | 
 | static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) | 
 | { | 
 | 	/* Only one memory region (or negative)? Ignore it */ | 
 | 	if (nr_entries < 2) | 
 | 		return -1; | 
 |  | 
 | 	return __append_e820_table(entries, nr_entries); | 
 | } | 
 |  | 
 | static u64 __init | 
 | __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) | 
 | { | 
 | 	u64 end; | 
 | 	unsigned int i; | 
 | 	u64 real_updated_size = 0; | 
 |  | 
 | 	BUG_ON(old_type == new_type); | 
 |  | 
 | 	if (size > (ULLONG_MAX - start)) | 
 | 		size = ULLONG_MAX - start; | 
 |  | 
 | 	end = start + size; | 
 | 	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); | 
 | 	e820_print_type(old_type); | 
 | 	pr_cont(" ==> "); | 
 | 	e820_print_type(new_type); | 
 | 	pr_cont("\n"); | 
 |  | 
 | 	for (i = 0; i < table->nr_entries; i++) { | 
 | 		struct e820_entry *entry = &table->entries[i]; | 
 | 		u64 final_start, final_end; | 
 | 		u64 entry_end; | 
 |  | 
 | 		if (entry->type != old_type) | 
 | 			continue; | 
 |  | 
 | 		entry_end = entry->addr + entry->size; | 
 |  | 
 | 		/* Completely covered by new range? */ | 
 | 		if (entry->addr >= start && entry_end <= end) { | 
 | 			entry->type = new_type; | 
 | 			real_updated_size += entry->size; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* New range is completely covered? */ | 
 | 		if (entry->addr < start && entry_end > end) { | 
 | 			__e820__range_add(table, start, size, new_type); | 
 | 			__e820__range_add(table, end, entry_end - end, entry->type); | 
 | 			entry->size = start - entry->addr; | 
 | 			real_updated_size += size; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Partially covered: */ | 
 | 		final_start = max(start, entry->addr); | 
 | 		final_end = min(end, entry_end); | 
 | 		if (final_start >= final_end) | 
 | 			continue; | 
 |  | 
 | 		__e820__range_add(table, final_start, final_end - final_start, new_type); | 
 |  | 
 | 		real_updated_size += final_end - final_start; | 
 |  | 
 | 		/* | 
 | 		 * Left range could be head or tail, so need to update | 
 | 		 * its size first: | 
 | 		 */ | 
 | 		entry->size -= final_end - final_start; | 
 | 		if (entry->addr < final_start) | 
 | 			continue; | 
 |  | 
 | 		entry->addr = final_end; | 
 | 	} | 
 | 	return real_updated_size; | 
 | } | 
 |  | 
 | u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) | 
 | { | 
 | 	return __e820__range_update(e820_table, start, size, old_type, new_type); | 
 | } | 
 |  | 
 | static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type) | 
 | { | 
 | 	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type); | 
 | } | 
 |  | 
 | /* Remove a range of memory from the E820 table: */ | 
 | u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) | 
 | { | 
 | 	int i; | 
 | 	u64 end; | 
 | 	u64 real_removed_size = 0; | 
 |  | 
 | 	if (size > (ULLONG_MAX - start)) | 
 | 		size = ULLONG_MAX - start; | 
 |  | 
 | 	end = start + size; | 
 | 	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); | 
 | 	if (check_type) | 
 | 		e820_print_type(old_type); | 
 | 	pr_cont("\n"); | 
 |  | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		struct e820_entry *entry = &e820_table->entries[i]; | 
 | 		u64 final_start, final_end; | 
 | 		u64 entry_end; | 
 |  | 
 | 		if (check_type && entry->type != old_type) | 
 | 			continue; | 
 |  | 
 | 		entry_end = entry->addr + entry->size; | 
 |  | 
 | 		/* Completely covered? */ | 
 | 		if (entry->addr >= start && entry_end <= end) { | 
 | 			real_removed_size += entry->size; | 
 | 			memset(entry, 0, sizeof(*entry)); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Is the new range completely covered? */ | 
