| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Code for working with individual keys, and sorted sets of keys with in a | 
 |  * btree node | 
 |  * | 
 |  * Copyright 2012 Google, Inc. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) "bcache: %s() " fmt, __func__ | 
 |  | 
 | #include "util.h" | 
 | #include "bset.h" | 
 |  | 
 | #include <linux/console.h> | 
 | #include <linux/sched/clock.h> | 
 | #include <linux/random.h> | 
 | #include <linux/prefetch.h> | 
 |  | 
 | #ifdef CONFIG_BCACHE_DEBUG | 
 |  | 
 | void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set) | 
 | { | 
 | 	struct bkey *k, *next; | 
 |  | 
 | 	for (k = i->start; k < bset_bkey_last(i); k = next) { | 
 | 		next = bkey_next(k); | 
 |  | 
 | 		pr_err("block %u key %u/%u: ", set, | 
 | 		       (unsigned int) ((u64 *) k - i->d), i->keys); | 
 |  | 
 | 		if (b->ops->key_dump) | 
 | 			b->ops->key_dump(b, k); | 
 | 		else | 
 | 			pr_cont("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k)); | 
 |  | 
 | 		if (next < bset_bkey_last(i) && | 
 | 		    bkey_cmp(k, b->ops->is_extents ? | 
 | 			     &START_KEY(next) : next) > 0) | 
 | 			pr_err("Key skipped backwards\n"); | 
 | 	} | 
 | } | 
 |  | 
 | void bch_dump_bucket(struct btree_keys *b) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	console_lock(); | 
 | 	for (i = 0; i <= b->nsets; i++) | 
 | 		bch_dump_bset(b, b->set[i].data, | 
 | 			      bset_sector_offset(b, b->set[i].data)); | 
 | 	console_unlock(); | 
 | } | 
 |  | 
 | int __bch_count_data(struct btree_keys *b) | 
 | { | 
 | 	unsigned int ret = 0; | 
 | 	struct btree_iter iter; | 
 | 	struct bkey *k; | 
 |  | 
 | 	if (b->ops->is_extents) | 
 | 		for_each_key(b, k, &iter) | 
 | 			ret += KEY_SIZE(k); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	struct bkey *k, *p = NULL; | 
 | 	struct btree_iter iter; | 
 | 	const char *err; | 
 |  | 
 | 	for_each_key(b, k, &iter) { | 
 | 		if (b->ops->is_extents) { | 
 | 			err = "Keys out of order"; | 
 | 			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0) | 
 | 				goto bug; | 
 |  | 
 | 			if (bch_ptr_invalid(b, k)) | 
 | 				continue; | 
 |  | 
 | 			err =  "Overlapping keys"; | 
 | 			if (p && bkey_cmp(p, &START_KEY(k)) > 0) | 
 | 				goto bug; | 
 | 		} else { | 
 | 			if (bch_ptr_bad(b, k)) | 
 | 				continue; | 
 |  | 
 | 			err = "Duplicate keys"; | 
 | 			if (p && !bkey_cmp(p, k)) | 
 | 				goto bug; | 
 | 		} | 
 | 		p = k; | 
 | 	} | 
 | #if 0 | 
 | 	err = "Key larger than btree node key"; | 
 | 	if (p && bkey_cmp(p, &b->key) > 0) | 
 | 		goto bug; | 
 | #endif | 
 | 	return; | 
 | bug: | 
 | 	bch_dump_bucket(b); | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vprintk(fmt, args); | 
 | 	va_end(args); | 
 |  | 
 | 	panic("bch_check_keys error:  %s:\n", err); | 
 | } | 
 |  | 
 | static void bch_btree_iter_next_check(struct btree_iter *iter) | 
 | { | 
 | 	struct bkey *k = iter->data->k, *next = bkey_next(k); | 
 |  | 
 | 	if (next < iter->data->end && | 
 | 	    bkey_cmp(k, iter->b->ops->is_extents ? | 
 | 		     &START_KEY(next) : next) > 0) { | 
 | 		bch_dump_bucket(iter->b); | 
 | 		panic("Key skipped backwards\n"); | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline void bch_btree_iter_next_check(struct btree_iter *iter) {} | 
 |  | 
 | #endif | 
 |  | 
 | /* Keylists */ | 
 |  | 
 | int __bch_keylist_realloc(struct keylist *l, unsigned int u64s) | 
 | { | 
 | 	size_t oldsize = bch_keylist_nkeys(l); | 
 | 	size_t newsize = oldsize + u64s; | 
 | 	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p; | 
 | 	uint64_t *new_keys; | 
 |  | 
 | 	newsize = roundup_pow_of_two(newsize); | 
 |  | 
 | 	if (newsize <= KEYLIST_INLINE || | 
 | 	    roundup_pow_of_two(oldsize) == newsize) | 
 | 		return 0; | 
 |  | 
 | 	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO); | 
 |  | 
 | 	if (!new_keys) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (!old_keys) | 
 | 		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize); | 
 |  | 
 | 	l->keys_p = new_keys; | 
 | 	l->top_p = new_keys + oldsize; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Pop the top key of keylist by pointing l->top to its previous key */ | 
 | struct bkey *bch_keylist_pop(struct keylist *l) | 
 | { | 
 | 	struct bkey *k = l->keys; | 
 |  | 
 | 	if (k == l->top) | 
 | 		return NULL; | 
 |  | 
 | 	while (bkey_next(k) != l->top) | 
 | 		k = bkey_next(k); | 
 |  | 
 | 	return l->top = k; | 
 | } | 
 |  | 
 | /* Pop the bottom key of keylist and update l->top_p */ | 
 | void bch_keylist_pop_front(struct keylist *l) | 
 | { | 
 | 	l->top_p -= bkey_u64s(l->keys); | 
 |  | 
 | 	memmove(l->keys, | 
 | 		bkey_next(l->keys), | 
 | 		bch_keylist_bytes(l)); | 
 | } | 
 |  | 
 | /* Key/pointer manipulation */ | 
 |  | 
 | void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, | 
 | 			      unsigned int i) | 
 | { | 
 | 	BUG_ON(i > KEY_PTRS(src)); | 
 |  | 
 | 	/* Only copy the header, key, and one pointer. */ | 
 | 	memcpy(dest, src, 2 * sizeof(uint64_t)); | 
 | 	dest->ptr[0] = src->ptr[i]; | 
 | 	SET_KEY_PTRS(dest, 1); | 
 | 	/* We didn't copy the checksum so clear that bit. */ | 
