| /* SPDX-License-Identifier: GPL-2.0 */ | 
 | #ifndef _ASM_X86_PROCESSOR_H | 
 | #define _ASM_X86_PROCESSOR_H | 
 |  | 
 | #include <asm/processor-flags.h> | 
 |  | 
 | /* Forward declaration, a strange C thing */ | 
 | struct task_struct; | 
 | struct mm_struct; | 
 | struct vm86; | 
 |  | 
 | #include <asm/math_emu.h> | 
 | #include <asm/segment.h> | 
 | #include <asm/types.h> | 
 | #include <uapi/asm/sigcontext.h> | 
 | #include <asm/current.h> | 
 | #include <asm/cpufeatures.h> | 
 | #include <asm/page.h> | 
 | #include <asm/pgtable_types.h> | 
 | #include <asm/percpu.h> | 
 | #include <asm/msr.h> | 
 | #include <asm/desc_defs.h> | 
 | #include <asm/nops.h> | 
 | #include <asm/special_insns.h> | 
 | #include <asm/fpu/types.h> | 
 | #include <asm/unwind_hints.h> | 
 |  | 
 | #include <linux/personality.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/threads.h> | 
 | #include <linux/math64.h> | 
 | #include <linux/err.h> | 
 | #include <linux/irqflags.h> | 
 | #include <linux/mem_encrypt.h> | 
 |  | 
 | /* | 
 |  * We handle most unaligned accesses in hardware.  On the other hand | 
 |  * unaligned DMA can be quite expensive on some Nehalem processors. | 
 |  * | 
 |  * Based on this we disable the IP header alignment in network drivers. | 
 |  */ | 
 | #define NET_IP_ALIGN	0 | 
 |  | 
 | #define HBP_NUM 4 | 
 |  | 
 | /* | 
 |  * These alignment constraints are for performance in the vSMP case, | 
 |  * but in the task_struct case we must also meet hardware imposed | 
 |  * alignment requirements of the FPU state: | 
 |  */ | 
 | #ifdef CONFIG_X86_VSMP | 
 | # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT) | 
 | # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT) | 
 | #else | 
 | # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state) | 
 | # define ARCH_MIN_MMSTRUCT_ALIGN	0 | 
 | #endif | 
 |  | 
 | enum tlb_infos { | 
 | 	ENTRIES, | 
 | 	NR_INFO | 
 | }; | 
 |  | 
 | extern u16 __read_mostly tlb_lli_4k[NR_INFO]; | 
 | extern u16 __read_mostly tlb_lli_2m[NR_INFO]; | 
 | extern u16 __read_mostly tlb_lli_4m[NR_INFO]; | 
 | extern u16 __read_mostly tlb_lld_4k[NR_INFO]; | 
 | extern u16 __read_mostly tlb_lld_2m[NR_INFO]; | 
 | extern u16 __read_mostly tlb_lld_4m[NR_INFO]; | 
 | extern u16 __read_mostly tlb_lld_1g[NR_INFO]; | 
 |  | 
 | /* | 
 |  *  CPU type and hardware bug flags. Kept separately for each CPU. | 
 |  *  Members of this structure are referenced in head_32.S, so think twice | 
 |  *  before touching them. [mj] | 
 |  */ | 
 |  | 
 | struct cpuinfo_x86 { | 
 | 	__u8			x86;		/* CPU family */ | 
 | 	__u8			x86_vendor;	/* CPU vendor */ | 
 | 	__u8			x86_model; | 
 | 	__u8			x86_stepping; | 
 | #ifdef CONFIG_X86_64 | 
 | 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */ | 
 | 	int			x86_tlbsize; | 
 | #endif | 
 | 	__u8			x86_virt_bits; | 
 | 	__u8			x86_phys_bits; | 
 | 	/* CPUID returned core id bits: */ | 
 | 	__u8			x86_coreid_bits; | 
 | 	__u8			cu_id; | 
 | 	/* Max extended CPUID function supported: */ | 
 | 	__u32			extended_cpuid_level; | 
 | 	/* Maximum supported CPUID level, -1=no CPUID: */ | 
 | 	int			cpuid_level; | 
 | 	__u32			x86_capability[NCAPINTS + NBUGINTS]; | 
 | 	char			x86_vendor_id[16]; | 
 | 	char			x86_model_id[64]; | 
 | 	/* in KB - valid for CPUS which support this call: */ | 
 | 	unsigned int		x86_cache_size; | 
 | 	int			x86_cache_alignment;	/* In bytes */ | 
 | 	/* Cache QoS architectural values: */ | 
 | 	int			x86_cache_max_rmid;	/* max index */ | 
 | 	int			x86_cache_occ_scale;	/* scale to bytes */ | 
 | 	int			x86_power; | 
 | 	unsigned long		loops_per_jiffy; | 
 | 	/* cpuid returned max cores value: */ | 
 | 	u16			 x86_max_cores; | 
 | 	u16			apicid; | 
 | 	u16			initial_apicid; | 
 | 	u16			x86_clflush_size; | 
 | 	/* number of cores as seen by the OS: */ | 
 | 	u16			booted_cores; | 
 | 	/* Physical processor id: */ | 
 | 	u16			phys_proc_id; | 
 | 	/* Logical processor id: */ | 
