|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> | 
|  | * | 
|  | * Uses a block device as cache for other block devices; optimized for SSDs. | 
|  | * All allocation is done in buckets, which should match the erase block size | 
|  | * of the device. | 
|  | * | 
|  | * Buckets containing cached data are kept on a heap sorted by priority; | 
|  | * bucket priority is increased on cache hit, and periodically all the buckets | 
|  | * on the heap have their priority scaled down. This currently is just used as | 
|  | * an LRU but in the future should allow for more intelligent heuristics. | 
|  | * | 
|  | * Buckets have an 8 bit counter; freeing is accomplished by incrementing the | 
|  | * counter. Garbage collection is used to remove stale pointers. | 
|  | * | 
|  | * Indexing is done via a btree; nodes are not necessarily fully sorted, rather | 
|  | * as keys are inserted we only sort the pages that have not yet been written. | 
|  | * When garbage collection is run, we resort the entire node. | 
|  | * | 
|  | * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. | 
|  | */ | 
|  |  | 
|  | #include "bcache.h" | 
|  | #include "btree.h" | 
|  | #include "debug.h" | 
|  | #include "extents.h" | 
|  | #include "writeback.h" | 
|  |  | 
|  | static void sort_key_next(struct btree_iter *iter, | 
|  | struct btree_iter_set *i) | 
|  | { | 
|  | i->k = bkey_next(i->k); | 
|  |  | 
|  | if (i->k == i->end) | 
|  | *i = iter->data[--iter->used]; | 
|  | } | 
|  |  | 
|  | static bool bch_key_sort_cmp(struct btree_iter_set l, | 
|  | struct btree_iter_set r) | 
|  | { | 
|  | int64_t c = bkey_cmp(l.k, r.k); | 
|  |  | 
|  | return c ? c > 0 : l.k < r.k; | 
|  | } | 
|  |  | 
|  | static bool __ptr_invalid(struct cache_set *c, const struct bkey *k) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) | 
|  | if (ptr_available(c, k, i)) { | 
|  | struct cache *ca = PTR_CACHE(c, k, i); | 
|  | size_t bucket = PTR_BUCKET_NR(c, k, i); | 
|  | size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); | 
|  |  | 
|  | if (KEY_SIZE(k) + r > c->cache->sb.bucket_size || | 
|  | bucket <  ca->sb.first_bucket || | 
|  | bucket >= ca->sb.nbuckets) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Common among btree and extent ptrs */ | 
|  |  | 
|  | static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) | 
|  | if (ptr_available(c, k, i)) { | 
|  | struct cache *ca = PTR_CACHE(c, k, i); | 
|  | size_t bucket = PTR_BUCKET_NR(c, k, i); | 
|  | size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); | 
|  |  | 
|  | if (KEY_SIZE(k) + r > c->cache->sb.bucket_size) | 
|  | return "bad, length too big"; | 
|  | if (bucket <  ca->sb.first_bucket) | 
|  | return "bad, short offset"; | 
|  | if (bucket >= ca->sb.nbuckets) | 
|  | return "bad, offset past end of device"; | 
|  | if (ptr_stale(c, k, i)) | 
|  | return "stale"; | 
|  | } | 
|  |  | 
|  | if (!bkey_cmp(k, &ZERO_KEY)) | 
|  | return "bad, null key"; | 
|  | if (!KEY_PTRS(k)) | 
|  | return "bad, no pointers"; | 
|  | if (!KEY_SIZE(k)) | 
|  | return "zeroed key"; | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | void bch_extent_to_text(char *buf, size_t size, const struct bkey *k) | 
|  | { | 
|  | unsigned int i = 0; | 
|  | char *out = buf, *end = buf + size; | 
|  |  | 
|  | #define p(...)	(out += scnprintf(out, end - out, __VA_ARGS__)) | 
|  |  | 
|  | p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k)); | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) { | 
|  | if (i) | 
|  | p(", "); | 
|  |  | 
|  | if (PTR_DEV(k, i) == PTR_CHECK_DEV) | 
|  | p("check dev"); | 
|  | else | 
|  | p("%llu:%llu gen %llu", PTR_DEV(k, i), | 
