|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Contains CPU feature definitions | 
|  | * | 
|  | * Copyright (C) 2015 ARM Ltd. | 
|  | * | 
|  | * A note for the weary kernel hacker: the code here is confusing and hard to | 
|  | * follow! That's partly because it's solving a nasty problem, but also because | 
|  | * there's a little bit of over-abstraction that tends to obscure what's going | 
|  | * on behind a maze of helper functions and macros. | 
|  | * | 
|  | * The basic problem is that hardware folks have started gluing together CPUs | 
|  | * with distinct architectural features; in some cases even creating SoCs where | 
|  | * user-visible instructions are available only on a subset of the available | 
|  | * cores. We try to address this by snapshotting the feature registers of the | 
|  | * boot CPU and comparing these with the feature registers of each secondary | 
|  | * CPU when bringing them up. If there is a mismatch, then we update the | 
|  | * snapshot state to indicate the lowest-common denominator of the feature, | 
|  | * known as the "safe" value. This snapshot state can be queried to view the | 
|  | * "sanitised" value of a feature register. | 
|  | * | 
|  | * The sanitised register values are used to decide which capabilities we | 
|  | * have in the system. These may be in the form of traditional "hwcaps" | 
|  | * advertised to userspace or internal "cpucaps" which are used to configure | 
|  | * things like alternative patching and static keys. While a feature mismatch | 
|  | * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch | 
|  | * may prevent a CPU from being onlined at all. | 
|  | * | 
|  | * Some implementation details worth remembering: | 
|  | * | 
|  | * - Mismatched features are *always* sanitised to a "safe" value, which | 
|  | *   usually indicates that the feature is not supported. | 
|  | * | 
|  | * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK" | 
|  | *   warning when onlining an offending CPU and the kernel will be tainted | 
|  | *   with TAINT_CPU_OUT_OF_SPEC. | 
|  | * | 
|  | * - Features marked as FTR_VISIBLE have their sanitised value visible to | 
|  | *   userspace. FTR_VISIBLE features in registers that are only visible | 
|  | *   to EL0 by trapping *must* have a corresponding HWCAP so that late | 
|  | *   onlining of CPUs cannot lead to features disappearing at runtime. | 
|  | * | 
|  | * - A "feature" is typically a 4-bit register field. A "capability" is the | 
|  | *   high-level description derived from the sanitised field value. | 
|  | * | 
|  | * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID | 
|  | *   scheme for fields in ID registers") to understand when feature fields | 
|  | *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly). | 
|  | * | 
|  | * - KVM exposes its own view of the feature registers to guest operating | 
|  | *   systems regardless of FTR_VISIBLE. This is typically driven from the | 
|  | *   sanitised register values to allow virtual CPUs to be migrated between | 
|  | *   arbitrary physical CPUs, but some features not present on the host are | 
|  | *   also advertised and emulated. Look at sys_reg_descs[] for the gory | 
|  | *   details. | 
|  | * | 
|  | * - If the arm64_ftr_bits[] for a register has a missing field, then this | 
|  | *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg(). | 
|  | *   This is stronger than FTR_HIDDEN and can be used to hide features from | 
|  | *   KVM guests. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "CPU features: " fmt | 
|  |  | 
|  | #include <linux/bsearch.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/crash_dump.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/stop_machine.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/minmax.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/kasan.h> | 
|  | #include <linux/percpu.h> | 
|  |  | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/cpufeature.h> | 
|  | #include <asm/cpu_ops.h> | 
|  | #include <asm/fpsimd.h> | 
|  | #include <asm/insn.h> | 
|  | #include <asm/kvm_host.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/mte.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/sysreg.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/vectors.h> | 
|  | #include <asm/virt.h> | 
|  |  | 
|  | /* Kernel representation of AT_HWCAP and AT_HWCAP2 */ | 
|  | static unsigned long elf_hwcap __read_mostly; | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | #define COMPAT_ELF_HWCAP_DEFAULT	\ | 
|  | (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ | 
|  | COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ | 
|  | COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\ | 
|  | COMPAT_HWCAP_LPAE) | 
|  | unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; | 
|  | unsigned int compat_elf_hwcap2 __read_mostly; | 
|  | #endif | 
|  |  | 
|  | DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); | 
|  | EXPORT_SYMBOL(cpu_hwcaps); | 
|  | static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS]; | 
|  |  | 
|  | /* Need also bit for ARM64_CB_PATCH */ | 
|  | DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE); | 
|  |  | 
|  | bool arm64_use_ng_mappings = false; | 
|  | EXPORT_SYMBOL(arm64_use_ng_mappings); | 
|  |  | 
|  | DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors; | 
|  |  | 
|  | /* | 
|  | * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs | 