 | 	u16			logical_proc_id; | 
 | 	/* Core id: */ | 
 | 	u16			cpu_core_id; | 
 | 	/* Index into per_cpu list: */ | 
 | 	u16			cpu_index; | 
 | 	u32			microcode; | 
 | 	/* Address space bits used by the cache internally */ | 
 | 	u8			x86_cache_bits; | 
 | 	unsigned		initialized : 1; | 
 | } __randomize_layout; | 
 |  | 
 | struct cpuid_regs { | 
 | 	u32 eax, ebx, ecx, edx; | 
 | }; | 
 |  | 
 | enum cpuid_regs_idx { | 
 | 	CPUID_EAX = 0, | 
 | 	CPUID_EBX, | 
 | 	CPUID_ECX, | 
 | 	CPUID_EDX, | 
 | }; | 
 |  | 
 | #define X86_VENDOR_INTEL	0 | 
 | #define X86_VENDOR_CYRIX	1 | 
 | #define X86_VENDOR_AMD		2 | 
 | #define X86_VENDOR_UMC		3 | 
 | #define X86_VENDOR_CENTAUR	5 | 
 | #define X86_VENDOR_TRANSMETA	7 | 
 | #define X86_VENDOR_NSC		8 | 
 | #define X86_VENDOR_HYGON	9 | 
 | #define X86_VENDOR_NUM		10 | 
 |  | 
 | #define X86_VENDOR_UNKNOWN	0xff | 
 |  | 
 | /* | 
 |  * capabilities of CPUs | 
 |  */ | 
 | extern struct cpuinfo_x86	boot_cpu_data; | 
 | extern struct cpuinfo_x86	new_cpu_data; | 
 |  | 
 | extern struct x86_hw_tss	doublefault_tss; | 
 | extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS]; | 
 | extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS]; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); | 
 | #define cpu_data(cpu)		per_cpu(cpu_info, cpu) | 
 | #else | 
 | #define cpu_info		boot_cpu_data | 
 | #define cpu_data(cpu)		boot_cpu_data | 
 | #endif | 
 |  | 
 | extern const struct seq_operations cpuinfo_op; | 
 |  | 
 | #define cache_line_size()	(boot_cpu_data.x86_cache_alignment) | 
 |  | 
 | extern void cpu_detect(struct cpuinfo_x86 *c); | 
 |  | 
 | static inline unsigned long long l1tf_pfn_limit(void) | 
 | { | 
 | 	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); | 
 | } | 
 |  | 
 | extern void early_cpu_init(void); | 
 | extern void identify_boot_cpu(void); | 
 | extern void identify_secondary_cpu(struct cpuinfo_x86 *); | 
 | extern void print_cpu_info(struct cpuinfo_x86 *); | 
 | void print_cpu_msr(struct cpuinfo_x86 *); | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | extern int have_cpuid_p(void); | 
 | #else | 
 | static inline int have_cpuid_p(void) | 
 | { | 
 | 	return 1; | 
 | } | 
 | #endif | 
 | static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, | 
 | 				unsigned int *ecx, unsigned int *edx) | 
 | { | 
 | 	/* ecx is often an input as well as an output. */ | 
 | 	asm volatile("cpuid" | 
 | 	    : "=a" (*eax), | 
 | 	      "=b" (*ebx), | 
 | 	      "=c" (*ecx), | 
 | 	      "=d" (*edx) | 
 | 	    : "0" (*eax), "2" (*ecx) | 
 | 	    : "memory"); | 
 | } | 
 |  | 
 | #define native_cpuid_reg(reg)					\ | 
 | static inline unsigned int native_cpuid_##reg(unsigned int op)	\ | 
 | {								\ | 
 | 	unsigned int eax = op, ebx, ecx = 0, edx;		\ | 
 | 								\ | 
 | 	native_cpuid(&eax, &ebx, &ecx, &edx);			\ | 
 | 								\ | 
 | 	return reg;						\ | 
 | } | 
 |  | 
 | /* | 
 |  * Native CPUID functions returning a single datum. | 
 |  */ | 
 | native_cpuid_reg(eax) | 
 | native_cpuid_reg(ebx) | 
 | native_cpuid_reg(ecx) | 
 | native_cpuid_reg(edx) | 
 |  | 
 | /* | 
 |  * Friendlier CR3 helpers. | 
 |  */ | 
 | static inline unsigned long read_cr3_pa(void) | 
 | { | 
 | 	return __read_cr3() & CR3_ADDR_MASK; | 
 | } | 
 |  | 
 | static inline unsigned long native_read_cr3_pa(void) | 
 | { | 
 | 	return __native_read_cr3() & CR3_ADDR_MASK; | 
 | } | 
 |  | 
 | static inline void load_cr3(pgd_t *pgdir) | 
 | { | 
 | 	write_cr3(__sme_pa(pgdir)); | 
 | } | 
 |  | 
 | /* | 
 |  * Note that while the legacy 'TSS' name comes from 'Task State Segment', | 
 |  * on modern x86 CPUs the TSS also holds information important to 64-bit mode, | 
 |  * unrelated to the task-switch mechanism: | 
 |  */ | 
 | #ifdef CONFIG_X86_32 | 
 | /* This is the TSS defined by the hardware. */ | 
 | struct x86_hw_tss { | 
 | 	unsigned short		back_link, __blh; | 
 | 	unsigned long		sp0; | 
 | 	unsigned short		ss0, __ss0h; | 
 | 	unsigned long		sp1; | 