 | 	SET_KEY_CSUM(dest, 0); | 
 | } | 
 |  | 
 | bool __bch_cut_front(const struct bkey *where, struct bkey *k) | 
 | { | 
 | 	unsigned int i, len = 0; | 
 |  | 
 | 	if (bkey_cmp(where, &START_KEY(k)) <= 0) | 
 | 		return false; | 
 |  | 
 | 	if (bkey_cmp(where, k) < 0) | 
 | 		len = KEY_OFFSET(k) - KEY_OFFSET(where); | 
 | 	else | 
 | 		bkey_copy_key(k, where); | 
 |  | 
 | 	for (i = 0; i < KEY_PTRS(k); i++) | 
 | 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); | 
 |  | 
 | 	BUG_ON(len > KEY_SIZE(k)); | 
 | 	SET_KEY_SIZE(k, len); | 
 | 	return true; | 
 | } | 
 |  | 
 | bool __bch_cut_back(const struct bkey *where, struct bkey *k) | 
 | { | 
 | 	unsigned int len = 0; | 
 |  | 
 | 	if (bkey_cmp(where, k) >= 0) | 
 | 		return false; | 
 |  | 
 | 	BUG_ON(KEY_INODE(where) != KEY_INODE(k)); | 
 |  | 
 | 	if (bkey_cmp(where, &START_KEY(k)) > 0) | 
 | 		len = KEY_OFFSET(where) - KEY_START(k); | 
 |  | 
 | 	bkey_copy_key(k, where); | 
 |  | 
 | 	BUG_ON(len > KEY_SIZE(k)); | 
 | 	SET_KEY_SIZE(k, len); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Auxiliary search trees */ | 
 |  | 
 | /* 32 bits total: */ | 
 | #define BKEY_MID_BITS		3 | 
 | #define BKEY_EXPONENT_BITS	7 | 
 | #define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS) | 
 | #define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1) | 
 |  | 
 | struct bkey_float { | 
 | 	unsigned int	exponent:BKEY_EXPONENT_BITS; | 
 | 	unsigned int	m:BKEY_MID_BITS; | 
 | 	unsigned int	mantissa:BKEY_MANTISSA_BITS; | 
 | } __packed; | 
 |  | 
 | /* | 
 |  * BSET_CACHELINE was originally intended to match the hardware cacheline size - | 
 |  * it used to be 64, but I realized the lookup code would touch slightly less | 
 |  * memory if it was 128. | 
 |  * | 
 |  * It definites the number of bytes (in struct bset) per struct bkey_float in | 
 |  * the auxiliar search tree - when we're done searching the bset_float tree we | 
 |  * have this many bytes left that we do a linear search over. | 
 |  * | 
 |  * Since (after level 5) every level of the bset_tree is on a new cacheline, | 
 |  * we're touching one fewer cacheline in the bset tree in exchange for one more | 
 |  * cacheline in the linear search - but the linear search might stop before it | 
 |  * gets to the second cacheline. | 
 |  */ | 
 |  | 
 | #define BSET_CACHELINE		128 | 
 |  | 
 | /* Space required for the btree node keys */ | 
 | static inline size_t btree_keys_bytes(struct btree_keys *b) | 
 | { | 
 | 	return PAGE_SIZE << b->page_order; | 
 | } | 
 |  | 
 | static inline size_t btree_keys_cachelines(struct btree_keys *b) | 
 | { | 
 | 	return btree_keys_bytes(b) / BSET_CACHELINE; | 
 | } | 
 |  | 
 | /* Space required for the auxiliary search trees */ | 
 | static inline size_t bset_tree_bytes(struct btree_keys *b) | 
 | { | 
 | 	return btree_keys_cachelines(b) * sizeof(struct bkey_float); | 
 | } | 
 |  | 
 | /* Space required for the prev pointers */ | 
 | static inline size_t bset_prev_bytes(struct btree_keys *b) | 
 | { | 
 | 	return btree_keys_cachelines(b) * sizeof(uint8_t); | 
 | } | 
 |  | 
 | /* Memory allocation */ | 
 |  | 
 | void bch_btree_keys_free(struct btree_keys *b) | 
 | { | 
 | 	struct bset_tree *t = b->set; | 
 |  | 
 | 	if (bset_prev_bytes(b) < PAGE_SIZE) | 
 | 		kfree(t->prev); | 
 | 	else | 
 | 		free_pages((unsigned long) t->prev, | 
 | 			   get_order(bset_prev_bytes(b))); | 
 |  | 
 | 	if (bset_tree_bytes(b) < PAGE_SIZE) | 
 | 		kfree(t->tree); | 
 | 	else | 
 | 		free_pages((unsigned long) t->tree, | 
 | 			   get_order(bset_tree_bytes(b))); | 
 |  | 
 | 	free_pages((unsigned long) t->data, b->page_order); | 
 |  | 
 | 	t->prev = NULL; | 
 | 	t->tree = NULL; | 
 | 	t->data = NULL; | 
 | } | 
 |  | 
 | int bch_btree_keys_alloc(struct btree_keys *b, | 
 | 			 unsigned int page_order, | 
 | 			 gfp_t gfp) | 
 | { | 
 | 	struct bset_tree *t = b->set; | 
 |  | 
 | 	BUG_ON(t->data); | 
 |  | 
 | 	b->page_order = page_order; | 
 |  | 
 | 	t->data = (void *) __get_free_pages(__GFP_COMP|gfp, b->page_order); | 
 | 	if (!t->data) | 
 | 		goto err; | 
 |  | 
 | 	t->tree = bset_tree_bytes(b) < PAGE_SIZE | 
 | 		? kmalloc(bset_tree_bytes(b), gfp) | 
 | 		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); | 
 | 	if (!t->tree) | 
 | 		goto err; | 
 |  | 
 | 	t->prev = bset_prev_bytes(b) < PAGE_SIZE | 
 | 		? kmalloc(bset_prev_bytes(b), gfp) | 
 | 		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); | 
 | 	if (!t->prev) | 
 | 		goto err; | 
 |  | 
 | 	return 0; | 
 | err: | 
 | 	bch_btree_keys_free(b); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops, | 
 | 			 bool *expensive_debug_checks) | 
 | { | 
 | 	b->ops = ops; | 
 | 	b->expensive_debug_checks = expensive_debug_checks; | 
 | 	b->nsets = 0; | 
 | 	b->last_set_unwritten = 0; | 
 |  | 
 | 	/* | 
 | 	 * struct btree_keys in embedded in struct btree, and struct | 
 | 	 * bset_tree is embedded into struct btree_keys. They are all | 
 | 	 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and | 
 | 	 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we | 
 | 	 * don't have to initiate b->set[].size and b->set[].data here | 
