| /* | 
 |  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved. | 
 |  * Copyright 2004-2011 Red Hat, Inc. | 
 |  * | 
 |  * This copyrighted material is made available to anyone wishing to use, | 
 |  * modify, copy, or redistribute it subject to the terms and conditions | 
 |  * of the GNU General Public License version 2. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/dlm.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/types.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/gfs2_ondisk.h> | 
 |  | 
 | #include "incore.h" | 
 | #include "glock.h" | 
 | #include "util.h" | 
 | #include "sys.h" | 
 | #include "trace_gfs2.h" | 
 |  | 
 | extern struct workqueue_struct *gfs2_control_wq; | 
 |  | 
 | /** | 
 |  * gfs2_update_stats - Update time based stats | 
 |  * @mv: Pointer to mean/variance structure to update | 
 |  * @sample: New data to include | 
 |  * | 
 |  * @delta is the difference between the current rtt sample and the | 
 |  * running average srtt. We add 1/8 of that to the srtt in order to | 
 |  * update the current srtt estimate. The variance estimate is a bit | 
 |  * more complicated. We subtract the abs value of the @delta from | 
 |  * the current variance estimate and add 1/4 of that to the running | 
 |  * total. | 
 |  * | 
 |  * Note that the index points at the array entry containing the smoothed | 
 |  * mean value, and the variance is always in the following entry | 
 |  * | 
 |  * Reference: TCP/IP Illustrated, vol 2, p. 831,832 | 
 |  * All times are in units of integer nanoseconds. Unlike the TCP/IP case, | 
 |  * they are not scaled fixed point. | 
 |  */ | 
 |  | 
 | static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, | 
 | 				     s64 sample) | 
 | { | 
 | 	s64 delta = sample - s->stats[index]; | 
 | 	s->stats[index] += (delta >> 3); | 
 | 	index++; | 
 | 	s->stats[index] += ((abs(delta) - s->stats[index]) >> 2); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_update_reply_times - Update locking statistics | 
 |  * @gl: The glock to update | 
 |  * | 
 |  * This assumes that gl->gl_dstamp has been set earlier. | 
 |  * | 
 |  * The rtt (lock round trip time) is an estimate of the time | 
 |  * taken to perform a dlm lock request. We update it on each | 
 |  * reply from the dlm. | 
 |  * | 
 |  * The blocking flag is set on the glock for all dlm requests | 
 |  * which may potentially block due to lock requests from other nodes. | 
 |  * DLM requests where the current lock state is exclusive, the | 
 |  * requested state is null (or unlocked) or where the TRY or | 
 |  * TRY_1CB flags are set are classified as non-blocking. All | 
 |  * other DLM requests are counted as (potentially) blocking. | 
 |  */ | 
 | static inline void gfs2_update_reply_times(struct gfs2_glock *gl) | 
 | { | 
 | 	struct gfs2_pcpu_lkstats *lks; | 
 | 	const unsigned gltype = gl->gl_name.ln_type; | 
 | 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? | 
 | 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT; | 
 | 	s64 rtt; | 
 |  | 
 | 	preempt_disable(); | 
 | 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); | 
 | 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); | 
 | 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */ | 
 | 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */ | 
 | 	preempt_enable(); | 
 |  | 
 | 	trace_gfs2_glock_lock_time(gl, rtt); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_update_request_times - Update locking statistics | 
 |  * @gl: The glock to update | 
 |  * | 
 |  * The irt (lock inter-request times) measures the average time | 
 |  * between requests to the dlm. It is updated immediately before | 
 |  * each dlm call. | 
 |  */ | 
 |  | 
 | static inline void gfs2_update_request_times(struct gfs2_glock *gl) | 
 | { | 
 | 	struct gfs2_pcpu_lkstats *lks; | 
 | 	const unsigned gltype = gl->gl_name.ln_type; | 
 | 	ktime_t dstamp; | 
 | 	s64 irt; | 
 |  | 
 | 	preempt_disable(); | 
 | 	dstamp = gl->gl_dstamp; | 
 | 	gl->gl_dstamp = ktime_get_real(); | 
 | 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); | 
 | 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); | 
 | 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */ | 
 | 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */ | 
 | 	preempt_enable(); | 
 | } | 
 |   | 
 | static void gdlm_ast(void *arg) | 
 | { | 
 | 	struct gfs2_glock *gl = arg; | 
 | 	unsigned ret = gl->gl_state; | 
 |  | 
 | 	gfs2_update_reply_times(gl); | 
 | 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); | 
 |  | 
 | 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) | 
 | 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); | 
 |  | 
 | 	switch (gl->gl_lksb.sb_status) { | 
 | 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ | 
 | 		gfs2_glock_free(gl); | 
 | 		return; | 
 | 	case -DLM_ECANCEL: /* Cancel while getting lock */ | 
 | 		ret |= LM_OUT_CANCELED; | 
 | 		goto out; | 
 | 	case -EAGAIN: /* Try lock fails */ | 
 | 	case -EDEADLK: /* Deadlock detected */ | 
 | 		goto out; | 
 | 	case -ETIMEDOUT: /* Canceled due to timeout */ | 
 | 		ret |= LM_OUT_ERROR; | 
 | 		goto out; | 
 | 	case 0: /* Success */ | 
 | 		break; | 
 | 	default: /* Something unexpected */ | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	ret = gl->gl_req; | 
 | 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { | 
 | 		if (gl->gl_req == LM_ST_SHARED) | 
 | 			ret = LM_ST_DEFERRED; | 
 | 		else if (gl->gl_req == LM_ST_DEFERRED) | 
 | 			ret = LM_ST_SHARED; | 
 | 		else | 
 | 			BUG(); | 
 | 	} | 
 |  | 
 | 	set_bit(GLF_INITIAL, &gl->gl_flags); | 