|  | PTR_OFFSET(k, i), PTR_GEN(k, i)); | 
|  | } | 
|  |  | 
|  | p("]"); | 
|  |  | 
|  | if (KEY_DIRTY(k)) | 
|  | p(" dirty"); | 
|  | if (KEY_CSUM(k)) | 
|  | p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]); | 
|  | #undef p | 
|  | } | 
|  |  | 
|  | static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k) | 
|  | { | 
|  | struct btree *b = container_of(keys, struct btree, keys); | 
|  | unsigned int j; | 
|  | char buf[80]; | 
|  |  | 
|  | bch_extent_to_text(buf, sizeof(buf), k); | 
|  | pr_cont(" %s", buf); | 
|  |  | 
|  | for (j = 0; j < KEY_PTRS(k); j++) { | 
|  | size_t n = PTR_BUCKET_NR(b->c, k, j); | 
|  |  | 
|  | pr_cont(" bucket %zu", n); | 
|  | if (n >= b->c->cache->sb.first_bucket && n < b->c->cache->sb.nbuckets) | 
|  | pr_cont(" prio %i", | 
|  | PTR_BUCKET(b->c, k, j)->prio); | 
|  | } | 
|  |  | 
|  | pr_cont(" %s\n", bch_ptr_status(b->c, k)); | 
|  | } | 
|  |  | 
|  | /* Btree ptrs */ | 
|  |  | 
|  | bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k) | 
|  | { | 
|  | char buf[80]; | 
|  |  | 
|  | if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k)) | 
|  | goto bad; | 
|  |  | 
|  | if (__ptr_invalid(c, k)) | 
|  | goto bad; | 
|  |  | 
|  | return false; | 
|  | bad: | 
|  | bch_extent_to_text(buf, sizeof(buf), k); | 
|  | cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k) | 
|  | { | 
|  | struct btree *b = container_of(bk, struct btree, keys); | 
|  |  | 
|  | return __bch_btree_ptr_invalid(b->c, k); | 
|  | } | 
|  |  | 
|  | static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k) | 
|  | { | 
|  | unsigned int i; | 
|  | char buf[80]; | 
|  | struct bucket *g; | 
|  |  | 
|  | if (mutex_trylock(&b->c->bucket_lock)) { | 
|  | for (i = 0; i < KEY_PTRS(k); i++) | 
|  | if (ptr_available(b->c, k, i)) { | 
|  | g = PTR_BUCKET(b->c, k, i); | 
|  |  | 
|  | if (KEY_DIRTY(k) || | 
|  | g->prio != BTREE_PRIO || | 
|  | (b->c->gc_mark_valid && | 
|  | GC_MARK(g) != GC_MARK_METADATA)) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&b->c->bucket_lock); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | err: | 
|  | mutex_unlock(&b->c->bucket_lock); | 
|  | bch_extent_to_text(buf, sizeof(buf), k); | 
|  | btree_bug(b, | 
|  | "inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu", | 
|  | buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin), | 
|  | g->prio, g->gen, g->last_gc, GC_MARK(g)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k) | 
|  | { | 
|  | struct btree *b = container_of(bk, struct btree, keys); | 
|  | unsigned int i; | 
|  |  | 
|  | if (!bkey_cmp(k, &ZERO_KEY) || | 
|  | !KEY_PTRS(k) || | 
|  | bch_ptr_invalid(bk, k)) | 
|  | return true; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) | 
|  | if (!ptr_available(b->c, k, i) || | 
|  | ptr_stale(b->c, k, i)) | 
|  | return true; | 
|  |  | 
|  | if (expensive_debug_checks(b->c) && | 
|  | btree_ptr_bad_expensive(b, k)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk, | 
|  | struct bkey *insert, | 
|  | struct btree_iter *iter, | 
|  | struct bkey *replace_key) | 
|  | { | 
|  | struct btree *b = container_of(bk, struct btree, keys); | 
|  |  | 
|  | if (!KEY_OFFSET(insert)) | 
|  | btree_current_write(b)->prio_blocked++; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const struct btree_keys_ops bch_btree_keys_ops = { | 
|  | .sort_cmp	= bch_key_sort_cmp, | 
|  | .insert_fixup	= bch_btree_ptr_insert_fixup, | 
|  | .key_invalid	= bch_btree_ptr_invalid, | 
|  | .key_bad	= bch_btree_ptr_bad, | 
|  | .key_to_text	= bch_extent_to_text, | 
|  | .key_dump	= bch_bkey_dump, | 
|  | }; | 
|  |  | 
|  | /* Extents */ | 
|  |  | 
|  | /* | 