 | 	 * any more. | 
 | 	 */ | 
 | } | 
 |  | 
 | /* Binary tree stuff for auxiliary search trees */ | 
 |  | 
 | /* | 
 |  * return array index next to j when does in-order traverse | 
 |  * of a binary tree which is stored in a linear array | 
 |  */ | 
 | static unsigned int inorder_next(unsigned int j, unsigned int size) | 
 | { | 
 | 	if (j * 2 + 1 < size) { | 
 | 		j = j * 2 + 1; | 
 |  | 
 | 		while (j * 2 < size) | 
 | 			j *= 2; | 
 | 	} else | 
 | 		j >>= ffz(j) + 1; | 
 |  | 
 | 	return j; | 
 | } | 
 |  | 
 | /* | 
 |  * return array index previous to j when does in-order traverse | 
 |  * of a binary tree which is stored in a linear array | 
 |  */ | 
 | static unsigned int inorder_prev(unsigned int j, unsigned int size) | 
 | { | 
 | 	if (j * 2 < size) { | 
 | 		j = j * 2; | 
 |  | 
 | 		while (j * 2 + 1 < size) | 
 | 			j = j * 2 + 1; | 
 | 	} else | 
 | 		j >>= ffs(j); | 
 |  | 
 | 	return j; | 
 | } | 
 |  | 
 | /* | 
 |  * I have no idea why this code works... and I'm the one who wrote it | 
 |  * | 
 |  * However, I do know what it does: | 
 |  * Given a binary tree constructed in an array (i.e. how you normally implement | 
 |  * a heap), it converts a node in the tree - referenced by array index - to the | 
 |  * index it would have if you did an inorder traversal. | 
 |  * | 
 |  * Also tested for every j, size up to size somewhere around 6 million. | 
 |  * | 
 |  * The binary tree starts at array index 1, not 0 | 
 |  * extra is a function of size: | 
 |  *   extra = (size - rounddown_pow_of_two(size - 1)) << 1; | 
 |  */ | 
 | static unsigned int __to_inorder(unsigned int j, | 
 | 				  unsigned int size, | 
 | 				  unsigned int extra) | 
 | { | 
 | 	unsigned int b = fls(j); | 
 | 	unsigned int shift = fls(size - 1) - b; | 
 |  | 
 | 	j  ^= 1U << (b - 1); | 
 | 	j <<= 1; | 
 | 	j  |= 1; | 
 | 	j <<= shift; | 
 |  | 
 | 	if (j > extra) | 
 | 		j -= (j - extra) >> 1; | 
 |  | 
 | 	return j; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the cacheline index in bset_tree->data, where j is index | 
 |  * from a linear array which stores the auxiliar binary tree | 
 |  */ | 
 | static unsigned int to_inorder(unsigned int j, struct bset_tree *t) | 
 | { | 
 | 	return __to_inorder(j, t->size, t->extra); | 
 | } | 
 |  | 
 | static unsigned int __inorder_to_tree(unsigned int j, | 
 | 				      unsigned int size, | 
 | 				      unsigned int extra) | 
 | { | 
 | 	unsigned int shift; | 
 |  | 
 | 	if (j > extra) | 
 | 		j += j - extra; | 
 |  | 
 | 	shift = ffs(j); | 
 |  | 
 | 	j >>= shift; | 
 | 	j  |= roundup_pow_of_two(size) >> shift; | 
 |  | 
 | 	return j; | 
 | } | 
 |  | 
 | /* | 
 |  * Return an index from a linear array which stores the auxiliar binary | 
 |  * tree, j is the cacheline index of t->data. | 
 |  */ | 
 | static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t) | 
 | { | 
 | 	return __inorder_to_tree(j, t->size, t->extra); | 
 | } | 
 |  | 
 | #if 0 | 
 | void inorder_test(void) | 
 | { | 
 | 	unsigned long done = 0; | 
 | 	ktime_t start = ktime_get(); | 
 |  | 
 | 	for (unsigned int size = 2; | 
 | 	     size < 65536000; | 
 | 	     size++) { | 
 | 		unsigned int extra = | 
 | 			(size - rounddown_pow_of_two(size - 1)) << 1; | 
 | 		unsigned int i = 1, j = rounddown_pow_of_two(size - 1); | 
 |  | 
 | 		if (!(size % 4096)) | 
 | 			pr_notice("loop %u, %llu per us\n", size, | 
 | 			       done / ktime_us_delta(ktime_get(), start)); | 
 |  | 
 | 		while (1) { | 
 | 			if (__inorder_to_tree(i, size, extra) != j) | 
 | 				panic("size %10u j %10u i %10u", size, j, i); | 
 |  | 
 | 			if (__to_inorder(j, size, extra) != i) | 
 | 				panic("size %10u j %10u i %10u", size, j, i); | 
 |  | 
 | 			if (j == rounddown_pow_of_two(size) - 1) | 
 | 				break; | 
 |  | 
 | 			BUG_ON(inorder_prev(inorder_next(j, size), size) != j); | 
 |  | 
 | 			j = inorder_next(j, size); | 
 | 			i++; | 
 | 		} | 
 |  | 
 | 		done += size - 1; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Cacheline/offset <-> bkey pointer arithmetic: | 
 |  * | 
 |  * t->tree is a binary search tree in an array; each node corresponds to a key | 
 |  * in one cacheline in t->set (BSET_CACHELINE bytes). | 
 |  * | 
 |  * This means we don't have to store the full index of the key that a node in | 
 |  * the binary tree points to; to_inorder() gives us the cacheline, and then | 
 |  * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. | 
 |  * | 
 |  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to | 
 |  * make this work. | 
 |  * | 
 |  * To construct the bfloat for an arbitrary key we need to know what the key | 
 |  * immediately preceding it is: we have to check if the two keys differ in the | 
 |  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size | 
 |  * of the previous key so we can walk backwards to it from t->tree[j]'s key. | 
 |  */ | 
 |  | 
 | static struct bkey *cacheline_to_bkey(struct bset_tree *t, | 
 | 				      unsigned int cacheline, | 
 | 				      unsigned int offset) | 
 | { | 
 | 	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; | 
 | } | 
 |  | 
 | static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k) | 