 | 	gfs2_glock_complete(gl, ret); | 
 | 	return; | 
 | out: | 
 | 	if (!test_bit(GLF_INITIAL, &gl->gl_flags)) | 
 | 		gl->gl_lksb.sb_lkid = 0; | 
 | 	gfs2_glock_complete(gl, ret); | 
 | } | 
 |  | 
 | static void gdlm_bast(void *arg, int mode) | 
 | { | 
 | 	struct gfs2_glock *gl = arg; | 
 |  | 
 | 	switch (mode) { | 
 | 	case DLM_LOCK_EX: | 
 | 		gfs2_glock_cb(gl, LM_ST_UNLOCKED); | 
 | 		break; | 
 | 	case DLM_LOCK_CW: | 
 | 		gfs2_glock_cb(gl, LM_ST_DEFERRED); | 
 | 		break; | 
 | 	case DLM_LOCK_PR: | 
 | 		gfs2_glock_cb(gl, LM_ST_SHARED); | 
 | 		break; | 
 | 	default: | 
 | 		pr_err("unknown bast mode %d\n", mode); | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* convert gfs lock-state to dlm lock-mode */ | 
 |  | 
 | static int make_mode(const unsigned int lmstate) | 
 | { | 
 | 	switch (lmstate) { | 
 | 	case LM_ST_UNLOCKED: | 
 | 		return DLM_LOCK_NL; | 
 | 	case LM_ST_EXCLUSIVE: | 
 | 		return DLM_LOCK_EX; | 
 | 	case LM_ST_DEFERRED: | 
 | 		return DLM_LOCK_CW; | 
 | 	case LM_ST_SHARED: | 
 | 		return DLM_LOCK_PR; | 
 | 	} | 
 | 	pr_err("unknown LM state %d\n", lmstate); | 
 | 	BUG(); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, | 
 | 		      const int req) | 
 | { | 
 | 	u32 lkf = 0; | 
 |  | 
 | 	if (gl->gl_lksb.sb_lvbptr) | 
 | 		lkf |= DLM_LKF_VALBLK; | 
 |  | 
 | 	if (gfs_flags & LM_FLAG_TRY) | 
 | 		lkf |= DLM_LKF_NOQUEUE; | 
 |  | 
 | 	if (gfs_flags & LM_FLAG_TRY_1CB) { | 
 | 		lkf |= DLM_LKF_NOQUEUE; | 
 | 		lkf |= DLM_LKF_NOQUEUEBAST; | 
 | 	} | 
 |  | 
 | 	if (gfs_flags & LM_FLAG_PRIORITY) { | 
 | 		lkf |= DLM_LKF_NOORDER; | 
 | 		lkf |= DLM_LKF_HEADQUE; | 
 | 	} | 
 |  | 
 | 	if (gfs_flags & LM_FLAG_ANY) { | 
 | 		if (req == DLM_LOCK_PR) | 
 | 			lkf |= DLM_LKF_ALTCW; | 
 | 		else if (req == DLM_LOCK_CW) | 
 | 			lkf |= DLM_LKF_ALTPR; | 
 | 		else | 
 | 			BUG(); | 
 | 	} | 
 |  | 
 | 	if (gl->gl_lksb.sb_lkid != 0) { | 
 | 		lkf |= DLM_LKF_CONVERT; | 
 | 		if (test_bit(GLF_BLOCKING, &gl->gl_flags)) | 
 | 			lkf |= DLM_LKF_QUECVT; | 
 | 	} | 
 |  | 
 | 	return lkf; | 
 | } | 
 |  | 
 | static void gfs2_reverse_hex(char *c, u64 value) | 
 | { | 
 | 	*c = '0'; | 
 | 	while (value) { | 
 | 		*c-- = hex_asc[value & 0x0f]; | 
 | 		value >>= 4; | 
 | 	} | 
 | } | 
 |  | 
 | static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, | 
 | 		     unsigned int flags) | 
 | { | 
 | 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; | 
 | 	int req; | 
 | 	u32 lkf; | 
 | 	char strname[GDLM_STRNAME_BYTES] = ""; | 
 |  | 
 | 	req = make_mode(req_state); | 
 | 	lkf = make_flags(gl, flags, req); | 
 | 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); | 
 | 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); | 
 | 	if (gl->gl_lksb.sb_lkid) { | 
 | 		gfs2_update_request_times(gl); | 
 | 	} else { | 
 | 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1); | 
 | 		strname[GDLM_STRNAME_BYTES - 1] = '\0'; | 
 | 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); | 
 | 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); | 
 | 		gl->gl_dstamp = ktime_get_real(); | 
 | 	} | 
 | 	/* | 
 | 	 * Submit the actual lock request. | 
 | 	 */ | 
 |  | 
 | 	return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, | 
 | 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); | 
 | } | 
 |  | 
 | static void gdlm_put_lock(struct gfs2_glock *gl) | 
 | { | 
 | 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	int lvb_needs_unlock = 0; | 
 | 	int error; | 
 |  | 
 | 	if (gl->gl_lksb.sb_lkid == 0) { | 
 | 		gfs2_glock_free(gl); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	clear_bit(GLF_BLOCKING, &gl->gl_flags); | 
 | 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); | 
 | 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); | 
 | 	gfs2_update_request_times(gl); | 
 |  | 
 | 	/* don't want to skip dlm_unlock writing the lvb when lock is ex */ | 
 |  | 
 | 	if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE)) | 
 | 		lvb_needs_unlock = 1; | 
 |  | 
 | 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && | 
 | 	    !lvb_needs_unlock) { | 
 | 		gfs2_glock_free(gl); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, | 
 | 			   NULL, gl); | 
 | 	if (error) { | 
 | 		pr_err("gdlm_unlock %x,%llx err=%d\n", | 
 | 		       gl->gl_name.ln_type, | 
 | 		       (unsigned long long)gl->gl_name.ln_number, error); | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | static void gdlm_cancel(struct gfs2_glock *gl) | 
 | { | 
 | 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; | 
 | 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); | 
 | } | 
 |  | 
 | /* | 
 |  * dlm/gfs2 recovery coordination using dlm_recover callbacks | 
 |  * | 
 |  *  1. dlm_controld sees lockspace members change | 
 |  *  2. dlm_controld blocks dlm-kernel locking activity | 
 |  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) | 
 |  *  4. dlm_controld starts and finishes its own user level recovery | 
 |  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery | 
 |  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) | 
 |  *  7. dlm_recoverd does its own lock recovery | 
 |  *  8. dlm_recoverd unblocks dlm-kernel locking activity | 
 |  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) | 
 |  * 10. gfs2_control updates control_lock lvb with new generation and jid bits | 
 |  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) | 
 |  * 12. gfs2_recover dequeues and recovers journals of failed nodes | 
 |  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) | 
 |  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals | 