|  | * support it? | 
|  | */ | 
|  | static bool __read_mostly allow_mismatched_32bit_el0; | 
|  |  | 
|  | /* | 
|  | * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have | 
|  | * seen at least one CPU capable of 32-bit EL0. | 
|  | */ | 
|  | DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0); | 
|  |  | 
|  | /* | 
|  | * Mask of CPUs supporting 32-bit EL0. | 
|  | * Only valid if arm64_mismatched_32bit_el0 is enabled. | 
|  | */ | 
|  | static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly; | 
|  |  | 
|  | /* | 
|  | * Flag to indicate if we have computed the system wide | 
|  | * capabilities based on the boot time active CPUs. This | 
|  | * will be used to determine if a new booting CPU should | 
|  | * go through the verification process to make sure that it | 
|  | * supports the system capabilities, without using a hotplug | 
|  | * notifier. This is also used to decide if we could use | 
|  | * the fast path for checking constant CPU caps. | 
|  | */ | 
|  | DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready); | 
|  | EXPORT_SYMBOL(arm64_const_caps_ready); | 
|  | static inline void finalize_system_capabilities(void) | 
|  | { | 
|  | static_branch_enable(&arm64_const_caps_ready); | 
|  | } | 
|  |  | 
|  | void dump_cpu_features(void) | 
|  | { | 
|  | /* file-wide pr_fmt adds "CPU features: " prefix */ | 
|  | pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps); | 
|  | } | 
|  |  | 
|  | DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS); | 
|  | EXPORT_SYMBOL(cpu_hwcap_keys); | 
|  |  | 
|  | #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ | 
|  | {						\ | 
|  | .sign = SIGNED,				\ | 
|  | .visible = VISIBLE,			\ | 
|  | .strict = STRICT,			\ | 
|  | .type = TYPE,				\ | 
|  | .shift = SHIFT,				\ | 
|  | .width = WIDTH,				\ | 
|  | .safe_val = SAFE_VAL,			\ | 
|  | } | 
|  |  | 
|  | /* Define a feature with unsigned values */ | 
|  | #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ | 
|  | __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) | 
|  |  | 
|  | /* Define a feature with a signed value */ | 
|  | #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \ | 
|  | __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) | 
|  |  | 
|  | #define ARM64_FTR_END					\ | 
|  | {						\ | 
|  | .width = 0,				\ | 
|  | } | 
|  |  | 
|  | static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap); | 
|  |  | 
|  | static bool __system_matches_cap(unsigned int n); | 
|  |  | 
|  | /* | 
|  | * NOTE: Any changes to the visibility of features should be kept in | 
|  | * sync with the documentation of the CPU feature register ABI. | 
|  | */ | 
|  | static const struct arm64_ftr_bits ftr_id_aa64isar0[] = { | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_aa64isar1[] = { | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), | 
|  | FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH), | 
|  | FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_aa64isar2[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_CLEARBHB_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_RPRES_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0), | 
|  | S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI), | 
|  | S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_ELx_64BIT_ONLY), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = { | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE), | 
|  | FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = { | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0), | 
|  | /* | 
|  | * Page size not being supported at Stage-2 is not fatal. You | 
|  | * just give up KVM if PAGE_SIZE isn't supported there. Go fix | 
|  | * your favourite nesting hypervisor. | 
|  | * | 
|  | * There is a small corner case where the hypervisor explicitly | 
|  | * advertises a given granule size at Stage-2 (value 2) on some | 
|  | * vCPUs, and uses the fallback to Stage-1 (value 0) for other | 
|  | * vCPUs. Although this is not forbidden by the architecture, it | 
|  | * indicates that the hypervisor is being silly (or buggy). | 
|  | * | 
|  | * We make no effort to cope with this and pretend that if these | 
|  | * fields are inconsistent across vCPUs, then it isn't worth | 
|  | * trying to bring KVM up. | 
|  | */ | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1), | 
|  | /* | 
|  | * We already refuse to boot CPUs that don't support our configured | 
|  | * page size, so we can only detect mismatches for a page size other | 
|  | * than the one we're currently using. Unfortunately, SoCs like this | 
|  | * exist in the wild so, even though we don't like it, we'll have to go | 
|  | * along with it and treat them as non-strict. | 
|  | */ | 
|  | S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI), | 
|  | S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI), | 
|  |  | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0), | 
|  | /* Linux shouldn't care about secure memory */ | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0), | 
|  | /* | 
|  | * Differing PARange is fine as long as all peripherals and memory are mapped | 
|  | * within the minimum PARange of all CPUs | 
|  | */ | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = { | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_AFP_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_ctr[] = { | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */ | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1), | 