|  | * Returns true if l > r - unless l == r, in which case returns true if l is | 
|  | * older than r. | 
|  | * | 
|  | * Necessary for btree_sort_fixup() - if there are multiple keys that compare | 
|  | * equal in different sets, we have to process them newest to oldest. | 
|  | */ | 
|  | static bool bch_extent_sort_cmp(struct btree_iter_set l, | 
|  | struct btree_iter_set r) | 
|  | { | 
|  | int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k)); | 
|  |  | 
|  | return c ? c > 0 : l.k < r.k; | 
|  | } | 
|  |  | 
|  | static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter, | 
|  | struct bkey *tmp) | 
|  | { | 
|  | while (iter->used > 1) { | 
|  | struct btree_iter_set *top = iter->data, *i = top + 1; | 
|  |  | 
|  | if (iter->used > 2 && | 
|  | bch_extent_sort_cmp(i[0], i[1])) | 
|  | i++; | 
|  |  | 
|  | if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0) | 
|  | break; | 
|  |  | 
|  | if (!KEY_SIZE(i->k)) { | 
|  | sort_key_next(iter, i); | 
|  | heap_sift(iter, i - top, bch_extent_sort_cmp); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (top->k > i->k) { | 
|  | if (bkey_cmp(top->k, i->k) >= 0) | 
|  | sort_key_next(iter, i); | 
|  | else | 
|  | bch_cut_front(top->k, i->k); | 
|  |  | 
|  | heap_sift(iter, i - top, bch_extent_sort_cmp); | 
|  | } else { | 
|  | /* can't happen because of comparison func */ | 
|  | BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k))); | 
|  |  | 
|  | if (bkey_cmp(i->k, top->k) < 0) { | 
|  | bkey_copy(tmp, top->k); | 
|  |  | 
|  | bch_cut_back(&START_KEY(i->k), tmp); | 
|  | bch_cut_front(i->k, top->k); | 
|  | heap_sift(iter, 0, bch_extent_sort_cmp); | 
|  |  | 
|  | return tmp; | 
|  | } else { | 
|  | bch_cut_back(&START_KEY(i->k), top->k); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void bch_subtract_dirty(struct bkey *k, | 
|  | struct cache_set *c, | 
|  | uint64_t offset, | 
|  | int sectors) | 
|  | { | 
|  | if (KEY_DIRTY(k)) | 
|  | bcache_dev_sectors_dirty_add(c, KEY_INODE(k), | 
|  | offset, -sectors); | 
|  | } | 
|  |  | 
|  | static bool bch_extent_insert_fixup(struct btree_keys *b, | 
|  | struct bkey *insert, | 
|  | struct btree_iter *iter, | 
|  | struct bkey *replace_key) | 
|  | { | 
|  | struct cache_set *c = container_of(b, struct btree, keys)->c; | 
|  |  | 
|  | uint64_t old_offset; | 
|  | unsigned int old_size, sectors_found = 0; | 
|  |  | 
|  | BUG_ON(!KEY_OFFSET(insert)); | 
|  | BUG_ON(!KEY_SIZE(insert)); | 
|  |  | 
|  | while (1) { | 
|  | struct bkey *k = bch_btree_iter_next(iter); | 
|  |  | 
|  | if (!k) | 
|  | break; | 
|  |  | 
|  | if (bkey_cmp(&START_KEY(k), insert) >= 0) { | 
|  | if (KEY_SIZE(k)) | 
|  | break; | 
|  | else | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (bkey_cmp(k, &START_KEY(insert)) <= 0) | 
|  | continue; | 
|  |  | 
|  | old_offset = KEY_START(k); | 
|  | old_size = KEY_SIZE(k); | 
|  |  | 
|  | /* | 
|  | * We might overlap with 0 size extents; we can't skip these | 
|  | * because if they're in the set we're inserting to we have to | 
|  | * adjust them so they don't overlap with the key we're | 
|  | * inserting. But we don't want to check them for replace | 
|  | * operations. | 
|  | */ | 
|  |  | 
|  | if (replace_key && KEY_SIZE(k)) { | 
|  | /* | 
|  | * k might have been split since we inserted/found the | 
|  | * key we're replacing | 
|  | */ | 
|  | unsigned int i; | 
|  | uint64_t offset = KEY_START(k) - | 
|  | KEY_START(replace_key); | 
|  |  | 
|  | /* But it must be a subset of the replace key */ | 
|  | if (KEY_START(k) < KEY_START(replace_key) || | 
|  | KEY_OFFSET(k) > KEY_OFFSET(replace_key)) | 
|  | goto check_failed; | 
|  |  | 
|  | /* We didn't find a key that we were supposed to */ | 