 | { | 
 | 	return ((void *) k - (void *) t->data) / BSET_CACHELINE; | 
 | } | 
 |  | 
 | static unsigned int bkey_to_cacheline_offset(struct bset_tree *t, | 
 | 					 unsigned int cacheline, | 
 | 					 struct bkey *k) | 
 | { | 
 | 	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0); | 
 | } | 
 |  | 
 | static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j) | 
 | { | 
 | 	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); | 
 | } | 
 |  | 
 | static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j) | 
 | { | 
 | 	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); | 
 | } | 
 |  | 
 | /* | 
 |  * For the write set - the one we're currently inserting keys into - we don't | 
 |  * maintain a full search tree, we just keep a simple lookup table in t->prev. | 
 |  */ | 
 | static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline) | 
 | { | 
 | 	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); | 
 | } | 
 |  | 
 | static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) | 
 | { | 
 | 	low >>= shift; | 
 | 	low  |= (high << 1) << (63U - shift); | 
 | 	return low; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate mantissa value for struct bkey_float. | 
 |  * If most significant bit of f->exponent is not set, then | 
 |  *  - f->exponent >> 6 is 0 | 
 |  *  - p[0] points to bkey->low | 
 |  *  - p[-1] borrows bits from KEY_INODE() of bkey->high | 
 |  * if most isgnificant bits of f->exponent is set, then | 
 |  *  - f->exponent >> 6 is 1 | 
 |  *  - p[0] points to bits from KEY_INODE() of bkey->high | 
 |  *  - p[-1] points to other bits from KEY_INODE() of | 
 |  *    bkey->high too. | 
 |  * See make_bfloat() to check when most significant bit of f->exponent | 
 |  * is set or not. | 
 |  */ | 
 | static inline unsigned int bfloat_mantissa(const struct bkey *k, | 
 | 				       struct bkey_float *f) | 
 | { | 
 | 	const uint64_t *p = &k->low - (f->exponent >> 6); | 
 |  | 
 | 	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; | 
 | } | 
 |  | 
 | static void make_bfloat(struct bset_tree *t, unsigned int j) | 
 | { | 
 | 	struct bkey_float *f = &t->tree[j]; | 
 | 	struct bkey *m = tree_to_bkey(t, j); | 
 | 	struct bkey *p = tree_to_prev_bkey(t, j); | 
 |  | 
 | 	struct bkey *l = is_power_of_2(j) | 
 | 		? t->data->start | 
 | 		: tree_to_prev_bkey(t, j >> ffs(j)); | 
 |  | 
 | 	struct bkey *r = is_power_of_2(j + 1) | 
 | 		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end)) | 
 | 		: tree_to_bkey(t, j >> (ffz(j) + 1)); | 
 |  | 
 | 	BUG_ON(m < l || m > r); | 
 | 	BUG_ON(bkey_next(p) != m); | 
 |  | 
 | 	/* | 
 | 	 * If l and r have different KEY_INODE values (different backing | 
 | 	 * device), f->exponent records how many least significant bits | 
 | 	 * are different in KEY_INODE values and sets most significant | 
 | 	 * bits to 1 (by +64). | 
 | 	 * If l and r have same KEY_INODE value, f->exponent records | 
 | 	 * how many different bits in least significant bits of bkey->low. | 
 | 	 * See bfloat_mantiss() how the most significant bit of | 
 | 	 * f->exponent is used to calculate bfloat mantissa value. | 
 | 	 */ | 
 | 	if (KEY_INODE(l) != KEY_INODE(r)) | 
 | 		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; | 
 | 	else | 
 | 		f->exponent = fls64(r->low ^ l->low); | 
 |  | 
 | 	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); | 
 |  | 
 | 	/* | 
 | 	 * Setting f->exponent = 127 flags this node as failed, and causes the | 
 | 	 * lookup code to fall back to comparing against the original key. | 
 | 	 */ | 
 |  | 
 | 	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) | 
 | 		f->mantissa = bfloat_mantissa(m, f) - 1; | 
 | 	else | 
 | 		f->exponent = 127; | 
 | } | 
 |  | 
 | static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t) | 
 | { | 
 | 	if (t != b->set) { | 
 | 		unsigned int j = roundup(t[-1].size, | 
 | 				     64 / sizeof(struct bkey_float)); | 
 |  | 
 | 		t->tree = t[-1].tree + j; | 
 | 		t->prev = t[-1].prev + j; | 
 | 	} | 
 |  | 
 | 	while (t < b->set + MAX_BSETS) | 
 | 		t++->size = 0; | 
 | } | 
 |  | 
 | static void bch_bset_build_unwritten_tree(struct btree_keys *b) | 
 | { | 
 | 	struct bset_tree *t = bset_tree_last(b); | 
 |  | 
 | 	BUG_ON(b->last_set_unwritten); | 
 | 	b->last_set_unwritten = 1; | 
 |  | 
 | 	bset_alloc_tree(b, t); | 
 |  | 
 | 	if (t->tree != b->set->tree + btree_keys_cachelines(b)) { | 
 | 		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start); | 
 | 		t->size = 1; | 
 | 	} | 
 | } | 
 |  | 
 | void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic) | 
 | { | 
 | 	if (i != b->set->data) { | 
 | 		b->set[++b->nsets].data = i; | 
 | 		i->seq = b->set->data->seq; | 
 | 	} else | 
 | 		get_random_bytes(&i->seq, sizeof(uint64_t)); | 
 |  | 
 | 	i->magic	= magic; | 
 | 	i->version	= 0; | 
 | 	i->keys		= 0; | 
 |  | 
 | 	bch_bset_build_unwritten_tree(b); | 
 | } | 
 |  | 
 | /* | 
 |  * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to | 
 |  * accelerate bkey search in a btree node (pointed by bset_tree->data in | 
 |  * memory). After search in the auxiliar tree by calling bset_search_tree(), | 