 |  | 
 | 	/* | 
 | 	 * We don't use ring 1, so ss1 is a convenient scratch space in | 
 | 	 * the same cacheline as sp0.  We use ss1 to cache the value in | 
 | 	 * MSR_IA32_SYSENTER_CS.  When we context switch | 
 | 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being | 
 | 	 * written matches ss1, and, if it's not, then we wrmsr the new | 
 | 	 * value and update ss1. | 
 | 	 * | 
 | 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is | 
 | 	 * that we set it to zero in vm86 tasks to avoid corrupting the | 
 | 	 * stack if we were to go through the sysenter path from vm86 | 
 | 	 * mode. | 
 | 	 */ | 
 | 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */ | 
 |  | 
 | 	unsigned short		__ss1h; | 
 | 	unsigned long		sp2; | 
 | 	unsigned short		ss2, __ss2h; | 
 | 	unsigned long		__cr3; | 
 | 	unsigned long		ip; | 
 | 	unsigned long		flags; | 
 | 	unsigned long		ax; | 
 | 	unsigned long		cx; | 
 | 	unsigned long		dx; | 
 | 	unsigned long		bx; | 
 | 	unsigned long		sp; | 
 | 	unsigned long		bp; | 
 | 	unsigned long		si; | 
 | 	unsigned long		di; | 
 | 	unsigned short		es, __esh; | 
 | 	unsigned short		cs, __csh; | 
 | 	unsigned short		ss, __ssh; | 
 | 	unsigned short		ds, __dsh; | 
 | 	unsigned short		fs, __fsh; | 
 | 	unsigned short		gs, __gsh; | 
 | 	unsigned short		ldt, __ldth; | 
 | 	unsigned short		trace; | 
 | 	unsigned short		io_bitmap_base; | 
 |  | 
 | } __attribute__((packed)); | 
 | #else | 
 | struct x86_hw_tss { | 
 | 	u32			reserved1; | 
 | 	u64			sp0; | 
 |  | 
 | 	/* | 
 | 	 * We store cpu_current_top_of_stack in sp1 so it's always accessible. | 
 | 	 * Linux does not use ring 1, so sp1 is not otherwise needed. | 
 | 	 */ | 
 | 	u64			sp1; | 
 |  | 
 | 	/* | 
 | 	 * Since Linux does not use ring 2, the 'sp2' slot is unused by | 
 | 	 * hardware.  entry_SYSCALL_64 uses it as scratch space to stash | 
 | 	 * the user RSP value. | 
 | 	 */ | 
 | 	u64			sp2; | 
 |  | 
 | 	u64			reserved2; | 
 | 	u64			ist[7]; | 
 | 	u32			reserved3; | 
 | 	u32			reserved4; | 
 | 	u16			reserved5; | 
 | 	u16			io_bitmap_base; | 
 |  | 
 | } __attribute__((packed)); | 
 | #endif | 
 |  | 
 | /* | 
 |  * IO-bitmap sizes: | 
 |  */ | 
 | #define IO_BITMAP_BITS			65536 | 
 | #define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8) | 
 | #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long)) | 
 | #define IO_BITMAP_OFFSET		(offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss)) | 
 | #define INVALID_IO_BITMAP_OFFSET	0x8000 | 
 |  | 
 | struct entry_stack { | 
 | 	unsigned long		words[64]; | 
 | }; | 
 |  | 
 | struct entry_stack_page { | 
 | 	struct entry_stack stack; | 
 | } __aligned(PAGE_SIZE); | 
 |  | 
 | struct tss_struct { | 
 | 	/* | 
 | 	 * The fixed hardware portion.  This must not cross a page boundary | 
 | 	 * at risk of violating the SDM's advice and potentially triggering | 
 | 	 * errata. | 
 | 	 */ | 
 | 	struct x86_hw_tss	x86_tss; | 
 |  | 
 | 	/* | 
 | 	 * The extra 1 is there because the CPU will access an | 
 | 	 * additional byte beyond the end of the IO permission | 
 | 	 * bitmap. The extra byte must be all 1 bits, and must | 
 | 	 * be within the limit. | 
 | 	 */ | 
 | 	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1]; | 
 | } __aligned(PAGE_SIZE); | 
 |  | 
 | DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); | 
 |  | 
 | /* | 
 |  * sizeof(unsigned long) coming from an extra "long" at the end | 
 |  * of the iobitmap. | 
 |  * | 
 |  * -1? seg base+limit should be pointing to the address of the | 
 |  * last valid byte | 
 |  */ | 
 | #define __KERNEL_TSS_LIMIT	\ | 
 | 	(IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1) | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); | 
 | #else | 
 | /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ | 
 | #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 | 
 | #endif | 
 |  | 
 | /* | 
 |  * Save the original ist values for checking stack pointers during debugging | 