|  | /* | 
|  | * Linux can handle differing I-cache policies. Userspace JITs will | 
|  | * make use of *minLine. | 
|  | * If we have differing I-cache policies, report it as the weakest - VIPT. | 
|  | */ | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),	/* L1Ip */ | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static struct arm64_ftr_override __ro_after_init no_override = { }; | 
|  |  | 
|  | struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = { | 
|  | .name		= "SYS_CTR_EL0", | 
|  | .ftr_bits	= ftr_ctr, | 
|  | .override	= &no_override, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_mmfr0[] = { | 
|  | S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0), | 
|  | S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = { | 
|  | S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0), | 
|  | /* | 
|  | * We can instantiate multiple PMU instances with different levels | 
|  | * of support. | 
|  | */ | 
|  | S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_mvfr2[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_dczid[] = { | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1), | 
|  | ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_gmid[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, SYS_GMID_EL1_BS_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_isar0[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_isar5[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_mmfr4[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0), | 
|  |  | 
|  | /* | 
|  | * SpecSEI = 1 indicates that the PE might generate an SError on an | 
|  | * external abort on speculative read. It is safe to assume that an | 
|  | * SError might be generated than it will not be. Hence it has been | 
|  | * classified as FTR_HIGHER_SAFE. | 
|  | */ | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_isar4[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_mmfr5[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_isar6[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_pfr0[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_pfr1[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_pfr2[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_dfr0[] = { | 
|  | /* [31:28] TraceFilt */ | 
|  | S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_id_dfr1[] = { | 
|  | S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_zcr[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, | 
|  | ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),	/* LEN */ | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Common ftr bits for a 32bit register with all hidden, strict | 
|  | * attributes, with 4bit feature fields and a default safe value of | 
|  | * 0. Covers the following 32bit registers: | 
|  | * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1] | 
|  | */ | 
|  | static const struct arm64_ftr_bits ftr_generic_32bits[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | /* Table for a single 32bit feature value */ | 
|  | static const struct arm64_ftr_bits ftr_single32[] = { | 
|  | ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0), | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_ftr_bits ftr_raz[] = { | 
|  | ARM64_FTR_END, | 
|  | }; | 
|  |  | 
|  | #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\ | 
|  | .sys_id = id,					\ | 
|  | .reg = 	&(struct arm64_ftr_reg){		\ | 
|  | .name = id_str,				\ | 
|  | .override = (ovr),			\ | 
|  | .ftr_bits = &((table)[0]),		\ | 
|  | }} | 
|  |  | 
|  | #define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\ | 
|  | __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr) | 
|  |  | 
|  | #define ARM64_FTR_REG(id, table)		\ | 
|  | __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override) | 
|  |  | 
|  | struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override; | 
|  | struct arm64_ftr_override __ro_after_init id_aa64pfr1_override; | 
|  | struct arm64_ftr_override __ro_after_init id_aa64isar1_override; | 
|  |  | 
|  | static const struct __ftr_reg_entry { | 
|  | u32			sys_id; | 
|  | struct arm64_ftr_reg 	*reg; | 
|  | } arm64_ftr_regs[] = { | 
|  |  | 
|  | /* Op1 = 0, CRn = 0, CRm = 1 */ | 
|  | ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0), | 
|  | ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1), | 
|  | ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0), | 
|  | ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0), | 
|  | ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits), | 
|  | ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits), | 
|  | ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits), | 
|  |  | 
|  | /* Op1 = 0, CRn = 0, CRm = 2 */ | 
|  | ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0), | 
|  | ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits), | 
|  | ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits), | 
|  | ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits), | 
|  | ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4), | 
|  | ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5), | 
|  | ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4), | 
|  | ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6), | 
|  |  | 
|  | /* Op1 = 0, CRn = 0, CRm = 3 */ | 