 |  * 15. gfs2_control unblocks normal locking when all journals are recovered | 
 |  * | 
 |  * - failures during recovery | 
 |  * | 
 |  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control | 
 |  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still | 
 |  * recovering for a prior failure.  gfs2_control needs a way to detect | 
 |  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using | 
 |  * the recover_block and recover_start values. | 
 |  * | 
 |  * recover_done() provides a new lockspace generation number each time it | 
 |  * is called (step 9).  This generation number is saved as recover_start. | 
 |  * When recover_prep() is called, it sets BLOCK_LOCKS and sets | 
 |  * recover_block = recover_start.  So, while recover_block is equal to | 
 |  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must | 
 |  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) | 
 |  * | 
 |  * - more specific gfs2 steps in sequence above | 
 |  * | 
 |  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start | 
 |  *  6. recover_slot records any failed jids (maybe none) | 
 |  *  9. recover_done sets recover_start = new generation number | 
 |  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids | 
 |  * 12. gfs2_recover does journal recoveries for failed jids identified above | 
 |  * 14. gfs2_control clears control_lock lvb bits for recovered jids | 
 |  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured | 
 |  *     again) then do nothing, otherwise if recover_start > recover_block | 
 |  *     then clear BLOCK_LOCKS. | 
 |  * | 
 |  * - parallel recovery steps across all nodes | 
 |  * | 
 |  * All nodes attempt to update the control_lock lvb with the new generation | 
 |  * number and jid bits, but only the first to get the control_lock EX will | 
 |  * do so; others will see that it's already done (lvb already contains new | 
 |  * generation number.) | 
 |  * | 
 |  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks | 
 |  * . All nodes attempt to set control_lock lvb gen + bits for the new gen | 
 |  * . One node gets control_lock first and writes the lvb, others see it's done | 
 |  * . All nodes attempt to recover jids for which they see control_lock bits set | 
 |  * . One node succeeds for a jid, and that one clears the jid bit in the lvb | 
 |  * . All nodes will eventually see all lvb bits clear and unblock locks | 
 |  * | 
 |  * - is there a problem with clearing an lvb bit that should be set | 
 |  *   and missing a journal recovery? | 
 |  * | 
 |  * 1. jid fails | 
 |  * 2. lvb bit set for step 1 | 
 |  * 3. jid recovered for step 1 | 
 |  * 4. jid taken again (new mount) | 
 |  * 5. jid fails (for step 4) | 
 |  * 6. lvb bit set for step 5 (will already be set) | 
 |  * 7. lvb bit cleared for step 3 | 
 |  * | 
 |  * This is not a problem because the failure in step 5 does not | 
 |  * require recovery, because the mount in step 4 could not have | 
 |  * progressed far enough to unblock locks and access the fs.  The | 
 |  * control_mount() function waits for all recoveries to be complete | 
 |  * for the latest lockspace generation before ever unblocking locks | 
 |  * and returning.  The mount in step 4 waits until the recovery in | 
 |  * step 1 is done. | 
 |  * | 
 |  * - special case of first mounter: first node to mount the fs | 
 |  * | 
 |  * The first node to mount a gfs2 fs needs to check all the journals | 
 |  * and recover any that need recovery before other nodes are allowed | 
 |  * to mount the fs.  (Others may begin mounting, but they must wait | 
 |  * for the first mounter to be done before taking locks on the fs | 
 |  * or accessing the fs.)  This has two parts: | 
 |  * | 
 |  * 1. The mounted_lock tells a node it's the first to mount the fs. | 
 |  * Each node holds the mounted_lock in PR while it's mounted. | 
 |  * Each node tries to acquire the mounted_lock in EX when it mounts. | 
 |  * If a node is granted the mounted_lock EX it means there are no | 
 |  * other mounted nodes (no PR locks exist), and it is the first mounter. | 
 |  * The mounted_lock is demoted to PR when first recovery is done, so | 
 |  * others will fail to get an EX lock, but will get a PR lock. | 
 |  * | 
 |  * 2. The control_lock blocks others in control_mount() while the first | 
 |  * mounter is doing first mount recovery of all journals. | 
 |  * A mounting node needs to acquire control_lock in EX mode before | 
 |  * it can proceed.  The first mounter holds control_lock in EX while doing | 
 |  * the first mount recovery, blocking mounts from other nodes, then demotes | 
 |  * control_lock to NL when it's done (others_may_mount/first_done), | 
 |  * allowing other nodes to continue mounting. | 
 |  * | 
 |  * first mounter: | 
 |  * control_lock EX/NOQUEUE success | 
 |  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) | 
 |  * set first=1 | 
 |  * do first mounter recovery | 
 |  * mounted_lock EX->PR | 
 |  * control_lock EX->NL, write lvb generation | 
 |  * | 
 |  * other mounter: | 
 |  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) | 
 |  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) | 
 |  * mounted_lock PR/NOQUEUE success | 
 |  * read lvb generation | 
 |  * control_lock EX->NL | 
 |  * set first=0 | 
 |  * | 
 |  * - mount during recovery | 
 |  * | 
 |  * If a node mounts while others are doing recovery (not first mounter), | 
 |  * the mounting node will get its initial recover_done() callback without | 
 |  * having seen any previous failures/callbacks. | 
 |  * | 
 |  * It must wait for all recoveries preceding its mount to be finished | 