 |  */ | 
 | struct orig_ist { | 
 | 	unsigned long		ist[7]; | 
 | }; | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | DECLARE_PER_CPU(struct orig_ist, orig_ist); | 
 |  | 
 | union irq_stack_union { | 
 | 	char irq_stack[IRQ_STACK_SIZE]; | 
 | 	/* | 
 | 	 * GCC hardcodes the stack canary as %gs:40.  Since the | 
 | 	 * irq_stack is the object at %gs:0, we reserve the bottom | 
 | 	 * 48 bytes of the irq stack for the canary. | 
 | 	 */ | 
 | 	struct { | 
 | 		char gs_base[40]; | 
 | 		unsigned long stack_canary; | 
 | 	}; | 
 | }; | 
 |  | 
 | DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible; | 
 | DECLARE_INIT_PER_CPU(irq_stack_union); | 
 |  | 
 | static inline unsigned long cpu_kernelmode_gs_base(int cpu) | 
 | { | 
 | 	return (unsigned long)per_cpu(irq_stack_union.gs_base, cpu); | 
 | } | 
 |  | 
 | DECLARE_PER_CPU(char *, irq_stack_ptr); | 
 | DECLARE_PER_CPU(unsigned int, irq_count); | 
 | extern asmlinkage void ignore_sysret(void); | 
 |  | 
 | #if IS_ENABLED(CONFIG_KVM) | 
 | /* Save actual FS/GS selectors and bases to current->thread */ | 
 | void save_fsgs_for_kvm(void); | 
 | #endif | 
 | #else	/* X86_64 */ | 
 | #ifdef CONFIG_STACKPROTECTOR | 
 | /* | 
 |  * Make sure stack canary segment base is cached-aligned: | 
 |  *   "For Intel Atom processors, avoid non zero segment base address | 
 |  *    that is not aligned to cache line boundary at all cost." | 
 |  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) | 
 |  */ | 
 | struct stack_canary { | 
 | 	char __pad[20];		/* canary at %gs:20 */ | 
 | 	unsigned long canary; | 
 | }; | 
 | DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); | 
 | #endif | 
 | /* | 
 |  * per-CPU IRQ handling stacks | 
 |  */ | 
 | struct irq_stack { | 
 | 	u32                     stack[THREAD_SIZE/sizeof(u32)]; | 
 | } __aligned(THREAD_SIZE); | 
 |  | 
 | DECLARE_PER_CPU(struct irq_stack *, hardirq_stack); | 
 | DECLARE_PER_CPU(struct irq_stack *, softirq_stack); | 
 | #endif	/* X86_64 */ | 
 |  | 
 | extern unsigned int fpu_kernel_xstate_size; | 
 | extern unsigned int fpu_user_xstate_size; | 
 |  | 
 | struct perf_event; | 
 |  | 
 | typedef struct { | 
 | 	unsigned long		seg; | 
 | } mm_segment_t; | 
 |  | 
 | struct thread_struct { | 
 | 	/* Cached TLS descriptors: */ | 
 | 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES]; | 
 | #ifdef CONFIG_X86_32 | 
 | 	unsigned long		sp0; | 
 | #endif | 
 | 	unsigned long		sp; | 
 | #ifdef CONFIG_X86_32 | 
 | 	unsigned long		sysenter_cs; | 
 | #else | 
 | 	unsigned short		es; | 
 | 	unsigned short		ds; | 
 | 	unsigned short		fsindex; | 
 | 	unsigned short		gsindex; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	unsigned long		fsbase; | 
 | 	unsigned long		gsbase; | 
 | #else | 
 | 	/* | 
 | 	 * XXX: this could presumably be unsigned short.  Alternatively, | 
 | 	 * 32-bit kernels could be taught to use fsindex instead. | 
 | 	 */ | 
 | 	unsigned long fs; | 
 | 	unsigned long gs; | 
 | #endif | 
 |  | 
 | 	/* Save middle states of ptrace breakpoints */ | 
 | 	struct perf_event	*ptrace_bps[HBP_NUM]; | 
 | 	/* Debug status used for traps, single steps, etc... */ | 
 | 	unsigned long           debugreg6; | 
 | 	/* Keep track of the exact dr7 value set by the user */ | 
 | 	unsigned long           ptrace_dr7; | 
 | 	/* Fault info: */ | 
 | 	unsigned long		cr2; | 
 | 	unsigned long		trap_nr; | 
 | 	unsigned long		error_code; | 
 | #ifdef CONFIG_VM86 | 
 | 	/* Virtual 86 mode info */ | 
 | 	struct vm86		*vm86; | 
 | #endif | 
 | 	/* IO permissions: */ | 
 | 	unsigned long		*io_bitmap_ptr; | 
 | 	unsigned long		iopl; | 
 | 	/* Max allowed port in the bitmap, in bytes: */ | 
 | 	unsigned		io_bitmap_max; | 
 |  | 
 | 	mm_segment_t		addr_limit; | 
 |  | 
 | 	unsigned int		sig_on_uaccess_err:1; | 
 | 	unsigned int		uaccess_err:1;	/* uaccess failed */ | 
 |  | 
 | 	/* Floating point and extended processor state */ | 
 | 	struct fpu		fpu; | 