 |  * a struct bset_search_iter is returned which indicates range [l, r] from | 
 |  * bset_tree->data where the searching bkey might be inside. Then a followed | 
 |  * linear comparison does the exact search, see __bch_bset_search() for how | 
 |  * the auxiliary tree is used. | 
 |  */ | 
 | void bch_bset_build_written_tree(struct btree_keys *b) | 
 | { | 
 | 	struct bset_tree *t = bset_tree_last(b); | 
 | 	struct bkey *prev = NULL, *k = t->data->start; | 
 | 	unsigned int j, cacheline = 1; | 
 |  | 
 | 	b->last_set_unwritten = 0; | 
 |  | 
 | 	bset_alloc_tree(b, t); | 
 |  | 
 | 	t->size = min_t(unsigned int, | 
 | 			bkey_to_cacheline(t, bset_bkey_last(t->data)), | 
 | 			b->set->tree + btree_keys_cachelines(b) - t->tree); | 
 |  | 
 | 	if (t->size < 2) { | 
 | 		t->size = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; | 
 |  | 
 | 	/* First we figure out where the first key in each cacheline is */ | 
 | 	for (j = inorder_next(0, t->size); | 
 | 	     j; | 
 | 	     j = inorder_next(j, t->size)) { | 
 | 		while (bkey_to_cacheline(t, k) < cacheline) | 
 | 			prev = k, k = bkey_next(k); | 
 |  | 
 | 		t->prev[j] = bkey_u64s(prev); | 
 | 		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k); | 
 | 	} | 
 |  | 
 | 	while (bkey_next(k) != bset_bkey_last(t->data)) | 
 | 		k = bkey_next(k); | 
 |  | 
 | 	t->end = *k; | 
 |  | 
 | 	/* Then we build the tree */ | 
 | 	for (j = inorder_next(0, t->size); | 
 | 	     j; | 
 | 	     j = inorder_next(j, t->size)) | 
 | 		make_bfloat(t, j); | 
 | } | 
 |  | 
 | /* Insert */ | 
 |  | 
 | void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k) | 
 | { | 
 | 	struct bset_tree *t; | 
 | 	unsigned int inorder, j = 1; | 
 |  | 
 | 	for (t = b->set; t <= bset_tree_last(b); t++) | 
 | 		if (k < bset_bkey_last(t->data)) | 
 | 			goto found_set; | 
 |  | 
 | 	BUG(); | 
 | found_set: | 
 | 	if (!t->size || !bset_written(b, t)) | 
 | 		return; | 
 |  | 
 | 	inorder = bkey_to_cacheline(t, k); | 
 |  | 
 | 	if (k == t->data->start) | 
 | 		goto fix_left; | 
 |  | 
 | 	if (bkey_next(k) == bset_bkey_last(t->data)) { | 
 | 		t->end = *k; | 
 | 		goto fix_right; | 
 | 	} | 
 |  | 
 | 	j = inorder_to_tree(inorder, t); | 
 |  | 
 | 	if (j && | 
 | 	    j < t->size && | 
 | 	    k == tree_to_bkey(t, j)) | 
 | fix_left:	do { | 
 | 			make_bfloat(t, j); | 
 | 			j = j * 2; | 
 | 		} while (j < t->size); | 
 |  | 
 | 	j = inorder_to_tree(inorder + 1, t); | 
 |  | 
 | 	if (j && | 
 | 	    j < t->size && | 
 | 	    k == tree_to_prev_bkey(t, j)) | 
 | fix_right:	do { | 
 | 			make_bfloat(t, j); | 
 | 			j = j * 2 + 1; | 
 | 		} while (j < t->size); | 
 | } | 
 |  | 
 | static void bch_bset_fix_lookup_table(struct btree_keys *b, | 
 | 				      struct bset_tree *t, | 
 | 				      struct bkey *k) | 
 | { | 
 | 	unsigned int shift = bkey_u64s(k); | 
 | 	unsigned int j = bkey_to_cacheline(t, k); | 
 |  | 
 | 	/* We're getting called from btree_split() or btree_gc, just bail out */ | 
 | 	if (!t->size) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * k is the key we just inserted; we need to find the entry in the | 
 | 	 * lookup table for the first key that is strictly greater than k: | 
 | 	 * it's either k's cacheline or the next one | 
 | 	 */ | 
 | 	while (j < t->size && | 
 | 	       table_to_bkey(t, j) <= k) | 
 | 		j++; | 
 |  | 
 | 	/* | 
 | 	 * Adjust all the lookup table entries, and find a new key for any that | 
 | 	 * have gotten too big | 
 | 	 */ | 
 | 	for (; j < t->size; j++) { | 
 | 		t->prev[j] += shift; | 
 |  | 
 | 		if (t->prev[j] > 7) { | 
 | 			k = table_to_bkey(t, j - 1); | 
 |  | 
 | 			while (k < cacheline_to_bkey(t, j, 0)) | 
 | 				k = bkey_next(k); | 
 |  | 
 | 			t->prev[j] = bkey_to_cacheline_offset(t, j, k); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree) | 
 | 		return; | 
 |  | 
 | 	/* Possibly add a new entry to the end of the lookup table */ | 
 |  | 
 | 	for (k = table_to_bkey(t, t->size - 1); | 
 | 	     k != bset_bkey_last(t->data); | 
 | 	     k = bkey_next(k)) | 
 | 		if (t->size == bkey_to_cacheline(t, k)) { | 
 | 			t->prev[t->size] = | 
 | 				bkey_to_cacheline_offset(t, t->size, k); | 
 | 			t->size++; | 
 | 		} | 
 | } | 
 |  | 
 | /* | 
 |  * Tries to merge l and r: l should be lower than r | 
 |  * Returns true if we were able to merge. If we did merge, l will be the merged | 
 |  * key, r will be untouched. | 
 |  */ | 
 | bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r) | 
 | { | 
 | 	if (!b->ops->key_merge) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Generic header checks | 
 | 	 * Assumes left and right are in order | 
 | 	 * Left and right must be exactly aligned | 
 | 	 */ | 
 | 	if (!bch_bkey_equal_header(l, r) || | 
 | 	     bkey_cmp(l, &START_KEY(r))) | 
 | 		return false; | 
 |  | 
 | 	return b->ops->key_merge(b, l, r); | 
 | } | 
 |  | 
 | void bch_bset_insert(struct btree_keys *b, struct bkey *where, | 
 | 		     struct bkey *insert) | 
 | { | 
 | 	struct bset_tree *t = bset_tree_last(b); | 
 |  | 
 | 	BUG_ON(!b->last_set_unwritten); | 
 | 	BUG_ON(bset_byte_offset(b, t->data) + | 