|  | ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits), | 
|  | ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits), | 
|  | ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2), | 
|  | ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2), | 
|  | ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1), | 
|  | ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5), | 
|  |  | 
|  | /* Op1 = 0, CRn = 0, CRm = 4 */ | 
|  | ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0), | 
|  | ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1, | 
|  | &id_aa64pfr1_override), | 
|  | ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0), | 
|  |  | 
|  | /* Op1 = 0, CRn = 0, CRm = 5 */ | 
|  | ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0), | 
|  | ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz), | 
|  |  | 
|  | /* Op1 = 0, CRn = 0, CRm = 6 */ | 
|  | ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0), | 
|  | ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1, | 
|  | &id_aa64isar1_override), | 
|  | ARM64_FTR_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2), | 
|  |  | 
|  | /* Op1 = 0, CRn = 0, CRm = 7 */ | 
|  | ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0), | 
|  | ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1, | 
|  | &id_aa64mmfr1_override), | 
|  | ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2), | 
|  |  | 
|  | /* Op1 = 0, CRn = 1, CRm = 2 */ | 
|  | ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr), | 
|  |  | 
|  | /* Op1 = 1, CRn = 0, CRm = 0 */ | 
|  | ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid), | 
|  |  | 
|  | /* Op1 = 3, CRn = 0, CRm = 0 */ | 
|  | { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 }, | 
|  | ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid), | 
|  |  | 
|  | /* Op1 = 3, CRn = 14, CRm = 0 */ | 
|  | ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32), | 
|  | }; | 
|  |  | 
|  | static int search_cmp_ftr_reg(const void *id, const void *regp) | 
|  | { | 
|  | return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using | 
|  | * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the | 
|  | * ascending order of sys_id, we use binary search to find a matching | 
|  | * entry. | 
|  | * | 
|  | * returns - Upon success,  matching ftr_reg entry for id. | 
|  | *         - NULL on failure. It is upto the caller to decide | 
|  | *	     the impact of a failure. | 
|  | */ | 
|  | static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id) | 
|  | { | 
|  | const struct __ftr_reg_entry *ret; | 
|  |  | 
|  | ret = bsearch((const void *)(unsigned long)sys_id, | 
|  | arm64_ftr_regs, | 
|  | ARRAY_SIZE(arm64_ftr_regs), | 
|  | sizeof(arm64_ftr_regs[0]), | 
|  | search_cmp_ftr_reg); | 
|  | if (ret) | 
|  | return ret->reg; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_arm64_ftr_reg - Looks up a feature register entry using | 
|  | * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn(). | 
|  | * | 
|  | * returns - Upon success,  matching ftr_reg entry for id. | 
|  | *         - NULL on failure but with an WARN_ON(). | 
|  | */ | 
|  | static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id) | 
|  | { | 
|  | struct arm64_ftr_reg *reg; | 
|  |  | 
|  | reg = get_arm64_ftr_reg_nowarn(sys_id); | 
|  |  | 
|  | /* | 
|  | * Requesting a non-existent register search is an error. Warn | 
|  | * and let the caller handle it. | 
|  | */ | 
|  | WARN_ON(!reg); | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg, | 
|  | s64 ftr_val) | 
|  | { | 
|  | u64 mask = arm64_ftr_mask(ftrp); | 
|  |  | 
|  | reg &= ~mask; | 
|  | reg |= (ftr_val << ftrp->shift) & mask; | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, | 
|  | s64 cur) | 
|  | { | 
|  | s64 ret = 0; | 
|  |  | 
|  | switch (ftrp->type) { | 
|  | case FTR_EXACT: | 
|  | ret = ftrp->safe_val; | 
|  | break; | 
|  | case FTR_LOWER_SAFE: | 
|  | ret = min(new, cur); | 
|  | break; | 
|  | case FTR_HIGHER_OR_ZERO_SAFE: | 
|  | if (!cur || !new) | 
|  | break; | 
|  | fallthrough; | 
|  | case FTR_HIGHER_SAFE: | 
|  | ret = max(new, cur); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __init sort_ftr_regs(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) { | 
|  | const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg; | 
|  | const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits; | 
|  | unsigned int j = 0; | 
|  |  | 
|  | /* | 
|  | * Features here must be sorted in descending order with respect | 
|  | * to their shift values and should not overlap with each other. | 
|  | */ | 
|  | for (; ftr_bits->width != 0; ftr_bits++, j++) { | 
|  | unsigned int width = ftr_reg->ftr_bits[j].width; | 
|  | unsigned int shift = ftr_reg->ftr_bits[j].shift; | 
|  | unsigned int prev_shift; | 
|  |  | 
|  | WARN((shift  + width) > 64, | 
|  | "%s has invalid feature at shift %d\n", | 
|  | ftr_reg->name, shift); | 
|  |  | 
|  | /* | 
|  | * Skip the first feature. There is nothing to | 
|  | * compare against for now. | 
|  | */ | 
|  | if (j == 0) | 
|  | continue; | 
|  |  | 
|  | prev_shift = ftr_reg->ftr_bits[j - 1].shift; | 
|  | WARN((shift + width) > prev_shift, | 
|  | "%s has feature overlap at shift %d\n", | 
|  | ftr_reg->name, shift); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Skip the first register. There is nothing to | 
|  | * compare against for now. | 
|  | */ | 