 | 	/* | 
 | 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at | 
 | 	 * the end. | 
 | 	 */ | 
 | }; | 
 |  | 
 | /* Whitelist the FPU state from the task_struct for hardened usercopy. */ | 
 | static inline void arch_thread_struct_whitelist(unsigned long *offset, | 
 | 						unsigned long *size) | 
 | { | 
 | 	*offset = offsetof(struct thread_struct, fpu.state); | 
 | 	*size = fpu_kernel_xstate_size; | 
 | } | 
 |  | 
 | /* | 
 |  * Thread-synchronous status. | 
 |  * | 
 |  * This is different from the flags in that nobody else | 
 |  * ever touches our thread-synchronous status, so we don't | 
 |  * have to worry about atomic accesses. | 
 |  */ | 
 | #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/ | 
 |  | 
 | /* | 
 |  * Set IOPL bits in EFLAGS from given mask | 
 |  */ | 
 | static inline void native_set_iopl_mask(unsigned mask) | 
 | { | 
 | #ifdef CONFIG_X86_32 | 
 | 	unsigned int reg; | 
 |  | 
 | 	asm volatile ("pushfl;" | 
 | 		      "popl %0;" | 
 | 		      "andl %1, %0;" | 
 | 		      "orl %2, %0;" | 
 | 		      "pushl %0;" | 
 | 		      "popfl" | 
 | 		      : "=&r" (reg) | 
 | 		      : "i" (~X86_EFLAGS_IOPL), "r" (mask)); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void | 
 | native_load_sp0(unsigned long sp0) | 
 | { | 
 | 	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); | 
 | } | 
 |  | 
 | static inline void native_swapgs(void) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	asm volatile("swapgs" ::: "memory"); | 
 | #endif | 
 | } | 
 |  | 
 | static inline unsigned long current_top_of_stack(void) | 
 | { | 
 | 	/* | 
 | 	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in | 
 | 	 *  and around vm86 mode and sp0 on x86_64 is special because of the | 
 | 	 *  entry trampoline. | 
 | 	 */ | 
 | 	return this_cpu_read_stable(cpu_current_top_of_stack); | 
 | } | 
 |  | 
 | static inline bool on_thread_stack(void) | 
 | { | 
 | 	return (unsigned long)(current_top_of_stack() - | 
 | 			       current_stack_pointer) < THREAD_SIZE; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PARAVIRT_XXL | 
 | #include <asm/paravirt.h> | 
 | #else | 
 | #define __cpuid			native_cpuid | 
 |  | 
 | static inline void load_sp0(unsigned long sp0) | 
 | { | 
 | 	native_load_sp0(sp0); | 
 | } | 
 |  | 
 | #define set_iopl_mask native_set_iopl_mask | 
 | #endif /* CONFIG_PARAVIRT_XXL */ | 
 |  | 
 | /* Free all resources held by a thread. */ | 
 | extern void release_thread(struct task_struct *); | 
 |  | 
 | unsigned long get_wchan(struct task_struct *p); | 
 |  | 
 | /* | 
 |  * Generic CPUID function | 
 |  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx | 
 |  * resulting in stale register contents being returned. | 
 |  */ | 
 | static inline void cpuid(unsigned int op, | 
 | 			 unsigned int *eax, unsigned int *ebx, | 
 | 			 unsigned int *ecx, unsigned int *edx) | 
 | { | 
 | 	*eax = op; | 
 | 	*ecx = 0; | 
 | 	__cpuid(eax, ebx, ecx, edx); | 
 | } | 
 |  | 
 | /* Some CPUID calls want 'count' to be placed in ecx */ | 
 | static inline void cpuid_count(unsigned int op, int count, | 
 | 			       unsigned int *eax, unsigned int *ebx, | 
 | 			       unsigned int *ecx, unsigned int *edx) | 
 | { | 
 | 	*eax = op; | 
 | 	*ecx = count; | 
 | 	__cpuid(eax, ebx, ecx, edx); | 
 | } | 
 |  | 
 | /* | 
 |  * CPUID functions returning a single datum | 
 |  */ | 
 | static inline unsigned int cpuid_eax(unsigned int op) | 
 | { | 
 | 	unsigned int eax, ebx, ecx, edx; | 
 |  | 
 | 	cpuid(op, &eax, &ebx, &ecx, &edx); | 
 |  | 
 | 	return eax; | 
 | } | 
 |  | 
 | static inline unsigned int cpuid_ebx(unsigned int op) | 
 | { | 
 | 	unsigned int eax, ebx, ecx, edx; | 
 |  | 
 | 	cpuid(op, &eax, &ebx, &ecx, &edx); | 
 |  | 
 | 	return ebx; | 
 | } | 
 |  | 
 | static inline unsigned int cpuid_ecx(unsigned int op) | 
 | { | 
 | 	unsigned int eax, ebx, ecx, edx; | 
 |  | 
 | 	cpuid(op, &eax, &ebx, &ecx, &edx); | 
 |  | 