 | 		if (entry->addr < start && entry_end > end) { | 
 | 			e820__range_add(end, entry_end - end, entry->type); | 
 | 			entry->size = start - entry->addr; | 
 | 			real_removed_size += size; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Partially covered: */ | 
 | 		final_start = max(start, entry->addr); | 
 | 		final_end = min(end, entry_end); | 
 | 		if (final_start >= final_end) | 
 | 			continue; | 
 |  | 
 | 		real_removed_size += final_end - final_start; | 
 |  | 
 | 		/* | 
 | 		 * Left range could be head or tail, so need to update | 
 | 		 * the size first: | 
 | 		 */ | 
 | 		entry->size -= final_end - final_start; | 
 | 		if (entry->addr < final_start) | 
 | 			continue; | 
 |  | 
 | 		entry->addr = final_end; | 
 | 	} | 
 | 	return real_removed_size; | 
 | } | 
 |  | 
 | void __init e820__update_table_print(void) | 
 | { | 
 | 	if (e820__update_table(e820_table)) | 
 | 		return; | 
 |  | 
 | 	pr_info("e820: modified physical RAM map:\n"); | 
 | 	e820__print_table("modified"); | 
 | } | 
 |  | 
 | static void __init e820__update_table_kexec(void) | 
 | { | 
 | 	e820__update_table(e820_table_kexec); | 
 | } | 
 |  | 
 | #define MAX_GAP_END 0x100000000ull | 
 |  | 
 | /* | 
 |  * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). | 
 |  */ | 
 | static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) | 
 | { | 
 | 	unsigned long long last = MAX_GAP_END; | 
 | 	int i = e820_table->nr_entries; | 
 | 	int found = 0; | 
 |  | 
 | 	while (--i >= 0) { | 
 | 		unsigned long long start = e820_table->entries[i].addr; | 
 | 		unsigned long long end = start + e820_table->entries[i].size; | 
 |  | 
 | 		/* | 
 | 		 * Since "last" is at most 4GB, we know we'll | 
 | 		 * fit in 32 bits if this condition is true: | 
 | 		 */ | 
 | 		if (last > end) { | 
 | 			unsigned long gap = last - end; | 
 |  | 
 | 			if (gap >= *gapsize) { | 
 | 				*gapsize = gap; | 
 | 				*gapstart = end; | 
 | 				found = 1; | 
 | 			} | 
 | 		} | 
 | 		if (start < last) | 
 | 			last = start; | 
 | 	} | 
 | 	return found; | 
 | } | 
 |  | 
 | /* | 
 |  * Search for the biggest gap in the low 32 bits of the E820 | 
 |  * memory space. We pass this space to the PCI subsystem, so | 
 |  * that it can assign MMIO resources for hotplug or | 
 |  * unconfigured devices in. | 
 |  * | 
 |  * Hopefully the BIOS let enough space left. | 
 |  */ | 
 | __init void e820__setup_pci_gap(void) | 
 | { | 
 | 	unsigned long gapstart, gapsize; | 
 | 	int found; | 
 |  | 
 | 	gapsize = 0x400000; | 
 | 	found  = e820_search_gap(&gapstart, &gapsize); | 
 |  | 
 | 	if (!found) { | 
 | #ifdef CONFIG_X86_64 | 
 | 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; | 
 | 		pr_err( | 
 | 			"e820: Cannot find an available gap in the 32-bit address range\n" | 
 | 			"e820: PCI devices with unassigned 32-bit BARs may not work!\n"); | 
 | #else | 
 | 		gapstart = 0x10000000; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * e820__reserve_resources_late() protects stolen RAM already: | 
 | 	 */ | 
 | 	pci_mem_start = gapstart; | 
 |  | 
 | 	pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Called late during init, in free_initmem(). | 
 |  * | 
 |  * Initial e820_table and e820_table_kexec are largish __initdata arrays. | 
 |  * | 
 |  * Copy them to a (usually much smaller) dynamically allocated area that is | 
 |  * sized precisely after the number of e820 entries. | 
 |  * | 
 |  * This is done after we've performed all the fixes and tweaks to the tables. | 
 |  * All functions which modify them are __init functions, which won't exist | 
 |  * after free_initmem(). | 