|  | if (i == 0) | 
|  | continue; | 
|  | /* | 
|  | * Registers here must be sorted in ascending order with respect | 
|  | * to sys_id for subsequent binary search in get_arm64_ftr_reg() | 
|  | * to work correctly. | 
|  | */ | 
|  | BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise the CPU feature register from Boot CPU values. | 
|  | * Also initiliases the strict_mask for the register. | 
|  | * Any bits that are not covered by an arm64_ftr_bits entry are considered | 
|  | * RES0 for the system-wide value, and must strictly match. | 
|  | */ | 
|  | static void init_cpu_ftr_reg(u32 sys_reg, u64 new) | 
|  | { | 
|  | u64 val = 0; | 
|  | u64 strict_mask = ~0x0ULL; | 
|  | u64 user_mask = 0; | 
|  | u64 valid_mask = 0; | 
|  |  | 
|  | const struct arm64_ftr_bits *ftrp; | 
|  | struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg); | 
|  |  | 
|  | if (!reg) | 
|  | return; | 
|  |  | 
|  | for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { | 
|  | u64 ftr_mask = arm64_ftr_mask(ftrp); | 
|  | s64 ftr_new = arm64_ftr_value(ftrp, new); | 
|  | s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val); | 
|  |  | 
|  | if ((ftr_mask & reg->override->mask) == ftr_mask) { | 
|  | s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new); | 
|  | char *str = NULL; | 
|  |  | 
|  | if (ftr_ovr != tmp) { | 
|  | /* Unsafe, remove the override */ | 
|  | reg->override->mask &= ~ftr_mask; | 
|  | reg->override->val &= ~ftr_mask; | 
|  | tmp = ftr_ovr; | 
|  | str = "ignoring override"; | 
|  | } else if (ftr_new != tmp) { | 
|  | /* Override was valid */ | 
|  | ftr_new = tmp; | 
|  | str = "forced"; | 
|  | } else if (ftr_ovr == tmp) { | 
|  | /* Override was the safe value */ | 
|  | str = "already set"; | 
|  | } | 
|  |  | 
|  | if (str) | 
|  | pr_warn("%s[%d:%d]: %s to %llx\n", | 
|  | reg->name, | 
|  | ftrp->shift + ftrp->width - 1, | 
|  | ftrp->shift, str, tmp); | 
|  | } else if ((ftr_mask & reg->override->val) == ftr_mask) { | 
|  | reg->override->val &= ~ftr_mask; | 
|  | pr_warn("%s[%d:%d]: impossible override, ignored\n", | 
|  | reg->name, | 
|  | ftrp->shift + ftrp->width - 1, | 
|  | ftrp->shift); | 
|  | } | 
|  |  | 
|  | val = arm64_ftr_set_value(ftrp, val, ftr_new); | 
|  |  | 
|  | valid_mask |= ftr_mask; | 
|  | if (!ftrp->strict) | 
|  | strict_mask &= ~ftr_mask; | 
|  | if (ftrp->visible) | 
|  | user_mask |= ftr_mask; | 
|  | else | 
|  | reg->user_val = arm64_ftr_set_value(ftrp, | 
|  | reg->user_val, | 
|  | ftrp->safe_val); | 
|  | } | 
|  |  | 
|  | val &= valid_mask; | 
|  |  | 
|  | reg->sys_val = val; | 
|  | reg->strict_mask = strict_mask; | 
|  | reg->user_mask = user_mask; | 
|  | } | 
|  |  | 
|  | extern const struct arm64_cpu_capabilities arm64_errata[]; | 
|  | static const struct arm64_cpu_capabilities arm64_features[]; | 
|  |  | 
|  | static void __init | 
|  | init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps) | 
|  | { | 
|  | for (; caps->matches; caps++) { | 
|  | if (WARN(caps->capability >= ARM64_NCAPS, | 
|  | "Invalid capability %d\n", caps->capability)) | 
|  | continue; | 
|  | if (WARN(cpu_hwcaps_ptrs[caps->capability], | 
|  | "Duplicate entry for capability %d\n", | 
|  | caps->capability)) | 
|  | continue; | 
|  | cpu_hwcaps_ptrs[caps->capability] = caps; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init init_cpu_hwcaps_indirect_list(void) | 
|  | { | 
|  | init_cpu_hwcaps_indirect_list_from_array(arm64_features); | 
|  | init_cpu_hwcaps_indirect_list_from_array(arm64_errata); | 
|  | } | 
|  |  | 
|  | static void __init setup_boot_cpu_capabilities(void); | 
|  |  | 
|  | static void init_32bit_cpu_features(struct cpuinfo_32bit *info) | 
|  | { | 
|  | init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0); | 
|  | init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1); | 
|  | init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0); | 
|  | init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1); | 
|  | init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2); | 
|  | init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3); | 
|  | init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4); | 
|  | init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5); | 
|  | init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6); | 
|  | init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0); | 
|  | init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1); | 
|  | init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2); | 
|  | init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3); | 
|  | init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4); | 
|  | init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5); | 
|  | init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0); | 
|  | init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1); | 
|  | init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2); | 
|  | init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0); | 
|  | init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1); | 
|  | init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2); | 
|  | } | 
|  |  | 
|  | void __init init_cpu_features(struct cpuinfo_arm64 *info) | 
|  | { | 
|  | /* Before we start using the tables, make sure it is sorted */ | 
|  | sort_ftr_regs(); | 
|  |  | 
|  | init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr); | 