 | 	return ecx; | 
 | } | 
 |  | 
 | static inline unsigned int cpuid_edx(unsigned int op) | 
 | { | 
 | 	unsigned int eax, ebx, ecx, edx; | 
 |  | 
 | 	cpuid(op, &eax, &ebx, &ecx, &edx); | 
 |  | 
 | 	return edx; | 
 | } | 
 |  | 
 | /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ | 
 | static __always_inline void rep_nop(void) | 
 | { | 
 | 	asm volatile("rep; nop" ::: "memory"); | 
 | } | 
 |  | 
 | static __always_inline void cpu_relax(void) | 
 | { | 
 | 	rep_nop(); | 
 | } | 
 |  | 
 | /* | 
 |  * This function forces the icache and prefetched instruction stream to | 
 |  * catch up with reality in two very specific cases: | 
 |  * | 
 |  *  a) Text was modified using one virtual address and is about to be executed | 
 |  *     from the same physical page at a different virtual address. | 
 |  * | 
 |  *  b) Text was modified on a different CPU, may subsequently be | 
 |  *     executed on this CPU, and you want to make sure the new version | 
 |  *     gets executed.  This generally means you're calling this in a IPI. | 
 |  * | 
 |  * If you're calling this for a different reason, you're probably doing | 
 |  * it wrong. | 
 |  */ | 
 | static inline void sync_core(void) | 
 | { | 
 | 	/* | 
 | 	 * There are quite a few ways to do this.  IRET-to-self is nice | 
 | 	 * because it works on every CPU, at any CPL (so it's compatible | 
 | 	 * with paravirtualization), and it never exits to a hypervisor. | 
 | 	 * The only down sides are that it's a bit slow (it seems to be | 
 | 	 * a bit more than 2x slower than the fastest options) and that | 
 | 	 * it unmasks NMIs.  The "push %cs" is needed because, in | 
 | 	 * paravirtual environments, __KERNEL_CS may not be a valid CS | 
 | 	 * value when we do IRET directly. | 
 | 	 * | 
 | 	 * In case NMI unmasking or performance ever becomes a problem, | 
 | 	 * the next best option appears to be MOV-to-CR2 and an | 
 | 	 * unconditional jump.  That sequence also works on all CPUs, | 
 | 	 * but it will fault at CPL3 (i.e. Xen PV). | 
 | 	 * | 
 | 	 * CPUID is the conventional way, but it's nasty: it doesn't | 
 | 	 * exist on some 486-like CPUs, and it usually exits to a | 
 | 	 * hypervisor. | 
 | 	 * | 
 | 	 * Like all of Linux's memory ordering operations, this is a | 
 | 	 * compiler barrier as well. | 
 | 	 */ | 
 | #ifdef CONFIG_X86_32 | 
 | 	asm volatile ( | 
 | 		"pushfl\n\t" | 
 | 		"pushl %%cs\n\t" | 
 | 		"pushl $1f\n\t" | 
 | 		"iret\n\t" | 
 | 		"1:" | 
 | 		: ASM_CALL_CONSTRAINT : : "memory"); | 
 | #else | 
 | 	unsigned int tmp; | 
 |  | 
 | 	asm volatile ( | 
 | 		UNWIND_HINT_SAVE | 
 | 		"mov %%ss, %0\n\t" | 
 | 		"pushq %q0\n\t" | 
 | 		"pushq %%rsp\n\t" | 
 | 		"addq $8, (%%rsp)\n\t" | 
 | 		"pushfq\n\t" | 
 | 		"mov %%cs, %0\n\t" | 
 | 		"pushq %q0\n\t" | 
 | 		"pushq $1f\n\t" | 
 | 		"iretq\n\t" | 
 | 		UNWIND_HINT_RESTORE | 
 | 		"1:" | 
 | 		: "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); | 
 | #endif | 
 | } | 
 |  | 
 | extern void select_idle_routine(const struct cpuinfo_x86 *c); | 
 | extern void amd_e400_c1e_apic_setup(void); | 
 |  | 
 | extern unsigned long		boot_option_idle_override; | 
 |  | 
 | enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, | 
 | 			 IDLE_POLL}; | 
 |  | 
 | extern void enable_sep_cpu(void); | 
 | extern int sysenter_setup(void); | 
 |  | 
 |  | 
 | /* Defined in head.S */ | 
 | extern struct desc_ptr		early_gdt_descr; | 
 |  | 
 | extern void switch_to_new_gdt(int); | 
 | extern void load_direct_gdt(int); | 
 | extern void load_fixmap_gdt(int); | 
 | extern void load_percpu_segment(int); | 
 | extern void cpu_init(void); | 
 |  | 
 | static inline unsigned long get_debugctlmsr(void) | 
 | { | 
 | 	unsigned long debugctlmsr = 0; | 
 |  | 
 | #ifndef CONFIG_X86_DEBUGCTLMSR | 
 | 	if (boot_cpu_data.x86 < 6) | 
 | 		return 0; | 
 | #endif | 
 | 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); | 
 |  | 
 | 	return debugctlmsr; | 
 | } | 
 |  | 