 | 	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) > | 
 | 	       PAGE_SIZE << b->page_order); | 
 |  | 
 | 	memmove((uint64_t *) where + bkey_u64s(insert), | 
 | 		where, | 
 | 		(void *) bset_bkey_last(t->data) - (void *) where); | 
 |  | 
 | 	t->data->keys += bkey_u64s(insert); | 
 | 	bkey_copy(where, insert); | 
 | 	bch_bset_fix_lookup_table(b, t, where); | 
 | } | 
 |  | 
 | unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k, | 
 | 			      struct bkey *replace_key) | 
 | { | 
 | 	unsigned int status = BTREE_INSERT_STATUS_NO_INSERT; | 
 | 	struct bset *i = bset_tree_last(b)->data; | 
 | 	struct bkey *m, *prev = NULL; | 
 | 	struct btree_iter iter; | 
 | 	struct bkey preceding_key_on_stack = ZERO_KEY; | 
 | 	struct bkey *preceding_key_p = &preceding_key_on_stack; | 
 |  | 
 | 	BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); | 
 |  | 
 | 	/* | 
 | 	 * If k has preceding key, preceding_key_p will be set to address | 
 | 	 *  of k's preceding key; otherwise preceding_key_p will be set | 
 | 	 * to NULL inside preceding_key(). | 
 | 	 */ | 
 | 	if (b->ops->is_extents) | 
 | 		preceding_key(&START_KEY(k), &preceding_key_p); | 
 | 	else | 
 | 		preceding_key(k, &preceding_key_p); | 
 |  | 
 | 	m = bch_btree_iter_init(b, &iter, preceding_key_p); | 
 |  | 
 | 	if (b->ops->insert_fixup(b, k, &iter, replace_key)) | 
 | 		return status; | 
 |  | 
 | 	status = BTREE_INSERT_STATUS_INSERT; | 
 |  | 
 | 	while (m != bset_bkey_last(i) && | 
 | 	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) | 
 | 		prev = m, m = bkey_next(m); | 
 |  | 
 | 	/* prev is in the tree, if we merge we're done */ | 
 | 	status = BTREE_INSERT_STATUS_BACK_MERGE; | 
 | 	if (prev && | 
 | 	    bch_bkey_try_merge(b, prev, k)) | 
 | 		goto merged; | 
 | #if 0 | 
 | 	status = BTREE_INSERT_STATUS_OVERWROTE; | 
 | 	if (m != bset_bkey_last(i) && | 
 | 	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) | 
 | 		goto copy; | 
 | #endif | 
 | 	status = BTREE_INSERT_STATUS_FRONT_MERGE; | 
 | 	if (m != bset_bkey_last(i) && | 
 | 	    bch_bkey_try_merge(b, k, m)) | 
 | 		goto copy; | 
 |  | 
 | 	bch_bset_insert(b, m, k); | 
 | copy:	bkey_copy(m, k); | 
 | merged: | 
 | 	return status; | 
 | } | 
 |  | 
 | /* Lookup */ | 
 |  | 
 | struct bset_search_iter { | 
 | 	struct bkey *l, *r; | 
 | }; | 
 |  | 
 | static struct bset_search_iter bset_search_write_set(struct bset_tree *t, | 
 | 						     const struct bkey *search) | 
 | { | 
 | 	unsigned int li = 0, ri = t->size; | 
 |  | 
 | 	while (li + 1 != ri) { | 
 | 		unsigned int m = (li + ri) >> 1; | 
 |  | 
 | 		if (bkey_cmp(table_to_bkey(t, m), search) > 0) | 
 | 			ri = m; | 
 | 		else | 
 | 			li = m; | 
 | 	} | 
 |  | 
 | 	return (struct bset_search_iter) { | 
 | 		table_to_bkey(t, li), | 
 | 		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data) | 
 | 	}; | 
 | } | 
 |  | 
 | static struct bset_search_iter bset_search_tree(struct bset_tree *t, | 
 | 						const struct bkey *search) | 
 | { | 
 | 	struct bkey *l, *r; | 
 | 	struct bkey_float *f; | 
 | 	unsigned int inorder, j, n = 1; | 
 |  | 
 | 	do { | 
 | 		unsigned int p = n << 4; | 
 |  | 
 | 		if (p < t->size) | 
 | 			prefetch(&t->tree[p]); | 
 |  | 
 | 		j = n; | 
 | 		f = &t->tree[j]; | 
 |  | 
 | 		if (likely(f->exponent != 127)) { | 
 | 			if (f->mantissa >= bfloat_mantissa(search, f)) | 
 | 				n = j * 2; | 
 | 			else | 
 | 				n = j * 2 + 1; | 
 | 		} else { | 
 | 			if (bkey_cmp(tree_to_bkey(t, j), search) > 0) | 
 | 				n = j * 2; | 
 | 			else | 
 | 				n = j * 2 + 1; | 
 | 		} | 
 | 	} while (n < t->size); | 
 |  | 
 | 	inorder = to_inorder(j, t); | 
 |  | 
 | 	/* | 
 | 	 * n would have been the node we recursed to - the low bit tells us if | 
 | 	 * we recursed left or recursed right. | 
 | 	 */ | 
 | 	if (n & 1) { | 
 | 		l = cacheline_to_bkey(t, inorder, f->m); | 
 |  | 
 | 		if (++inorder != t->size) { | 
 | 			f = &t->tree[inorder_next(j, t->size)]; | 
 | 			r = cacheline_to_bkey(t, inorder, f->m); | 
 | 		} else | 
 | 			r = bset_bkey_last(t->data); | 
 | 	} else { | 
 | 		r = cacheline_to_bkey(t, inorder, f->m); | 
 |  | 
 | 		if (--inorder) { | 
 | 			f = &t->tree[inorder_prev(j, t->size)]; | 
 | 			l = cacheline_to_bkey(t, inorder, f->m); | 
 | 		} else | 
 | 			l = t->data->start; | 
 | 	} | 
 |  | 
 | 	return (struct bset_search_iter) {l, r}; | 
 | } | 
 |  | 
 | struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t, | 
 | 			       const struct bkey *search) | 
 | { | 
 | 	struct bset_search_iter i; | 
 |  | 
 | 	/* | 
 | 	 * First, we search for a cacheline, then lastly we do a linear search | 
 | 	 * within that cacheline. | 
 | 	 * | 
 | 	 * To search for the cacheline, there's three different possibilities: | 
 | 	 *  * The set is too small to have a search tree, so we just do a linear | 
 | 	 *    search over the whole set. | 
 | 	 *  * The set is the one we're currently inserting into; keeping a full | 
 | 	 *    auxiliary search tree up to date would be too expensive, so we | 
 | 	 *    use a much simpler lookup table to do a binary search - | 
 | 	 *    bset_search_write_set(). | 