|  | init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid); | 
|  | init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1); | 
|  | init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0); | 
|  |  | 
|  | if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) | 
|  | init_32bit_cpu_features(&info->aarch32); | 
|  |  | 
|  | if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { | 
|  | init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr); | 
|  | vec_init_vq_map(ARM64_VEC_SVE); | 
|  | } | 
|  |  | 
|  | if (id_aa64pfr1_mte(info->reg_id_aa64pfr1)) | 
|  | init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid); | 
|  |  | 
|  | /* | 
|  | * Initialize the indirect array of CPU hwcaps capabilities pointers | 
|  | * before we handle the boot CPU below. | 
|  | */ | 
|  | init_cpu_hwcaps_indirect_list(); | 
|  |  | 
|  | /* | 
|  | * Detect and enable early CPU capabilities based on the boot CPU, | 
|  | * after we have initialised the CPU feature infrastructure. | 
|  | */ | 
|  | setup_boot_cpu_capabilities(); | 
|  | } | 
|  |  | 
|  | static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new) | 
|  | { | 
|  | const struct arm64_ftr_bits *ftrp; | 
|  |  | 
|  | for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) { | 
|  | s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val); | 
|  | s64 ftr_new = arm64_ftr_value(ftrp, new); | 
|  |  | 
|  | if (ftr_cur == ftr_new) | 
|  | continue; | 
|  | /* Find a safe value */ | 
|  | ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur); | 
|  | reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot) | 
|  | { | 
|  | struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); | 
|  |  | 
|  | if (!regp) | 
|  | return 0; | 
|  |  | 
|  | update_cpu_ftr_reg(regp, val); | 
|  | if ((boot & regp->strict_mask) == (val & regp->strict_mask)) | 
|  | return 0; | 
|  | pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n", | 
|  | regp->name, boot, cpu, val); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void relax_cpu_ftr_reg(u32 sys_id, int field) | 
|  | { | 
|  | const struct arm64_ftr_bits *ftrp; | 
|  | struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id); | 
|  |  | 
|  | if (!regp) | 
|  | return; | 
|  |  | 
|  | for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) { | 
|  | if (ftrp->shift == field) { | 
|  | regp->strict_mask &= ~arm64_ftr_mask(ftrp); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Bogus field? */ | 
|  | WARN_ON(!ftrp->width); | 
|  | } | 
|  |  | 
|  | static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info, | 
|  | struct cpuinfo_arm64 *boot) | 
|  | { | 
|  | static bool boot_cpu_32bit_regs_overridden = false; | 
|  |  | 
|  | if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden) | 
|  | return; | 
|  |  | 
|  | if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0)) | 
|  | return; | 
|  |  | 
|  | boot->aarch32 = info->aarch32; | 
|  | init_32bit_cpu_features(&boot->aarch32); | 
|  | boot_cpu_32bit_regs_overridden = true; | 
|  | } | 
|  |  | 
|  | static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info, | 
|  | struct cpuinfo_32bit *boot) | 
|  | { | 
|  | int taint = 0; | 
|  | u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); | 
|  |  | 
|  | /* | 
|  | * If we don't have AArch32 at EL1, then relax the strictness of | 
|  | * EL1-dependent register fields to avoid spurious sanity check fails. | 
|  | */ | 
|  | if (!id_aa64pfr0_32bit_el1(pfr0)) { | 
|  | relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT); | 
|  | relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT); | 
|  | relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT); | 
|  | relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT); | 
|  | relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT); | 
|  | relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT); | 
|  | } | 
|  |  | 
|  | taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu, | 
|  | info->reg_id_dfr0, boot->reg_id_dfr0); | 
|  | taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu, | 
|  | info->reg_id_dfr1, boot->reg_id_dfr1); | 
|  | taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu, | 
|  | info->reg_id_isar0, boot->reg_id_isar0); | 
|  | taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu, | 
|  | info->reg_id_isar1, boot->reg_id_isar1); | 
|  | taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu, | 
|  | info->reg_id_isar2, boot->reg_id_isar2); | 
|  | taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu, | 
|  | info->reg_id_isar3, boot->reg_id_isar3); | 
|  | taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu, | 
|  | info->reg_id_isar4, boot->reg_id_isar4); | 
|  | taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu, | 
|  | info->reg_id_isar5, boot->reg_id_isar5); | 
|  | taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu, | 
|  | info->reg_id_isar6, boot->reg_id_isar6); | 
|  |  | 
|  | /* | 
|  | * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and | 
|  | * ACTLR formats could differ across CPUs and therefore would have to | 
|  | * be trapped for virtualization anyway. | 
|  | */ | 
|  | taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu, | 
|  | info->reg_id_mmfr0, boot->reg_id_mmfr0); | 
|  | taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu, | 
|  | info->reg_id_mmfr1, boot->reg_id_mmfr1); | 