 |  * before it unblocks locks.  It does this by repeating the "other mounter" | 
 |  * steps above until the lvb generation number is >= its mount generation | 
 |  * number (from initial recover_done) and all lvb bits are clear. | 
 |  * | 
 |  * - control_lock lvb format | 
 |  * | 
 |  * 4 bytes generation number: the latest dlm lockspace generation number | 
 |  * from recover_done callback.  Indicates the jid bitmap has been updated | 
 |  * to reflect all slot failures through that generation. | 
 |  * 4 bytes unused. | 
 |  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates | 
 |  * that jid N needs recovery. | 
 |  */ | 
 |  | 
 | #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ | 
 |  | 
 | static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, | 
 | 			     char *lvb_bits) | 
 | { | 
 | 	__le32 gen; | 
 | 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); | 
 | 	memcpy(&gen, lvb_bits, sizeof(__le32)); | 
 | 	*lvb_gen = le32_to_cpu(gen); | 
 | } | 
 |  | 
 | static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, | 
 | 			      char *lvb_bits) | 
 | { | 
 | 	__le32 gen; | 
 | 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); | 
 | 	gen = cpu_to_le32(lvb_gen); | 
 | 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); | 
 | } | 
 |  | 
 | static int all_jid_bits_clear(char *lvb) | 
 | { | 
 | 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, | 
 | 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET); | 
 | } | 
 |  | 
 | static void sync_wait_cb(void *arg) | 
 | { | 
 | 	struct lm_lockstruct *ls = arg; | 
 | 	complete(&ls->ls_sync_wait); | 
 | } | 
 |  | 
 | static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	int error; | 
 |  | 
 | 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); | 
 | 	if (error) { | 
 | 		fs_err(sdp, "%s lkid %x error %d\n", | 
 | 		       name, lksb->sb_lkid, error); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	wait_for_completion(&ls->ls_sync_wait); | 
 |  | 
 | 	if (lksb->sb_status != -DLM_EUNLOCK) { | 
 | 		fs_err(sdp, "%s lkid %x status %d\n", | 
 | 		       name, lksb->sb_lkid, lksb->sb_status); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, | 
 | 		     unsigned int num, struct dlm_lksb *lksb, char *name) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	char strname[GDLM_STRNAME_BYTES]; | 
 | 	int error, status; | 
 |  | 
 | 	memset(strname, 0, GDLM_STRNAME_BYTES); | 
 | 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); | 
 |  | 
 | 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags, | 
 | 			 strname, GDLM_STRNAME_BYTES - 1, | 
 | 			 0, sync_wait_cb, ls, NULL); | 
 | 	if (error) { | 
 | 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", | 
 | 		       name, lksb->sb_lkid, flags, mode, error); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	wait_for_completion(&ls->ls_sync_wait); | 
 |  | 
 | 	status = lksb->sb_status; | 
 |  | 
 | 	if (status && status != -EAGAIN) { | 
 | 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", | 
 | 		       name, lksb->sb_lkid, flags, mode, status); | 
 | 	} | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | static int mounted_unlock(struct gfs2_sbd *sdp) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); | 
 | } | 
 |  | 
 | static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, | 
 | 			 &ls->ls_mounted_lksb, "mounted_lock"); | 
 | } | 
 |  | 
 | static int control_unlock(struct gfs2_sbd *sdp) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); | 
 | } | 
 |  | 
 | static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, | 
 | 			 &ls->ls_control_lksb, "control_lock"); | 
 | } | 
 |  | 
 | static void gfs2_control_func(struct work_struct *work) | 
 | { | 
 | 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	uint32_t block_gen, start_gen, lvb_gen, flags; | 
 | 	int recover_set = 0; | 
 | 	int write_lvb = 0; | 
 | 	int recover_size; | 
 | 	int i, error; | 
 |  | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	/* | 
 | 	 * No MOUNT_DONE means we're still mounting; control_mount() | 
 | 	 * will set this flag, after which this thread will take over | 
 | 	 * all further clearing of BLOCK_LOCKS. | 
 | 	 * | 
 | 	 * FIRST_MOUNT means this node is doing first mounter recovery, | 
 | 	 * for which recovery control is handled by | 
 | 	 * control_mount()/control_first_done(), not this thread. | 
 | 	 */ | 
 | 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || | 
 | 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		return; | 
 | 	} | 
 | 	block_gen = ls->ls_recover_block; | 
 | 	start_gen = ls->ls_recover_start; | 
 | 	spin_unlock(&ls->ls_recover_spin); | 
 |  | 
 | 	/* | 
 | 	 * Equal block_gen and start_gen implies we are between | 
 | 	 * recover_prep and recover_done callbacks, which means | 
 | 	 * dlm recovery is in progress and dlm locking is blocked. | 
 | 	 * There's no point trying to do any work until recover_done. | 
 | 	 */ | 
 |  | 
 | 	if (block_gen == start_gen) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Propagate recover_submit[] and recover_result[] to lvb: | 
 | 	 * dlm_recoverd adds to recover_submit[] jids needing recovery | 
 | 	 * gfs2_recover adds to recover_result[] journal recovery results | 
 | 	 * | 
 | 	 * set lvb bit for jids in recover_submit[] if the lvb has not | 
 | 	 * yet been updated for the generation of the failure | 
 | 	 * | 
 | 	 * clear lvb bit for jids in recover_result[] if the result of | 
 | 	 * the journal recovery is SUCCESS | 
 | 	 */ | 
 |  | 
 | 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); | 
 | 	if (error) { | 