 |  */ | 
 | __init void e820__reallocate_tables(void) | 
 | { | 
 | 	struct e820_table *n; | 
 | 	int size; | 
 |  | 
 | 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; | 
 | 	n = kmalloc(size, GFP_KERNEL); | 
 | 	BUG_ON(!n); | 
 | 	memcpy(n, e820_table, size); | 
 | 	e820_table = n; | 
 |  | 
 | 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; | 
 | 	n = kmalloc(size, GFP_KERNEL); | 
 | 	BUG_ON(!n); | 
 | 	memcpy(n, e820_table_kexec, size); | 
 | 	e820_table_kexec = n; | 
 |  | 
 | 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; | 
 | 	n = kmalloc(size, GFP_KERNEL); | 
 | 	BUG_ON(!n); | 
 | 	memcpy(n, e820_table_firmware, size); | 
 | 	e820_table_firmware = n; | 
 | } | 
 |  | 
 | /* | 
 |  * Because of the small fixed size of struct boot_params, only the first | 
 |  * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, | 
 |  * the remaining (if any) entries are passed via the SETUP_E820_EXT node of | 
 |  * struct setup_data, which is parsed here. | 
 |  */ | 
 | void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) | 
 | { | 
 | 	int entries; | 
 | 	struct boot_e820_entry *extmap; | 
 | 	struct setup_data *sdata; | 
 |  | 
 | 	sdata = early_memremap(phys_addr, data_len); | 
 | 	entries = sdata->len / sizeof(*extmap); | 
 | 	extmap = (struct boot_e820_entry *)(sdata->data); | 
 |  | 
 | 	__append_e820_table(extmap, entries); | 
 | 	e820__update_table(e820_table); | 
 |  | 
 | 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); | 
 | 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); | 
 |  | 
 | 	early_memunmap(sdata, data_len); | 
 | 	pr_info("e820: extended physical RAM map:\n"); | 
 | 	e820__print_table("extended"); | 
 | } | 
 |  | 
 | /* | 
 |  * Find the ranges of physical addresses that do not correspond to | 
 |  * E820 RAM areas and register the corresponding pages as 'nosave' for | 
 |  * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). | 
 |  * | 
 |  * This function requires the E820 map to be sorted and without any | 
 |  * overlapping entries. | 
 |  */ | 
 | void __init e820__register_nosave_regions(unsigned long limit_pfn) | 
 | { | 
 | 	int i; | 
 | 	unsigned long pfn = 0; | 
 |  | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		struct e820_entry *entry = &e820_table->entries[i]; | 
 |  | 
 | 		if (pfn < PFN_UP(entry->addr)) | 
 | 			register_nosave_region(pfn, PFN_UP(entry->addr)); | 
 |  | 
 | 		pfn = PFN_DOWN(entry->addr + entry->size); | 
 |  | 
 | 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) | 
 | 			register_nosave_region(PFN_UP(entry->addr), pfn); | 
 |  | 
 | 		if (pfn >= limit_pfn) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | /* | 
 |  * Register ACPI NVS memory regions, so that we can save/restore them during | 
 |  * hibernation and the subsequent resume: | 
 |  */ | 
 | static int __init e820__register_nvs_regions(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		struct e820_entry *entry = &e820_table->entries[i]; | 
 |  | 
 | 		if (entry->type == E820_TYPE_NVS) | 
 | 			acpi_nvs_register(entry->addr, entry->size); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | core_initcall(e820__register_nvs_regions); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Allocate the requested number of bytes with the requsted alignment | 
 |  * and return (the physical address) to the caller. Also register this | 
 |  * range in the 'kexec' E820 table as a reserved range. | 
 |  * | 
 |  * This allows kexec to fake a new mptable, as if it came from the real | 
 |  * system. | 
 |  */ | 
 | u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) | 
 | { | 