|  | taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu, | 
|  | info->reg_id_mmfr2, boot->reg_id_mmfr2); | 
|  | taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu, | 
|  | info->reg_id_mmfr3, boot->reg_id_mmfr3); | 
|  | taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu, | 
|  | info->reg_id_mmfr4, boot->reg_id_mmfr4); | 
|  | taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu, | 
|  | info->reg_id_mmfr5, boot->reg_id_mmfr5); | 
|  | taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu, | 
|  | info->reg_id_pfr0, boot->reg_id_pfr0); | 
|  | taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu, | 
|  | info->reg_id_pfr1, boot->reg_id_pfr1); | 
|  | taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu, | 
|  | info->reg_id_pfr2, boot->reg_id_pfr2); | 
|  | taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu, | 
|  | info->reg_mvfr0, boot->reg_mvfr0); | 
|  | taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu, | 
|  | info->reg_mvfr1, boot->reg_mvfr1); | 
|  | taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu, | 
|  | info->reg_mvfr2, boot->reg_mvfr2); | 
|  |  | 
|  | return taint; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update system wide CPU feature registers with the values from a | 
|  | * non-boot CPU. Also performs SANITY checks to make sure that there | 
|  | * aren't any insane variations from that of the boot CPU. | 
|  | */ | 
|  | void update_cpu_features(int cpu, | 
|  | struct cpuinfo_arm64 *info, | 
|  | struct cpuinfo_arm64 *boot) | 
|  | { | 
|  | int taint = 0; | 
|  |  | 
|  | /* | 
|  | * The kernel can handle differing I-cache policies, but otherwise | 
|  | * caches should look identical. Userspace JITs will make use of | 
|  | * *minLine. | 
|  | */ | 
|  | taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu, | 
|  | info->reg_ctr, boot->reg_ctr); | 
|  |  | 
|  | /* | 
|  | * Userspace may perform DC ZVA instructions. Mismatched block sizes | 
|  | * could result in too much or too little memory being zeroed if a | 
|  | * process is preempted and migrated between CPUs. | 
|  | */ | 
|  | taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu, | 
|  | info->reg_dczid, boot->reg_dczid); | 
|  |  | 
|  | /* If different, timekeeping will be broken (especially with KVM) */ | 
|  | taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu, | 
|  | info->reg_cntfrq, boot->reg_cntfrq); | 
|  |  | 
|  | /* | 
|  | * The kernel uses self-hosted debug features and expects CPUs to | 
|  | * support identical debug features. We presently need CTX_CMPs, WRPs, | 
|  | * and BRPs to be identical. | 
|  | * ID_AA64DFR1 is currently RES0. | 
|  | */ | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu, | 
|  | info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0); | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu, | 
|  | info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1); | 
|  | /* | 
|  | * Even in big.LITTLE, processors should be identical instruction-set | 
|  | * wise. | 
|  | */ | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu, | 
|  | info->reg_id_aa64isar0, boot->reg_id_aa64isar0); | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu, | 
|  | info->reg_id_aa64isar1, boot->reg_id_aa64isar1); | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu, | 
|  | info->reg_id_aa64isar2, boot->reg_id_aa64isar2); | 
|  |  | 
|  | /* | 
|  | * Differing PARange support is fine as long as all peripherals and | 
|  | * memory are mapped within the minimum PARange of all CPUs. | 
|  | * Linux should not care about secure memory. | 
|  | */ | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu, | 
|  | info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0); | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu, | 
|  | info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1); | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu, | 
|  | info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2); | 
|  |  | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu, | 
|  | info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0); | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu, | 
|  | info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1); | 
|  |  | 
|  | taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu, | 
|  | info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0); | 
|  |  | 
|  | if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) { | 
|  | taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu, | 
|  | info->reg_zcr, boot->reg_zcr); | 
|  |  | 
|  | /* Probe vector lengths, unless we already gave up on SVE */ | 
|  | if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) && | 
|  | !system_capabilities_finalized()) | 
|  | vec_update_vq_map(ARM64_VEC_SVE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The kernel uses the LDGM/STGM instructions and the number of tags | 
|  | * they read/write depends on the GMID_EL1.BS field. Check that the | 
|  | * value is the same on all CPUs. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_ARM64_MTE) && | 
|  | id_aa64pfr1_mte(info->reg_id_aa64pfr1)) { | 
|  | taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu, | 
|  | info->reg_gmid, boot->reg_gmid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we don't have AArch32 at all then skip the checks entirely | 
|  | * as the register values may be UNKNOWN and we're not going to be | 