|  | if (KEY_START(k) > KEY_START(insert) + sectors_found) | 
|  | goto check_failed; | 
|  |  | 
|  | if (!bch_bkey_equal_header(k, replace_key)) | 
|  | goto check_failed; | 
|  |  | 
|  | /* skip past gen */ | 
|  | offset <<= 8; | 
|  |  | 
|  | BUG_ON(!KEY_PTRS(replace_key)); | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(replace_key); i++) | 
|  | if (k->ptr[i] != replace_key->ptr[i] + offset) | 
|  | goto check_failed; | 
|  |  | 
|  | sectors_found = KEY_OFFSET(k) - KEY_START(insert); | 
|  | } | 
|  |  | 
|  | if (bkey_cmp(insert, k) < 0 && | 
|  | bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) { | 
|  | /* | 
|  | * We overlapped in the middle of an existing key: that | 
|  | * means we have to split the old key. But we have to do | 
|  | * slightly different things depending on whether the | 
|  | * old key has been written out yet. | 
|  | */ | 
|  |  | 
|  | struct bkey *top; | 
|  |  | 
|  | bch_subtract_dirty(k, c, KEY_START(insert), | 
|  | KEY_SIZE(insert)); | 
|  |  | 
|  | if (bkey_written(b, k)) { | 
|  | /* | 
|  | * We insert a new key to cover the top of the | 
|  | * old key, and the old key is modified in place | 
|  | * to represent the bottom split. | 
|  | * | 
|  | * It's completely arbitrary whether the new key | 
|  | * is the top or the bottom, but it has to match | 
|  | * up with what btree_sort_fixup() does - it | 
|  | * doesn't check for this kind of overlap, it | 
|  | * depends on us inserting a new key for the top | 
|  | * here. | 
|  | */ | 
|  | top = bch_bset_search(b, bset_tree_last(b), | 
|  | insert); | 
|  | bch_bset_insert(b, top, k); | 
|  | } else { | 
|  | BKEY_PADDED(key) temp; | 
|  | bkey_copy(&temp.key, k); | 
|  | bch_bset_insert(b, k, &temp.key); | 
|  | top = bkey_next(k); | 
|  | } | 
|  |  | 
|  | bch_cut_front(insert, top); | 
|  | bch_cut_back(&START_KEY(insert), k); | 
|  | bch_bset_fix_invalidated_key(b, k); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (bkey_cmp(insert, k) < 0) { | 
|  | bch_cut_front(insert, k); | 
|  | } else { | 
|  | if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) | 
|  | old_offset = KEY_START(insert); | 
|  |  | 
|  | if (bkey_written(b, k) && | 
|  | bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) { | 
|  | /* | 
|  | * Completely overwrote, so we don't have to | 
|  | * invalidate the binary search tree | 
|  | */ | 
|  | bch_cut_front(k, k); | 
|  | } else { | 
|  | __bch_cut_back(&START_KEY(insert), k); | 
|  | bch_bset_fix_invalidated_key(b, k); | 
|  | } | 
|  | } | 
|  |  | 
|  | bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k)); | 
|  | } | 
|  |  | 
|  | check_failed: | 
|  | if (replace_key) { | 
|  | if (!sectors_found) { | 
|  | return true; | 
|  | } else if (sectors_found < KEY_SIZE(insert)) { | 
|  | SET_KEY_OFFSET(insert, KEY_OFFSET(insert) - | 
|  | (KEY_SIZE(insert) - sectors_found)); | 
|  | SET_KEY_SIZE(insert, sectors_found); | 
|  | } | 
|  | } | 
|  | out: | 
|  | if (KEY_DIRTY(insert)) | 
|  | bcache_dev_sectors_dirty_add(c, KEY_INODE(insert), | 
|  | KEY_START(insert), | 
|  | KEY_SIZE(insert)); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k) | 
|  | { | 
|  | char buf[80]; | 
|  |  | 
|  | if (!KEY_SIZE(k)) | 
|  | return true; | 
|  |  | 
|  | if (KEY_SIZE(k) > KEY_OFFSET(k)) | 
|  | goto bad; | 
|  |  | 
|  | if (__ptr_invalid(c, k)) | 
|  | goto bad; | 
|  |  | 
|  | return false; | 
|  | bad: | 
|  | bch_extent_to_text(buf, sizeof(buf), k); | 
|  | cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k) | 
|  | { | 
|  | struct btree *b = container_of(bk, struct btree, keys); | 
|  |  | 
|  | return __bch_extent_invalid(b->c, k); | 