 | 	 *  * Or we use the auxiliary search tree we constructed earlier - | 
 | 	 *    bset_search_tree() | 
 | 	 */ | 
 |  | 
 | 	if (unlikely(!t->size)) { | 
 | 		i.l = t->data->start; | 
 | 		i.r = bset_bkey_last(t->data); | 
 | 	} else if (bset_written(b, t)) { | 
 | 		/* | 
 | 		 * Each node in the auxiliary search tree covers a certain range | 
 | 		 * of bits, and keys above and below the set it covers might | 
 | 		 * differ outside those bits - so we have to special case the | 
 | 		 * start and end - handle that here: | 
 | 		 */ | 
 |  | 
 | 		if (unlikely(bkey_cmp(search, &t->end) >= 0)) | 
 | 			return bset_bkey_last(t->data); | 
 |  | 
 | 		if (unlikely(bkey_cmp(search, t->data->start) < 0)) | 
 | 			return t->data->start; | 
 |  | 
 | 		i = bset_search_tree(t, search); | 
 | 	} else { | 
 | 		BUG_ON(!b->nsets && | 
 | 		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data))); | 
 |  | 
 | 		i = bset_search_write_set(t, search); | 
 | 	} | 
 |  | 
 | 	if (btree_keys_expensive_checks(b)) { | 
 | 		BUG_ON(bset_written(b, t) && | 
 | 		       i.l != t->data->start && | 
 | 		       bkey_cmp(tree_to_prev_bkey(t, | 
 | 			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)), | 
 | 				search) > 0); | 
 |  | 
 | 		BUG_ON(i.r != bset_bkey_last(t->data) && | 
 | 		       bkey_cmp(i.r, search) <= 0); | 
 | 	} | 
 |  | 
 | 	while (likely(i.l != i.r) && | 
 | 	       bkey_cmp(i.l, search) <= 0) | 
 | 		i.l = bkey_next(i.l); | 
 |  | 
 | 	return i.l; | 
 | } | 
 |  | 
 | /* Btree iterator */ | 
 |  | 
 | typedef bool (btree_iter_cmp_fn)(struct btree_iter_set, | 
 | 				 struct btree_iter_set); | 
 |  | 
 | static inline bool btree_iter_cmp(struct btree_iter_set l, | 
 | 				  struct btree_iter_set r) | 
 | { | 
 | 	return bkey_cmp(l.k, r.k) > 0; | 
 | } | 
 |  | 
 | static inline bool btree_iter_end(struct btree_iter *iter) | 
 | { | 
 | 	return !iter->used; | 
 | } | 
 |  | 
 | void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, | 
 | 			 struct bkey *end) | 
 | { | 
 | 	if (k != end) | 
 | 		BUG_ON(!heap_add(iter, | 
 | 				 ((struct btree_iter_set) { k, end }), | 
 | 				 btree_iter_cmp)); | 
 | } | 
 |  | 
 | static struct bkey *__bch_btree_iter_init(struct btree_keys *b, | 
 | 					  struct btree_iter *iter, | 
 | 					  struct bkey *search, | 
 | 					  struct bset_tree *start) | 
 | { | 
 | 	struct bkey *ret = NULL; | 
 |  | 
 | 	iter->size = ARRAY_SIZE(iter->data); | 
 | 	iter->used = 0; | 
 |  | 
 | #ifdef CONFIG_BCACHE_DEBUG | 
 | 	iter->b = b; | 
 | #endif | 
 |  | 
 | 	for (; start <= bset_tree_last(b); start++) { | 
 | 		ret = bch_bset_search(b, start, search); | 
 | 		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data)); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct bkey *bch_btree_iter_init(struct btree_keys *b, | 
 | 				 struct btree_iter *iter, | 
 | 				 struct bkey *search) | 
 | { | 
 | 	return __bch_btree_iter_init(b, iter, search, b->set); | 
 | } | 
 |  | 
 | static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter, | 
 | 						 btree_iter_cmp_fn *cmp) | 
 | { | 
 | 	struct btree_iter_set b __maybe_unused; | 
 | 	struct bkey *ret = NULL; | 
 |  | 
 | 	if (!btree_iter_end(iter)) { | 
 | 		bch_btree_iter_next_check(iter); | 
 |  | 
 | 		ret = iter->data->k; | 
 | 		iter->data->k = bkey_next(iter->data->k); | 
 |  | 
 | 		if (iter->data->k > iter->data->end) { | 
 | 			WARN_ONCE(1, "bset was corrupt!\n"); | 
 | 			iter->data->k = iter->data->end; | 
 | 		} | 
 |  | 
 | 		if (iter->data->k == iter->data->end) | 
 | 			heap_pop(iter, b, cmp); | 
 | 		else | 
 | 			heap_sift(iter, 0, cmp); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct bkey *bch_btree_iter_next(struct btree_iter *iter) | 
 | { | 
 | 	return __bch_btree_iter_next(iter, btree_iter_cmp); | 
 |  | 
 | } | 
 |  | 
 | struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, | 
 | 					struct btree_keys *b, ptr_filter_fn fn) | 
 | { | 
 | 	struct bkey *ret; | 
 |  | 
 | 	do { | 
 | 		ret = bch_btree_iter_next(iter); | 
 | 	} while (ret && fn(b, ret)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Mergesort */ | 
 |  | 
 | void bch_bset_sort_state_free(struct bset_sort_state *state) | 
 | { | 
 | 	mempool_exit(&state->pool); | 
 | } | 
 |  | 
 | int bch_bset_sort_state_init(struct bset_sort_state *state, | 
 | 			     unsigned int page_order) | 
 | { | 
 | 	spin_lock_init(&state->time.lock); | 
 |  | 
 | 	state->page_order = page_order; | 
 | 	state->crit_factor = int_sqrt(1 << page_order); | 
 |  | 
 | 	return mempool_init_page_pool(&state->pool, 1, page_order); | 
 | } | 
 |  | 
 | static void btree_mergesort(struct btree_keys *b, struct bset *out, | 
 | 			    struct btree_iter *iter, | 
 | 			    bool fixup, bool remove_stale) | 
 | { | 
 | 	int i; | 
 | 	struct bkey *k, *last = NULL; | 
 | 	BKEY_PADDED(k) tmp; | 
 | 	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale | 
 | 		? bch_ptr_bad | 
 | 		: bch_ptr_invalid; | 
 |  | 
 | 	/* Heapify the iterator, using our comparison function */ | 
 | 	for (i = iter->used / 2 - 1; i >= 0; --i) | 
 | 		heap_sift(iter, i, b->ops->sort_cmp); | 
 |  | 
 | 	while (!btree_iter_end(iter)) { | 