 | 		fs_err(sdp, "control lock EX error %d\n", error); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); | 
 |  | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	if (block_gen != ls->ls_recover_block || | 
 | 	    start_gen != ls->ls_recover_start) { | 
 | 		fs_info(sdp, "recover generation %u block1 %u %u\n", | 
 | 			start_gen, block_gen, ls->ls_recover_block); | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	recover_size = ls->ls_recover_size; | 
 |  | 
 | 	if (lvb_gen <= start_gen) { | 
 | 		/* | 
 | 		 * Clear lvb bits for jids we've successfully recovered. | 
 | 		 * Because all nodes attempt to recover failed journals, | 
 | 		 * a journal can be recovered multiple times successfully | 
 | 		 * in succession.  Only the first will really do recovery, | 
 | 		 * the others find it clean, but still report a successful | 
 | 		 * recovery.  So, another node may have already recovered | 
 | 		 * the jid and cleared the lvb bit for it. | 
 | 		 */ | 
 | 		for (i = 0; i < recover_size; i++) { | 
 | 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS) | 
 | 				continue; | 
 |  | 
 | 			ls->ls_recover_result[i] = 0; | 
 |  | 
 | 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) | 
 | 				continue; | 
 |  | 
 | 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); | 
 | 			write_lvb = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (lvb_gen == start_gen) { | 
 | 		/* | 
 | 		 * Failed slots before start_gen are already set in lvb. | 
 | 		 */ | 
 | 		for (i = 0; i < recover_size; i++) { | 
 | 			if (!ls->ls_recover_submit[i]) | 
 | 				continue; | 
 | 			if (ls->ls_recover_submit[i] < lvb_gen) | 
 | 				ls->ls_recover_submit[i] = 0; | 
 | 		} | 
 | 	} else if (lvb_gen < start_gen) { | 
 | 		/* | 
 | 		 * Failed slots before start_gen are not yet set in lvb. | 
 | 		 */ | 
 | 		for (i = 0; i < recover_size; i++) { | 
 | 			if (!ls->ls_recover_submit[i]) | 
 | 				continue; | 
 | 			if (ls->ls_recover_submit[i] < start_gen) { | 
 | 				ls->ls_recover_submit[i] = 0; | 
 | 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); | 
 | 			} | 
 | 		} | 
 | 		/* even if there are no bits to set, we need to write the | 
 | 		   latest generation to the lvb */ | 
 | 		write_lvb = 1; | 
 | 	} else { | 
 | 		/* | 
 | 		 * we should be getting a recover_done() for lvb_gen soon | 
 | 		 */ | 
 | 	} | 
 | 	spin_unlock(&ls->ls_recover_spin); | 
 |  | 
 | 	if (write_lvb) { | 
 | 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits); | 
 | 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; | 
 | 	} else { | 
 | 		flags = DLM_LKF_CONVERT; | 
 | 	} | 
 |  | 
 | 	error = control_lock(sdp, DLM_LOCK_NL, flags); | 
 | 	if (error) { | 
 | 		fs_err(sdp, "control lock NL error %d\n", error); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), | 
 | 	 * and clear a jid bit in the lvb if the recovery is a success. | 
 | 	 * Eventually all journals will be recovered, all jid bits will | 
 | 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. | 
 | 	 */ | 
 |  | 
 | 	for (i = 0; i < recover_size; i++) { | 
 | 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { | 
 | 			fs_info(sdp, "recover generation %u jid %d\n", | 
 | 				start_gen, i); | 
 | 			gfs2_recover_set(sdp, i); | 
 | 			recover_set++; | 
 | 		} | 
 | 	} | 
 | 	if (recover_set) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * No more jid bits set in lvb, all recovery is done, unblock locks | 
 | 	 * (unless a new recover_prep callback has occured blocking locks | 
 | 	 * again while working above) | 
 | 	 */ | 
 |  | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	if (ls->ls_recover_block == block_gen && | 
 | 	    ls->ls_recover_start == start_gen) { | 
 | 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		fs_info(sdp, "recover generation %u done\n", start_gen); | 
 | 		gfs2_glock_thaw(sdp); | 
 | 	} else { | 
 | 		fs_info(sdp, "recover generation %u block2 %u %u\n", | 
 | 			start_gen, block_gen, ls->ls_recover_block); | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 	} | 
 | } | 
 |  | 
 | static int control_mount(struct gfs2_sbd *sdp) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	uint32_t start_gen, block_gen, mount_gen, lvb_gen; | 
 | 	int mounted_mode; | 
 | 	int retries = 0; | 
 | 	int error; | 
 |  | 
 | 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); | 
 | 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); | 
 | 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); | 
 | 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; | 
 | 	init_completion(&ls->ls_sync_wait); | 
 |  | 
 | 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); | 
 |  | 
 | 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); | 
 | 	if (error) { | 
 | 		fs_err(sdp, "control_mount control_lock NL error %d\n", error); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	error = mounted_lock(sdp, DLM_LOCK_NL, 0); | 
 | 	if (error) { | 
 | 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); | 
 | 		control_unlock(sdp); | 
 | 		return error; | 
 | 	} | 
 | 	mounted_mode = DLM_LOCK_NL; | 
 |  | 
 | restart: | 
 | 	if (retries++ && signal_pending(current)) { | 
 | 		error = -EINTR; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We always start with both locks in NL. control_lock is | 
 | 	 * demoted to NL below so we don't need to do it here. | 
 | 	 */ | 
 |  | 
 | 	if (mounted_mode != DLM_LOCK_NL) { | 
 | 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); | 
 | 		if (error) | 
 | 			goto fail; | 
 | 		mounted_mode = DLM_LOCK_NL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Other nodes need to do some work in dlm recovery and gfs2_control | 