 | static inline void update_debugctlmsr(unsigned long debugctlmsr) | 
 | { | 
 | #ifndef CONFIG_X86_DEBUGCTLMSR | 
 | 	if (boot_cpu_data.x86 < 6) | 
 | 		return; | 
 | #endif | 
 | 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); | 
 | } | 
 |  | 
 | extern void set_task_blockstep(struct task_struct *task, bool on); | 
 |  | 
 | /* Boot loader type from the setup header: */ | 
 | extern int			bootloader_type; | 
 | extern int			bootloader_version; | 
 |  | 
 | extern char			ignore_fpu_irq; | 
 |  | 
 | #define HAVE_ARCH_PICK_MMAP_LAYOUT 1 | 
 | #define ARCH_HAS_PREFETCHW | 
 | #define ARCH_HAS_SPINLOCK_PREFETCH | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | # define BASE_PREFETCH		"" | 
 | # define ARCH_HAS_PREFETCH | 
 | #else | 
 | # define BASE_PREFETCH		"prefetcht0 %P1" | 
 | #endif | 
 |  | 
 | /* | 
 |  * Prefetch instructions for Pentium III (+) and AMD Athlon (+) | 
 |  * | 
 |  * It's not worth to care about 3dnow prefetches for the K6 | 
 |  * because they are microcoded there and very slow. | 
 |  */ | 
 | static inline void prefetch(const void *x) | 
 | { | 
 | 	alternative_input(BASE_PREFETCH, "prefetchnta %P1", | 
 | 			  X86_FEATURE_XMM, | 
 | 			  "m" (*(const char *)x)); | 
 | } | 
 |  | 
 | /* | 
 |  * 3dnow prefetch to get an exclusive cache line. | 
 |  * Useful for spinlocks to avoid one state transition in the | 
 |  * cache coherency protocol: | 
 |  */ | 
 | static inline void prefetchw(const void *x) | 
 | { | 
 | 	alternative_input(BASE_PREFETCH, "prefetchw %P1", | 
 | 			  X86_FEATURE_3DNOWPREFETCH, | 
 | 			  "m" (*(const char *)x)); | 
 | } | 
 |  | 
 | static inline void spin_lock_prefetch(const void *x) | 
 | { | 
 | 	prefetchw(x); | 
 | } | 
 |  | 
 | #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ | 
 | 			   TOP_OF_KERNEL_STACK_PADDING) | 
 |  | 
 | #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) | 
 |  | 
 | #define task_pt_regs(task) \ | 
 | ({									\ | 
 | 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\ | 
 | 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\ | 
 | 	((struct pt_regs *)__ptr) - 1;					\ | 
 | }) | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | /* | 
 |  * User space process size: 3GB (default). | 
 |  */ | 
 | #define IA32_PAGE_OFFSET	PAGE_OFFSET | 
 | #define TASK_SIZE		PAGE_OFFSET | 
 | #define TASK_SIZE_LOW		TASK_SIZE | 
 | #define TASK_SIZE_MAX		TASK_SIZE | 
 | #define DEFAULT_MAP_WINDOW	TASK_SIZE | 
 | #define STACK_TOP		TASK_SIZE | 
 | #define STACK_TOP_MAX		STACK_TOP | 
 |  | 
 | #define INIT_THREAD  {							  \ | 
 | 	.sp0			= TOP_OF_INIT_STACK,			  \ | 
 | 	.sysenter_cs		= __KERNEL_CS,				  \ | 
 | 	.io_bitmap_ptr		= NULL,					  \ | 
 | 	.addr_limit		= KERNEL_DS,				  \ | 
 | } | 
 |  | 
 | #define KSTK_ESP(task)		(task_pt_regs(task)->sp) | 
 |  | 
 | #else | 
 | /* | 
 |  * User space process size.  This is the first address outside the user range. | 
 |  * There are a few constraints that determine this: | 
 |  * | 
 |  * On Intel CPUs, if a SYSCALL instruction is at the highest canonical | 
 |  * address, then that syscall will enter the kernel with a | 
 |  * non-canonical return address, and SYSRET will explode dangerously. | 
 |  * We avoid this particular problem by preventing anything executable | 
 |  * from being mapped at the maximum canonical address. | 
 |  * | 
 |  * On AMD CPUs in the Ryzen family, there's a nasty bug in which the | 
 |  * CPUs malfunction if they execute code from the highest canonical page. | 
 |  * They'll speculate right off the end of the canonical space, and | 
 |  * bad things happen.  This is worked around in the same way as the | 
 |  * Intel problem. | 
 |  * | 
 |  * With page table isolation enabled, we map the LDT in ... [stay tuned] | 
 |  */ | 
 | #define TASK_SIZE_MAX	((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) | 
 |  | 
 | #define DEFAULT_MAP_WINDOW	((1UL << 47) - PAGE_SIZE) | 
 |  | 