 | 	u64 addr; | 
 |  | 
 | 	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); | 
 | 	if (addr) { | 
 | 		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); | 
 | 		pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n"); | 
 | 		e820__update_table_kexec(); | 
 | 	} | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | # ifdef CONFIG_X86_PAE | 
 | #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT)) | 
 | # else | 
 | #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT)) | 
 | # endif | 
 | #else /* CONFIG_X86_32 */ | 
 | # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT | 
 | #endif | 
 |  | 
 | /* | 
 |  * Find the highest page frame number we have available | 
 |  */ | 
 | static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type) | 
 | { | 
 | 	int i; | 
 | 	unsigned long last_pfn = 0; | 
 | 	unsigned long max_arch_pfn = MAX_ARCH_PFN; | 
 |  | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		struct e820_entry *entry = &e820_table->entries[i]; | 
 | 		unsigned long start_pfn; | 
 | 		unsigned long end_pfn; | 
 |  | 
 | 		if (entry->type != type) | 
 | 			continue; | 
 |  | 
 | 		start_pfn = entry->addr >> PAGE_SHIFT; | 
 | 		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; | 
 |  | 
 | 		if (start_pfn >= limit_pfn) | 
 | 			continue; | 
 | 		if (end_pfn > limit_pfn) { | 
 | 			last_pfn = limit_pfn; | 
 | 			break; | 
 | 		} | 
 | 		if (end_pfn > last_pfn) | 
 | 			last_pfn = end_pfn; | 
 | 	} | 
 |  | 
 | 	if (last_pfn > max_arch_pfn) | 
 | 		last_pfn = max_arch_pfn; | 
 |  | 
 | 	pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n", | 
 | 			 last_pfn, max_arch_pfn); | 
 | 	return last_pfn; | 
 | } | 
 |  | 
 | unsigned long __init e820__end_of_ram_pfn(void) | 
 | { | 
 | 	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM); | 
 | } | 
 |  | 
 | unsigned long __init e820__end_of_low_ram_pfn(void) | 
 | { | 
 | 	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM); | 
 | } | 
 |  | 
 | static void __init early_panic(char *msg) | 
 | { | 
 | 	early_printk(msg); | 
 | 	panic(msg); | 
 | } | 
 |  | 
 | static int userdef __initdata; | 
 |  | 
 | /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ | 
 | static int __init parse_memopt(char *p) | 
 | { | 
 | 	u64 mem_size; | 
 |  | 
 | 	if (!p) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!strcmp(p, "nopentium")) { | 
 | #ifdef CONFIG_X86_32 | 
 | 		setup_clear_cpu_cap(X86_FEATURE_PSE); | 
 | 		return 0; | 
 | #else | 
 | 		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); | 
 | 		return -EINVAL; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	userdef = 1; | 
 | 	mem_size = memparse(p, &p); | 
 |  | 
 | 	/* Don't remove all memory when getting "mem={invalid}" parameter: */ | 
 | 	if (mem_size == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("mem", parse_memopt); | 
 |  | 
 | static int __init parse_memmap_one(char *p) | 
 | { | 
 | 	char *oldp; | 
 | 	u64 start_at, mem_size; | 
 |  | 
 | 	if (!p) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!strncmp(p, "exactmap", 8)) { | 
 | #ifdef CONFIG_CRASH_DUMP | 
 | 		/* | 
 | 		 * If we are doing a crash dump, we still need to know | 
 | 		 * the real memory size before the original memory map is | 
 | 		 * reset. | 
 | 		 */ | 
 | 		saved_max_pfn = e820__end_of_ram_pfn(); | 
 | #endif | 
 | 		e820_table->nr_entries = 0; | 
 | 		userdef = 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	oldp = p; | 
 | 	mem_size = memparse(p, &p); | 
 | 	if (p == oldp) | 
 | 		return -EINVAL; | 
 |  | 
 | 	userdef = 1; | 
 | 	if (*p == '@') { | 
 | 		start_at = memparse(p+1, &p); | 