|  | } | 
|  |  | 
|  | static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k, | 
|  | unsigned int ptr) | 
|  | { | 
|  | struct bucket *g = PTR_BUCKET(b->c, k, ptr); | 
|  | char buf[80]; | 
|  |  | 
|  | if (mutex_trylock(&b->c->bucket_lock)) { | 
|  | if (b->c->gc_mark_valid && | 
|  | (!GC_MARK(g) || | 
|  | GC_MARK(g) == GC_MARK_METADATA || | 
|  | (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k)))) | 
|  | goto err; | 
|  |  | 
|  | if (g->prio == BTREE_PRIO) | 
|  | goto err; | 
|  |  | 
|  | mutex_unlock(&b->c->bucket_lock); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | err: | 
|  | mutex_unlock(&b->c->bucket_lock); | 
|  | bch_extent_to_text(buf, sizeof(buf), k); | 
|  | btree_bug(b, | 
|  | "inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu", | 
|  | buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin), | 
|  | g->prio, g->gen, g->last_gc, GC_MARK(g)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k) | 
|  | { | 
|  | struct btree *b = container_of(bk, struct btree, keys); | 
|  | unsigned int i, stale; | 
|  | char buf[80]; | 
|  |  | 
|  | if (!KEY_PTRS(k) || | 
|  | bch_extent_invalid(bk, k)) | 
|  | return true; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) | 
|  | if (!ptr_available(b->c, k, i)) | 
|  | return true; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(k); i++) { | 
|  | stale = ptr_stale(b->c, k, i); | 
|  |  | 
|  | if (stale && KEY_DIRTY(k)) { | 
|  | bch_extent_to_text(buf, sizeof(buf), k); | 
|  | pr_info("stale dirty pointer, stale %u, key: %s\n", | 
|  | stale, buf); | 
|  | } | 
|  |  | 
|  | btree_bug_on(stale > BUCKET_GC_GEN_MAX, b, | 
|  | "key too stale: %i, need_gc %u", | 
|  | stale, b->c->need_gc); | 
|  |  | 
|  | if (stale) | 
|  | return true; | 
|  |  | 
|  | if (expensive_debug_checks(b->c) && | 
|  | bch_extent_bad_expensive(b, k, i)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static uint64_t merge_chksums(struct bkey *l, struct bkey *r) | 
|  | { | 
|  | return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) & | 
|  | ~((uint64_t)1 << 63); | 
|  | } | 
|  |  | 
|  | static bool bch_extent_merge(struct btree_keys *bk, | 
|  | struct bkey *l, | 
|  | struct bkey *r) | 
|  | { | 
|  | struct btree *b = container_of(bk, struct btree, keys); | 
|  | unsigned int i; | 
|  |  | 
|  | if (key_merging_disabled(b->c)) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < KEY_PTRS(l); i++) | 
|  | if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] || | 
|  | PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i)) | 
|  | return false; | 
|  |  | 
|  | /* Keys with no pointers aren't restricted to one bucket and could | 
|  | * overflow KEY_SIZE | 
|  | */ | 
|  | if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) { | 
|  | SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l)); | 
|  | SET_KEY_SIZE(l, USHRT_MAX); | 
|  |  | 
|  | bch_cut_front(l, r); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (KEY_CSUM(l)) { | 
|  | if (KEY_CSUM(r)) | 
|  | l->ptr[KEY_PTRS(l)] = merge_chksums(l, r); | 
|  | else | 
|  | SET_KEY_CSUM(l, 0); | 
|  | } | 
|  |  | 
|  | SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r)); | 
|  | SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const struct btree_keys_ops bch_extent_keys_ops = { | 
|  | .sort_cmp	= bch_extent_sort_cmp, | 
|  | .sort_fixup	= bch_extent_sort_fixup, | 
|  | .insert_fixup	= bch_extent_insert_fixup, | 
|  | .key_invalid	= bch_extent_invalid, | 
|  | .key_bad	= bch_extent_bad, | 
|  | .key_merge	= bch_extent_merge, | 
|  | .key_to_text	= bch_extent_to_text, | 
|  | .key_dump	= bch_bkey_dump, | 
|  | .is_extents	= true, | 
|  | }; |