 | /* This decides where the kernel will search for a free chunk of vm | 
 |  * space during mmap's. | 
 |  */ | 
 | #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \ | 
 | 					0xc0000000 : 0xFFFFe000) | 
 |  | 
 | #define TASK_SIZE_LOW		(test_thread_flag(TIF_ADDR32) ? \ | 
 | 					IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) | 
 | #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \ | 
 | 					IA32_PAGE_OFFSET : TASK_SIZE_MAX) | 
 | #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ | 
 | 					IA32_PAGE_OFFSET : TASK_SIZE_MAX) | 
 |  | 
 | #define STACK_TOP		TASK_SIZE_LOW | 
 | #define STACK_TOP_MAX		TASK_SIZE_MAX | 
 |  | 
 | #define INIT_THREAD  {						\ | 
 | 	.addr_limit		= KERNEL_DS,			\ | 
 | } | 
 |  | 
 | extern unsigned long KSTK_ESP(struct task_struct *task); | 
 |  | 
 | #endif /* CONFIG_X86_64 */ | 
 |  | 
 | extern void start_thread(struct pt_regs *regs, unsigned long new_ip, | 
 | 					       unsigned long new_sp); | 
 |  | 
 | /* | 
 |  * This decides where the kernel will search for a free chunk of vm | 
 |  * space during mmap's. | 
 |  */ | 
 | #define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3)) | 
 | #define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW) | 
 |  | 
 | #define KSTK_EIP(task)		(task_pt_regs(task)->ip) | 
 |  | 
 | /* Get/set a process' ability to use the timestamp counter instruction */ | 
 | #define GET_TSC_CTL(adr)	get_tsc_mode((adr)) | 
 | #define SET_TSC_CTL(val)	set_tsc_mode((val)) | 
 |  | 
 | extern int get_tsc_mode(unsigned long adr); | 
 | extern int set_tsc_mode(unsigned int val); | 
 |  | 
 | DECLARE_PER_CPU(u64, msr_misc_features_shadow); | 
 |  | 
 | /* Register/unregister a process' MPX related resource */ | 
 | #define MPX_ENABLE_MANAGEMENT()	mpx_enable_management() | 
 | #define MPX_DISABLE_MANAGEMENT()	mpx_disable_management() | 
 |  | 
 | #ifdef CONFIG_X86_INTEL_MPX | 
 | extern int mpx_enable_management(void); | 
 | extern int mpx_disable_management(void); | 
 | #else | 
 | static inline int mpx_enable_management(void) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 | static inline int mpx_disable_management(void) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 | #endif /* CONFIG_X86_INTEL_MPX */ | 
 |  | 
 | #ifdef CONFIG_CPU_SUP_AMD | 
 | extern u16 amd_get_nb_id(int cpu); | 
 | extern u32 amd_get_nodes_per_socket(void); | 
 | #else | 
 | static inline u16 amd_get_nb_id(int cpu)		{ return 0; } | 
 | static inline u32 amd_get_nodes_per_socket(void)	{ return 0; } | 
 | #endif | 
 |  | 
 | static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) | 
 | { | 
 | 	uint32_t base, eax, signature[3]; | 
 |  | 
 | 	for (base = 0x40000000; base < 0x40010000; base += 0x100) { | 
 | 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); | 
 |  | 
 | 		if (!memcmp(sig, signature, 12) && | 
 | 		    (leaves == 0 || ((eax - base) >= leaves))) | 
 | 			return base; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | extern unsigned long arch_align_stack(unsigned long sp); | 
 | void free_init_pages(const char *what, unsigned long begin, unsigned long end); | 
 | extern void free_kernel_image_pages(void *begin, void *end); | 
 |  | 
 | void default_idle(void); | 
 | #ifdef	CONFIG_XEN | 
 | bool xen_set_default_idle(void); | 
 | #else | 
 | #define xen_set_default_idle 0 | 
 | #endif | 
 |  | 
 | void stop_this_cpu(void *dummy); | 
 | void df_debug(struct pt_regs *regs, long error_code); | 
 | void microcode_check(void); | 
 |  | 
 | enum l1tf_mitigations { | 
 | 	L1TF_MITIGATION_OFF, | 
 | 	L1TF_MITIGATION_FLUSH_NOWARN, | 
 | 	L1TF_MITIGATION_FLUSH, | 
 | 	L1TF_MITIGATION_FLUSH_NOSMT, | 
 | 	L1TF_MITIGATION_FULL, | 
 | 	L1TF_MITIGATION_FULL_FORCE | 
 | }; | 
 |  | 
 | extern enum l1tf_mitigations l1tf_mitigation; | 
 |  | 
 | enum mds_mitigations { | 
 | 	MDS_MITIGATION_OFF, | 
 | 	MDS_MITIGATION_FULL, | 
 | 	MDS_MITIGATION_VMWERV, | 
 | }; | 
 |  | 
 | #endif /* _ASM_X86_PROCESSOR_H */ |