 | 	 * before the recover_done and control_lock will be ready for us below. | 
 | 	 * A delay here is not required but often avoids having to retry. | 
 | 	 */ | 
 |  | 
 | 	msleep_interruptible(500); | 
 |  | 
 | 	/* | 
 | 	 * Acquire control_lock in EX and mounted_lock in either EX or PR. | 
 | 	 * control_lock lvb keeps track of any pending journal recoveries. | 
 | 	 * mounted_lock indicates if any other nodes have the fs mounted. | 
 | 	 */ | 
 |  | 
 | 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); | 
 | 	if (error == -EAGAIN) { | 
 | 		goto restart; | 
 | 	} else if (error) { | 
 | 		fs_err(sdp, "control_mount control_lock EX error %d\n", error); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); | 
 | 	if (!error) { | 
 | 		mounted_mode = DLM_LOCK_EX; | 
 | 		goto locks_done; | 
 | 	} else if (error != -EAGAIN) { | 
 | 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); | 
 | 	if (!error) { | 
 | 		mounted_mode = DLM_LOCK_PR; | 
 | 		goto locks_done; | 
 | 	} else { | 
 | 		/* not even -EAGAIN should happen here */ | 
 | 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | locks_done: | 
 | 	/* | 
 | 	 * If we got both locks above in EX, then we're the first mounter. | 
 | 	 * If not, then we need to wait for the control_lock lvb to be | 
 | 	 * updated by other mounted nodes to reflect our mount generation. | 
 | 	 * | 
 | 	 * In simple first mounter cases, first mounter will see zero lvb_gen, | 
 | 	 * but in cases where all existing nodes leave/fail before mounting | 
 | 	 * nodes finish control_mount, then all nodes will be mounting and | 
 | 	 * lvb_gen will be non-zero. | 
 | 	 */ | 
 |  | 
 | 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); | 
 |  | 
 | 	if (lvb_gen == 0xFFFFFFFF) { | 
 | 		/* special value to force mount attempts to fail */ | 
 | 		fs_err(sdp, "control_mount control_lock disabled\n"); | 
 | 		error = -EINVAL; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	if (mounted_mode == DLM_LOCK_EX) { | 
 | 		/* first mounter, keep both EX while doing first recovery */ | 
 | 		spin_lock(&ls->ls_recover_spin); | 
 | 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); | 
 | 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); | 
 | 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); | 
 | 	if (error) | 
 | 		goto fail; | 
 |  | 
 | 	/* | 
 | 	 * We are not first mounter, now we need to wait for the control_lock | 
 | 	 * lvb generation to be >= the generation from our first recover_done | 
 | 	 * and all lvb bits to be clear (no pending journal recoveries.) | 
 | 	 */ | 
 |  | 
 | 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) { | 
 | 		/* journals need recovery, wait until all are clear */ | 
 | 		fs_info(sdp, "control_mount wait for journal recovery\n"); | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	block_gen = ls->ls_recover_block; | 
 | 	start_gen = ls->ls_recover_start; | 
 | 	mount_gen = ls->ls_recover_mount; | 
 |  | 
 | 	if (lvb_gen < mount_gen) { | 
 | 		/* wait for mounted nodes to update control_lock lvb to our | 
 | 		   generation, which might include new recovery bits set */ | 
 | 		fs_info(sdp, "control_mount wait1 block %u start %u mount %u " | 
 | 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen, | 
 | 			lvb_gen, ls->ls_recover_flags); | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	if (lvb_gen != start_gen) { | 
 | 		/* wait for mounted nodes to update control_lock lvb to the | 
 | 		   latest recovery generation */ | 
 | 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u " | 
 | 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen, | 
 | 			lvb_gen, ls->ls_recover_flags); | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	if (block_gen == start_gen) { | 
 | 		/* dlm recovery in progress, wait for it to finish */ | 
 | 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u " | 
 | 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen, | 
 | 			lvb_gen, ls->ls_recover_flags); | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); | 
 | 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); | 
 | 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); | 
 | 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); | 
 | 	spin_unlock(&ls->ls_recover_spin); | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	mounted_unlock(sdp); | 
 | 	control_unlock(sdp); | 
 | 	return error; | 
 | } | 
 |  | 
 | static int control_first_done(struct gfs2_sbd *sdp) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	uint32_t start_gen, block_gen; | 
 | 	int error; | 
 |  | 
 | restart: | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	start_gen = ls->ls_recover_start; | 
 | 	block_gen = ls->ls_recover_block; | 
 |  | 
 | 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || | 
 | 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || | 
 | 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { | 
 | 		/* sanity check, should not happen */ | 
 | 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n", | 
 | 		       start_gen, block_gen, ls->ls_recover_flags); | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		control_unlock(sdp); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	if (start_gen == block_gen) { | 
 | 		/* | 
 | 		 * Wait for the end of a dlm recovery cycle to switch from | 
 | 		 * first mounter recovery.  We can ignore any recover_slot | 
 | 		 * callbacks between the recover_prep and next recover_done | 
 | 		 * because we are still the first mounter and any failed nodes | 
 | 		 * have not fully mounted, so they don't need recovery. | 