 | 		if (b->ops->sort_fixup && fixup) | 
 | 			k = b->ops->sort_fixup(iter, &tmp.k); | 
 | 		else | 
 | 			k = NULL; | 
 |  | 
 | 		if (!k) | 
 | 			k = __bch_btree_iter_next(iter, b->ops->sort_cmp); | 
 |  | 
 | 		if (bad(b, k)) | 
 | 			continue; | 
 |  | 
 | 		if (!last) { | 
 | 			last = out->start; | 
 | 			bkey_copy(last, k); | 
 | 		} else if (!bch_bkey_try_merge(b, last, k)) { | 
 | 			last = bkey_next(last); | 
 | 			bkey_copy(last, k); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; | 
 |  | 
 | 	pr_debug("sorted %i keys\n", out->keys); | 
 | } | 
 |  | 
 | static void __btree_sort(struct btree_keys *b, struct btree_iter *iter, | 
 | 			 unsigned int start, unsigned int order, bool fixup, | 
 | 			 struct bset_sort_state *state) | 
 | { | 
 | 	uint64_t start_time; | 
 | 	bool used_mempool = false; | 
 | 	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, | 
 | 						     order); | 
 | 	if (!out) { | 
 | 		struct page *outp; | 
 |  | 
 | 		BUG_ON(order > state->page_order); | 
 |  | 
 | 		outp = mempool_alloc(&state->pool, GFP_NOIO); | 
 | 		out = page_address(outp); | 
 | 		used_mempool = true; | 
 | 		order = state->page_order; | 
 | 	} | 
 |  | 
 | 	start_time = local_clock(); | 
 |  | 
 | 	btree_mergesort(b, out, iter, fixup, false); | 
 | 	b->nsets = start; | 
 |  | 
 | 	if (!start && order == b->page_order) { | 
 | 		/* | 
 | 		 * Our temporary buffer is the same size as the btree node's | 
 | 		 * buffer, we can just swap buffers instead of doing a big | 
 | 		 * memcpy() | 
 | 		 * | 
 | 		 * Don't worry event 'out' is allocated from mempool, it can | 
 | 		 * still be swapped here. Because state->pool is a page mempool | 
 | 		 * creaated by by mempool_init_page_pool(), which allocates | 
 | 		 * pages by alloc_pages() indeed. | 
 | 		 */ | 
 |  | 
 | 		out->magic	= b->set->data->magic; | 
 | 		out->seq	= b->set->data->seq; | 
 | 		out->version	= b->set->data->version; | 
 | 		swap(out, b->set->data); | 
 | 	} else { | 
 | 		b->set[start].data->keys = out->keys; | 
 | 		memcpy(b->set[start].data->start, out->start, | 
 | 		       (void *) bset_bkey_last(out) - (void *) out->start); | 
 | 	} | 
 |  | 
 | 	if (used_mempool) | 
 | 		mempool_free(virt_to_page(out), &state->pool); | 
 | 	else | 
 | 		free_pages((unsigned long) out, order); | 
 |  | 
 | 	bch_bset_build_written_tree(b); | 
 |  | 
 | 	if (!start) | 
 | 		bch_time_stats_update(&state->time, start_time); | 
 | } | 
 |  | 
 | void bch_btree_sort_partial(struct btree_keys *b, unsigned int start, | 
 | 			    struct bset_sort_state *state) | 
 | { | 
 | 	size_t order = b->page_order, keys = 0; | 
 | 	struct btree_iter iter; | 
 | 	int oldsize = bch_count_data(b); | 
 |  | 
 | 	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]); | 
 |  | 
 | 	if (start) { | 
 | 		unsigned int i; | 
 |  | 
 | 		for (i = start; i <= b->nsets; i++) | 
 | 			keys += b->set[i].data->keys; | 
 |  | 
 | 		order = get_order(__set_bytes(b->set->data, keys)); | 
 | 	} | 
 |  | 
 | 	__btree_sort(b, &iter, start, order, false, state); | 
 |  | 
 | 	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize); | 
 | } | 
 |  | 
 | void bch_btree_sort_and_fix_extents(struct btree_keys *b, | 
 | 				    struct btree_iter *iter, | 
 | 				    struct bset_sort_state *state) | 
 | { | 
 | 	__btree_sort(b, iter, 0, b->page_order, true, state); | 
 | } | 
 |  | 
 | void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new, | 
 | 			 struct bset_sort_state *state) | 
 | { | 
 | 	uint64_t start_time = local_clock(); | 
 | 	struct btree_iter iter; | 
 |  | 
 | 	bch_btree_iter_init(b, &iter, NULL); | 
 |  | 
 | 	btree_mergesort(b, new->set->data, &iter, false, true); | 
 |  | 
 | 	bch_time_stats_update(&state->time, start_time); | 
 |  | 
 | 	new->set->size = 0; // XXX: why? | 
 | } | 
 |  | 
 | #define SORT_CRIT	(4096 / sizeof(uint64_t)) | 
 |  | 
 | void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state) | 
 | { | 
 | 	unsigned int crit = SORT_CRIT; | 
 | 	int i; | 
 |  | 
 | 	/* Don't sort if nothing to do */ | 
 | 	if (!b->nsets) | 
 | 		goto out; | 
 |  | 
 | 	for (i = b->nsets - 1; i >= 0; --i) { | 
 | 		crit *= state->crit_factor; | 
 |  | 
 | 		if (b->set[i].data->keys < crit) { | 
 | 			bch_btree_sort_partial(b, i, state); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Sort if we'd overflow */ | 
 | 	if (b->nsets + 1 == MAX_BSETS) { | 
 | 		bch_btree_sort(b, state); | 
 | 		return; | 
 | 	} | 
 |  | 
 | out: | 
 | 	bch_bset_build_written_tree(b); | 
 | } | 
 |  | 
 | void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i <= b->nsets; i++) { | 
 | 		struct bset_tree *t = &b->set[i]; | 
 | 		size_t bytes = t->data->keys * sizeof(uint64_t); | 
 | 		size_t j; | 
 |  | 
 | 		if (bset_written(b, t)) { | 
 | 			stats->sets_written++; | 
 | 			stats->bytes_written += bytes; | 
 |  | 
 | 			stats->floats += t->size - 1; | 
 |  | 
 | 			for (j = 1; j < t->size; j++) | 
 | 				if (t->tree[j].exponent == 127) | 
 | 					stats->failed++; | 
 | 		} else { | 
 | 			stats->sets_unwritten++; | 
 | 			stats->bytes_unwritten += bytes; | 
 | 		} | 
 | 	} | 
 | } |