 | 		e820__range_add(start_at, mem_size, E820_TYPE_RAM); | 
 | 	} else if (*p == '#') { | 
 | 		start_at = memparse(p+1, &p); | 
 | 		e820__range_add(start_at, mem_size, E820_TYPE_ACPI); | 
 | 	} else if (*p == '$') { | 
 | 		start_at = memparse(p+1, &p); | 
 | 		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); | 
 | 	} else if (*p == '!') { | 
 | 		start_at = memparse(p+1, &p); | 
 | 		e820__range_add(start_at, mem_size, E820_TYPE_PRAM); | 
 | 	} else { | 
 | 		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); | 
 | 	} | 
 |  | 
 | 	return *p == '\0' ? 0 : -EINVAL; | 
 | } | 
 |  | 
 | static int __init parse_memmap_opt(char *str) | 
 | { | 
 | 	while (str) { | 
 | 		char *k = strchr(str, ','); | 
 |  | 
 | 		if (k) | 
 | 			*k++ = 0; | 
 |  | 
 | 		parse_memmap_one(str); | 
 | 		str = k; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("memmap", parse_memmap_opt); | 
 |  | 
 | /* | 
 |  * Reserve all entries from the bootloader's extensible data nodes list, | 
 |  * because if present we are going to use it later on to fetch e820 | 
 |  * entries from it: | 
 |  */ | 
 | void __init e820__reserve_setup_data(void) | 
 | { | 
 | 	struct setup_data *data; | 
 | 	u64 pa_data; | 
 |  | 
 | 	pa_data = boot_params.hdr.setup_data; | 
 | 	if (!pa_data) | 
 | 		return; | 
 |  | 
 | 	while (pa_data) { | 
 | 		data = early_memremap(pa_data, sizeof(*data)); | 
 | 		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); | 
 | 		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); | 
 | 		pa_data = data->next; | 
 | 		early_memunmap(data, sizeof(*data)); | 
 | 	} | 
 |  | 
 | 	e820__update_table(e820_table); | 
 | 	e820__update_table(e820_table_kexec); | 
 |  | 
 | 	pr_info("extended physical RAM map:\n"); | 
 | 	e820__print_table("reserve setup_data"); | 
 | } | 
 |  | 
 | /* | 
 |  * Called after parse_early_param(), after early parameters (such as mem=) | 
 |  * have been processed, in which case we already have an E820 table filled in | 
 |  * via the parameter callback function(s), but it's not sorted and printed yet: | 
 |  */ | 
 | void __init e820__finish_early_params(void) | 
 | { | 
 | 	if (userdef) { | 
 | 		if (e820__update_table(e820_table) < 0) | 
 | 			early_panic("Invalid user supplied memory map"); | 
 |  | 
 | 		pr_info("e820: user-defined physical RAM map:\n"); | 
 | 		e820__print_table("user"); | 
 | 	} | 
 | } | 
 |  | 
 | static const char *__init e820_type_to_string(struct e820_entry *entry) | 
 | { | 
 | 	switch (entry->type) { | 
 | 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */ | 
 | 	case E820_TYPE_RAM:		return "System RAM"; | 
 | 	case E820_TYPE_ACPI:		return "ACPI Tables"; | 
 | 	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage"; | 
 | 	case E820_TYPE_UNUSABLE:	return "Unusable memory"; | 
 | 	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)"; | 
 | 	case E820_TYPE_PMEM:		return "Persistent Memory"; | 
 | 	case E820_TYPE_RESERVED:	return "Reserved"; | 
 | 	default:			return "Unknown E820 type"; | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) | 
 | { | 
 | 	switch (entry->type) { | 
 | 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */ | 
 | 	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM; | 
 | 	case E820_TYPE_ACPI:		/* Fall-through: */ | 
 | 	case E820_TYPE_NVS:		/* Fall-through: */ | 
 | 	case E820_TYPE_UNUSABLE:	/* Fall-through: */ | 
 | 	case E820_TYPE_PRAM:		/* Fall-through: */ | 
 | 	case E820_TYPE_PMEM:		/* Fall-through: */ | 
 | 	case E820_TYPE_RESERVED:	/* Fall-through: */ | 
 | 	default:			return IORESOURCE_MEM; | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) | 