 | 		 */ | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen); | 
 |  | 
 | 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, | 
 | 			    TASK_UNINTERRUPTIBLE); | 
 | 		goto restart; | 
 | 	} | 
 |  | 
 | 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); | 
 | 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); | 
 | 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); | 
 | 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); | 
 | 	spin_unlock(&ls->ls_recover_spin); | 
 |  | 
 | 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); | 
 | 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits); | 
 |  | 
 | 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); | 
 | 	if (error) | 
 | 		fs_err(sdp, "control_first_done mounted PR error %d\n", error); | 
 |  | 
 | 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); | 
 | 	if (error) | 
 | 		fs_err(sdp, "control_first_done control NL error %d\n", error); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) | 
 |  * to accomodate the largest slot number.  (NB dlm slot numbers start at 1, | 
 |  * gfs2 jids start at 0, so jid = slot - 1) | 
 |  */ | 
 |  | 
 | #define RECOVER_SIZE_INC 16 | 
 |  | 
 | static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, | 
 | 			    int num_slots) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	uint32_t *submit = NULL; | 
 | 	uint32_t *result = NULL; | 
 | 	uint32_t old_size, new_size; | 
 | 	int i, max_jid; | 
 |  | 
 | 	if (!ls->ls_lvb_bits) { | 
 | 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); | 
 | 		if (!ls->ls_lvb_bits) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	max_jid = 0; | 
 | 	for (i = 0; i < num_slots; i++) { | 
 | 		if (max_jid < slots[i].slot - 1) | 
 | 			max_jid = slots[i].slot - 1; | 
 | 	} | 
 |  | 
 | 	old_size = ls->ls_recover_size; | 
 |  | 
 | 	if (old_size >= max_jid + 1) | 
 | 		return 0; | 
 |  | 
 | 	new_size = old_size + RECOVER_SIZE_INC; | 
 |  | 
 | 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); | 
 | 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); | 
 | 	if (!submit || !result) { | 
 | 		kfree(submit); | 
 | 		kfree(result); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); | 
 | 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); | 
 | 	kfree(ls->ls_recover_submit); | 
 | 	kfree(ls->ls_recover_result); | 
 | 	ls->ls_recover_submit = submit; | 
 | 	ls->ls_recover_result = result; | 
 | 	ls->ls_recover_size = new_size; | 
 | 	spin_unlock(&ls->ls_recover_spin); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_recover_size(struct lm_lockstruct *ls) | 
 | { | 
 | 	kfree(ls->ls_lvb_bits); | 
 | 	kfree(ls->ls_recover_submit); | 
 | 	kfree(ls->ls_recover_result); | 
 | 	ls->ls_recover_submit = NULL; | 
 | 	ls->ls_recover_result = NULL; | 
 | 	ls->ls_recover_size = 0; | 
 | } | 
 |  | 
 | /* dlm calls before it does lock recovery */ | 
 |  | 
 | static void gdlm_recover_prep(void *arg) | 
 | { | 
 | 	struct gfs2_sbd *sdp = arg; | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 |  | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	ls->ls_recover_block = ls->ls_recover_start; | 
 | 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); | 
 |  | 
 | 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || | 
 | 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		return; | 
 | 	} | 
 | 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); | 
 | 	spin_unlock(&ls->ls_recover_spin); | 
 | } | 
 |  | 
 | /* dlm calls after recover_prep has been completed on all lockspace members; | 
 |    identifies slot/jid of failed member */ | 
 |  | 
 | static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) | 
 | { | 
 | 	struct gfs2_sbd *sdp = arg; | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	int jid = slot->slot - 1; | 
 |  | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	if (ls->ls_recover_size < jid + 1) { | 
 | 		fs_err(sdp, "recover_slot jid %d gen %u short size %d", | 
 | 		       jid, ls->ls_recover_block, ls->ls_recover_size); | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (ls->ls_recover_submit[jid]) { | 
 | 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", | 
 | 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); | 
 | 	} | 
 | 	ls->ls_recover_submit[jid] = ls->ls_recover_block; | 
 | 	spin_unlock(&ls->ls_recover_spin); | 
 | } | 
 |  | 
 | /* dlm calls after recover_slot and after it completes lock recovery */ | 
 |  | 
 | static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, | 
 | 			      int our_slot, uint32_t generation) | 
 | { | 
 | 	struct gfs2_sbd *sdp = arg; | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 |  | 
 | 	/* ensure the ls jid arrays are large enough */ | 
 | 	set_recover_size(sdp, slots, num_slots); | 
 |  | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	ls->ls_recover_start = generation; | 
 |  | 
 | 	if (!ls->ls_recover_mount) { | 
 | 		ls->ls_recover_mount = generation; | 
 | 		ls->ls_jid = our_slot - 1; | 
 | 	} | 
 |  | 
 | 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) | 
 | 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); | 
 |  | 
 | 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); | 
 | 	smp_mb__after_atomic(); | 
 | 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); | 
 | 	spin_unlock(&ls->ls_recover_spin); | 
 | } | 
 |  | 
 | /* gfs2_recover thread has a journal recovery result */ | 
 |  | 
 | static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, | 
 | 				 unsigned int result) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 |  | 
 | 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) | 
 | 		return; | 
 |  | 
 | 	/* don't care about the recovery of own journal during mount */ | 
 | 	if (jid == ls->ls_jid) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		return; | 
 | 	} | 
 | 	if (ls->ls_recover_size < jid + 1) { | 
 | 		fs_err(sdp, "recovery_result jid %d short size %d", | 
 | 		       jid, ls->ls_recover_size); | 
 | 		spin_unlock(&ls->ls_recover_spin); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	fs_info(sdp, "recover jid %d result %s\n", jid, | 
 | 		result == LM_RD_GAVEUP ? "busy" : "success"); | 
 |  | 
 | 	ls->ls_recover_result[jid] = result; | 
 |  | 
 | 	/* GAVEUP means another node is recovering the journal; delay our | 
 | 	   next attempt to recover it, to give the other node a chance to | 
 | 	   finish before trying again */ | 
 |  | 
 | 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) | 
 | 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, | 
 | 				   result == LM_RD_GAVEUP ? HZ : 0); | 
 | 	spin_unlock(&ls->ls_recover_spin); | 
 | } | 
 |  | 
 | const struct dlm_lockspace_ops gdlm_lockspace_ops = { | 
 | 	.recover_prep = gdlm_recover_prep, | 
 | 	.recover_slot = gdlm_recover_slot, | 
 | 	.recover_done = gdlm_recover_done, | 
 | }; | 
 |  | 
 | static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	char cluster[GFS2_LOCKNAME_LEN]; | 
 | 	const char *fsname; | 
 | 	uint32_t flags; | 
 | 	int error, ops_result; | 
 |  | 
 | 	/* | 
 | 	 * initialize everything | 
 | 	 */ | 
 |  | 
 | 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); | 
 | 	spin_lock_init(&ls->ls_recover_spin); | 
 | 	ls->ls_recover_flags = 0; | 
 | 	ls->ls_recover_mount = 0; | 
 | 	ls->ls_recover_start = 0; | 
 | 	ls->ls_recover_block = 0; | 
 | 	ls->ls_recover_size = 0; | 
 | 	ls->ls_recover_submit = NULL; | 
 | 	ls->ls_recover_result = NULL; | 
 | 	ls->ls_lvb_bits = NULL; | 
 |  | 
 | 	error = set_recover_size(sdp, NULL, 0); | 
 | 	if (error) | 
 | 		goto fail; | 
 |  | 
 | 	/* | 
 | 	 * prepare dlm_new_lockspace args | 
 | 	 */ | 
 |  | 
 | 	fsname = strchr(table, ':'); | 
 | 	if (!fsname) { | 
 | 		fs_info(sdp, "no fsname found\n"); | 
 | 		error = -EINVAL; | 
 | 		goto fail_free; | 
 | 	} | 
 | 	memset(cluster, 0, sizeof(cluster)); | 
 | 	memcpy(cluster, table, strlen(table) - strlen(fsname)); | 
 | 	fsname++; | 
 |  | 
 | 	flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; | 
 |  | 
 | 	/* | 
 | 	 * create/join lockspace | 
 | 	 */ | 
 |  | 
 | 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, | 
 | 				  &gdlm_lockspace_ops, sdp, &ops_result, | 
 | 				  &ls->ls_dlm); | 
 | 	if (error) { | 
 | 		fs_err(sdp, "dlm_new_lockspace error %d\n", error); | 
 | 		goto fail_free; | 
 | 	} | 
 |  | 
 | 	if (ops_result < 0) { | 
 | 		/* | 
 | 		 * dlm does not support ops callbacks, | 
 | 		 * old dlm_controld/gfs_controld are used, try without ops. | 
 | 		 */ | 
 | 		fs_info(sdp, "dlm lockspace ops not used\n"); | 
 | 		free_recover_size(ls); | 
 | 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { | 
 | 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); | 
 | 		error = -EINVAL; | 
 | 		goto fail_release; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * control_mount() uses control_lock to determine first mounter, | 
 | 	 * and for later mounts, waits for any recoveries to be cleared. | 
 | 	 */ | 
 |  | 
 | 	error = control_mount(sdp); | 
 | 	if (error) { | 
 | 		fs_err(sdp, "mount control error %d\n", error); | 
 | 		goto fail_release; | 
 | 	} | 
 |  | 
 | 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); | 
 | 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); | 
 | 	smp_mb__after_atomic(); | 
 | 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); | 
 | 	return 0; | 
 |  | 
 | fail_release: | 
 | 	dlm_release_lockspace(ls->ls_dlm, 2); | 
 | fail_free: | 
 | 	free_recover_size(ls); | 
 | fail: | 
 | 	return error; | 
 | } | 
 |  | 
 | static void gdlm_first_done(struct gfs2_sbd *sdp) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 | 	int error; | 
 |  | 
 | 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) | 
 | 		return; | 
 |  | 
 | 	error = control_first_done(sdp); | 
 | 	if (error) | 
 | 		fs_err(sdp, "mount first_done error %d\n", error); | 
 | } | 
 |  | 
 | static void gdlm_unmount(struct gfs2_sbd *sdp) | 
 | { | 
 | 	struct lm_lockstruct *ls = &sdp->sd_lockstruct; | 
 |  | 
 | 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) | 
 | 		goto release; | 
 |  | 
 | 	/* wait for gfs2_control_wq to be done with this mount */ | 
 |  | 
 | 	spin_lock(&ls->ls_recover_spin); | 
 | 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); | 
 | 	spin_unlock(&ls->ls_recover_spin); | 
 | 	flush_delayed_work(&sdp->sd_control_work); | 
 |  | 
 | 	/* mounted_lock and control_lock will be purged in dlm recovery */ | 
 | release: | 
 | 	if (ls->ls_dlm) { | 
 | 		dlm_release_lockspace(ls->ls_dlm, 2); | 
 | 		ls->ls_dlm = NULL; | 
 | 	} | 
 |  | 
 | 	free_recover_size(ls); | 
 | } | 
 |  | 
 | static const match_table_t dlm_tokens = { | 
 | 	{ Opt_jid, "jid=%d"}, | 
 | 	{ Opt_id, "id=%d"}, | 
 | 	{ Opt_first, "first=%d"}, | 
 | 	{ Opt_nodir, "nodir=%d"}, | 
 | 	{ Opt_err, NULL }, | 
 | }; | 
 |  | 
 | const struct lm_lockops gfs2_dlm_ops = { | 
 | 	.lm_proto_name = "lock_dlm", | 
 | 	.lm_mount = gdlm_mount, | 
 | 	.lm_first_done = gdlm_first_done, | 
 | 	.lm_recovery_result = gdlm_recovery_result, | 
 | 	.lm_unmount = gdlm_unmount, | 
 | 	.lm_put_lock = gdlm_put_lock, | 
 | 	.lm_lock = gdlm_lock, | 
 | 	.lm_cancel = gdlm_cancel, | 
 | 	.lm_tokens = &dlm_tokens, | 
 | }; | 
 |  |