 | { | 
 | 	switch (entry->type) { | 
 | 	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES; | 
 | 	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE; | 
 | 	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY; | 
 | 	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY; | 
 | 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */ | 
 | 	case E820_TYPE_RAM:		/* Fall-through: */ | 
 | 	case E820_TYPE_UNUSABLE:	/* Fall-through: */ | 
 | 	case E820_TYPE_RESERVED:	/* Fall-through: */ | 
 | 	default:			return IORES_DESC_NONE; | 
 | 	} | 
 | } | 
 |  | 
 | static bool __init do_mark_busy(enum e820_type type, struct resource *res) | 
 | { | 
 | 	/* this is the legacy bios/dos rom-shadow + mmio region */ | 
 | 	if (res->start < (1ULL<<20)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * Treat persistent memory like device memory, i.e. reserve it | 
 | 	 * for exclusive use of a driver | 
 | 	 */ | 
 | 	switch (type) { | 
 | 	case E820_TYPE_RESERVED: | 
 | 	case E820_TYPE_PRAM: | 
 | 	case E820_TYPE_PMEM: | 
 | 		return false; | 
 | 	case E820_TYPE_RESERVED_KERN: | 
 | 	case E820_TYPE_RAM: | 
 | 	case E820_TYPE_ACPI: | 
 | 	case E820_TYPE_NVS: | 
 | 	case E820_TYPE_UNUSABLE: | 
 | 	default: | 
 | 		return true; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Mark E820 reserved areas as busy for the resource manager: | 
 |  */ | 
 |  | 
 | static struct resource __initdata *e820_res; | 
 |  | 
 | void __init e820__reserve_resources(void) | 
 | { | 
 | 	int i; | 
 | 	struct resource *res; | 
 | 	u64 end; | 
 |  | 
 | 	res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries); | 
 | 	e820_res = res; | 
 |  | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		struct e820_entry *entry = e820_table->entries + i; | 
 |  | 
 | 		end = entry->addr + entry->size - 1; | 
 | 		if (end != (resource_size_t)end) { | 
 | 			res++; | 
 | 			continue; | 
 | 		} | 
 | 		res->start = entry->addr; | 
 | 		res->end   = end; | 
 | 		res->name  = e820_type_to_string(entry); | 
 | 		res->flags = e820_type_to_iomem_type(entry); | 
 | 		res->desc  = e820_type_to_iores_desc(entry); | 
 |  | 
 | 		/* | 
 | 		 * Don't register the region that could be conflicted with | 
 | 		 * PCI device BAR resources and insert them later in | 
 | 		 * pcibios_resource_survey(): | 
 | 		 */ | 
 | 		if (do_mark_busy(entry->type, res)) { | 
 | 			res->flags |= IORESOURCE_BUSY; | 
 | 			insert_resource(&iomem_resource, res); | 
 | 		} | 
 | 		res++; | 
 | 	} | 
 |  | 
 | 	/* Expose the bootloader-provided memory layout to the sysfs. */ | 
 | 	for (i = 0; i < e820_table_firmware->nr_entries; i++) { | 
 | 		struct e820_entry *entry = e820_table_firmware->entries + i; | 
 |  | 
 | 		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * How much should we pad the end of RAM, depending on where it is? | 
 |  */ | 
 | static unsigned long __init ram_alignment(resource_size_t pos) | 
 | { | 
 | 	unsigned long mb = pos >> 20; | 
 |  | 
 | 	/* To 64kB in the first megabyte */ | 
 | 	if (!mb) | 
 | 		return 64*1024; | 
 |  | 
 | 	/* To 1MB in the first 16MB */ | 
 | 	if (mb < 16) | 
 | 		return 1024*1024; | 
 |  | 
 | 	/* To 64MB for anything above that */ | 
 | 	return 64*1024*1024; | 
 | } | 
 |  | 
 | #define MAX_RESOURCE_SIZE ((resource_size_t)-1) | 
 |  | 
 | void __init e820__reserve_resources_late(void) | 
 | { | 
 | 	int i; | 
 | 	struct resource *res; | 
 |  | 
 | 	res = e820_res; | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		if (!res->parent && res->end) | 
 | 			insert_resource_expand_to_fit(&iomem_resource, res); | 
 | 		res++; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Try to bump up RAM regions to reasonable boundaries, to | 
 | 	 * avoid stolen RAM: | 
 | 	 */ | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		struct e820_entry *entry = &e820_table->entries[i]; | 
 | 		u64 start, end; | 
 |  | 
 | 		if (entry->type != E820_TYPE_RAM) | 
 | 			continue; | 
 |  | 
 | 		start = entry->addr + entry->size; | 
 | 		end = round_up(start, ram_alignment(start)) - 1; | 
 | 		if (end > MAX_RESOURCE_SIZE) | 
 | 			end = MAX_RESOURCE_SIZE; | 
 | 		if (start >= end) | 
 | 			continue; | 
 |  | 
 | 		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); | 
 | 		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Pass the firmware (bootloader) E820 map to the kernel and process it: | 
 |  */ | 
 | char *__init e820__memory_setup_default(void) | 
 | { | 
 | 	char *who = "BIOS-e820"; | 
 |  | 
 | 	/* | 
 | 	 * Try to copy the BIOS-supplied E820-map. | 
 | 	 * | 
 | 	 * Otherwise fake a memory map; one section from 0k->640k, | 
 | 	 * the next section from 1mb->appropriate_mem_k | 
 | 	 */ | 
 | 	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { | 
 | 		u64 mem_size; | 
 |  | 
 | 		/* Compare results from other methods and take the one that gives more RAM: */ | 
 | 		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { | 
 | 			mem_size = boot_params.screen_info.ext_mem_k; | 
 | 			who = "BIOS-88"; | 
 | 		} else { | 
 | 			mem_size = boot_params.alt_mem_k; | 
 | 			who = "BIOS-e801"; | 
 | 		} | 
 |  | 
 | 		e820_table->nr_entries = 0; | 
 | 		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); | 
 | 		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); | 
 | 	} | 
 |  | 
 | 	/* We just appended a lot of ranges, sanitize the table: */ | 
 | 	e820__update_table(e820_table); | 
 |  | 
 | 	return who; | 
 | } | 
 |  | 
 | /* | 
 |  * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader | 
 |  * E820 map - with an optional platform quirk available for virtual platforms | 
 |  * to override this method of boot environment processing: | 
 |  */ | 
 | void __init e820__memory_setup(void) | 
 | { | 
 | 	char *who; | 
 |  | 
 | 	/* This is a firmware interface ABI - make sure we don't break it: */ | 
 | 	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); | 
 |  | 
 | 	who = x86_init.resources.memory_setup(); | 
 |  | 
 | 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); | 
 | 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); | 
 |  | 
 | 	pr_info("e820: BIOS-provided physical RAM map:\n"); | 
 | 	e820__print_table(who); | 
 | } | 
 |  | 
 | void __init e820__memblock_setup(void) | 
 | { | 
 | 	int i; | 
 | 	u64 end; | 
 |  | 
 | 	/* | 
 | 	 * The bootstrap memblock region count maximum is 128 entries | 
 | 	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries | 
 | 	 * than that - so allow memblock resizing. | 
 | 	 * | 
 | 	 * This is safe, because this call happens pretty late during x86 setup, | 
 | 	 * so we know about reserved memory regions already. (This is important | 
 | 	 * so that memblock resizing does no stomp over reserved areas.) | 
 | 	 */ | 
 | 	memblock_allow_resize(); | 
 |  | 
 | 	for (i = 0; i < e820_table->nr_entries; i++) { | 
 | 		struct e820_entry *entry = &e820_table->entries[i]; | 
 |  | 
 | 		end = entry->addr + entry->size; | 
 | 		if (end != (resource_size_t)end) | 
 | 			continue; | 
 |  | 
 | 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) | 
 | 			continue; | 
 |  | 
 | 		memblock_add(entry->addr, entry->size); | 
 | 	} | 
 |  | 
 | 	/* Throw away partial pages: */ | 
 | 	memblock_trim_memory(PAGE_SIZE); | 
 |  | 
 | 	memblock_dump_all(); | 
 | } |