|  | * using them for anything. | 
|  | * | 
|  | * This relies on a sanitised view of the AArch64 ID registers | 
|  | * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last. | 
|  | */ | 
|  | if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { | 
|  | lazy_init_32bit_cpu_features(info, boot); | 
|  | taint |= update_32bit_cpu_features(cpu, &info->aarch32, | 
|  | &boot->aarch32); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mismatched CPU features are a recipe for disaster. Don't even | 
|  | * pretend to support them. | 
|  | */ | 
|  | if (taint) { | 
|  | pr_warn_once("Unsupported CPU feature variation detected.\n"); | 
|  | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); | 
|  | } | 
|  | } | 
|  |  | 
|  | u64 read_sanitised_ftr_reg(u32 id) | 
|  | { | 
|  | struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id); | 
|  |  | 
|  | if (!regp) | 
|  | return 0; | 
|  | return regp->sys_val; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg); | 
|  |  | 
|  | #define read_sysreg_case(r)	\ | 
|  | case r:		val = read_sysreg_s(r); break; | 
|  |  | 
|  | /* | 
|  | * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated. | 
|  | * Read the system register on the current CPU | 
|  | */ | 
|  | u64 __read_sysreg_by_encoding(u32 sys_id) | 
|  | { | 
|  | struct arm64_ftr_reg *regp; | 
|  | u64 val; | 
|  |  | 
|  | switch (sys_id) { | 
|  | read_sysreg_case(SYS_ID_PFR0_EL1); | 
|  | read_sysreg_case(SYS_ID_PFR1_EL1); | 
|  | read_sysreg_case(SYS_ID_PFR2_EL1); | 
|  | read_sysreg_case(SYS_ID_DFR0_EL1); | 
|  | read_sysreg_case(SYS_ID_DFR1_EL1); | 
|  | read_sysreg_case(SYS_ID_MMFR0_EL1); | 
|  | read_sysreg_case(SYS_ID_MMFR1_EL1); | 
|  | read_sysreg_case(SYS_ID_MMFR2_EL1); | 
|  | read_sysreg_case(SYS_ID_MMFR3_EL1); | 
|  | read_sysreg_case(SYS_ID_MMFR4_EL1); | 
|  | read_sysreg_case(SYS_ID_MMFR5_EL1); | 
|  | read_sysreg_case(SYS_ID_ISAR0_EL1); | 
|  | read_sysreg_case(SYS_ID_ISAR1_EL1); | 
|  | read_sysreg_case(SYS_ID_ISAR2_EL1); | 
|  | read_sysreg_case(SYS_ID_ISAR3_EL1); | 
|  | read_sysreg_case(SYS_ID_ISAR4_EL1); | 
|  | read_sysreg_case(SYS_ID_ISAR5_EL1); | 
|  | read_sysreg_case(SYS_ID_ISAR6_EL1); | 
|  | read_sysreg_case(SYS_MVFR0_EL1); | 
|  | read_sysreg_case(SYS_MVFR1_EL1); | 
|  | read_sysreg_case(SYS_MVFR2_EL1); | 
|  |  | 
|  | read_sysreg_case(SYS_ID_AA64PFR0_EL1); | 
|  | read_sysreg_case(SYS_ID_AA64PFR1_EL1); | 
|  | read_sysreg_case(SYS_ID_AA64ZFR0_EL1); | 
|  | read_sysreg_case(SYS_ID_AA64DFR0_EL1); | 
|  | read_sysreg_case(SYS_ID_AA64DFR1_EL1); | 
|  | read_sysreg_case(SYS_ID_AA64MMFR0_EL1); | 
|  | read_sysreg_case(SYS_ID_AA64MMFR1_EL1); | 
|  | read_sysreg_case(SYS_ID_AA64MMFR2_EL1); | 
|  | read_sysreg_case(SYS_ID_AA64ISAR0_EL1); | 
|  | read_sysreg_case(SYS_ID_AA64ISAR1_EL1); | 
|  | read_sysreg_case(SYS_ID_AA64ISAR2_EL1); | 
|  |  | 
|  | read_sysreg_case(SYS_CNTFRQ_EL0); | 
|  | read_sysreg_case(SYS_CTR_EL0); | 
|  | read_sysreg_case(SYS_DCZID_EL0); | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | regp  = get_arm64_ftr_reg(sys_id); | 
|  | if (regp) { | 
|  | val &= ~regp->override->mask; | 
|  | val |= (regp->override->val & regp->override->mask); | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #include <linux/irqchip/arm-gic-v3.h> | 
|  |  | 
|  | static bool | 
|  | feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry) | 
|  | { | 
|  | int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign); | 
|  |  | 
|  | return val >= entry->min_field_value; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); | 
|  | if (scope == SCOPE_SYSTEM) | 
|  | val = read_sanitised_ftr_reg(entry->sys_reg); | 
|  | else | 
|  | val = __read_sysreg_by_encoding(entry->sys_reg); | 
|  |  | 
|  | return feature_matches(val, entry); | 
|  | } | 
|  |  | 
|  | const struct cpumask *system_32bit_el0_cpumask(void) | 
|  | { | 
|  | if (!system_supports_32bit_el0()) | 
|  | return cpu_none_mask; | 
|  |  | 
|  | if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) | 
|  | return cpu_32bit_el0_mask; | 
|  |  | 
|  | return cpu_possible_mask; | 
|  | } | 
|  |  | 
|  | static int __init parse_32bit_el0_param(char *str) | 
|  | { | 
|  | allow_mismatched_32bit_el0 = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param); | 
|  |  | 
|  | static ssize_t aarch32_el0_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | const struct cpumask *mask = system_32bit_el0_cpumask(); | 
|  |  | 
|  | return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask)); | 
|  | } | 
|  | static const DEVICE_ATTR_RO(aarch32_el0); | 
|  |  | 
|  | static int __init aarch32_el0_sysfs_init(void) | 
|  | { | 
|  | if (!allow_mismatched_32bit_el0) | 
|  | return 0; | 
|  |  | 
|  | return device_create_file(cpu_subsys.dev_root, &dev_attr_aarch32_el0); | 
|  | } | 
|  | device_initcall(aarch32_el0_sysfs_init); | 
|  |  | 
|  | static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope) | 
|  | { | 
|  | if (!has_cpuid_feature(entry, scope)) | 
|  | return allow_mismatched_32bit_el0; | 
|  |  | 
|  | if (scope == SCOPE_SYSTEM) | 
|  | pr_info("detected: 32-bit EL0 Support\n"); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope) | 
|  | { | 
|  | bool has_sre; | 
|  |  | 
|  | if (!has_cpuid_feature(entry, scope)) | 
|  | return false; | 
|  |  | 
|  | has_sre = gic_enable_sre(); | 
|  | if (!has_sre) | 
|  | pr_warn_once("%s present but disabled by higher exception level\n", | 
|  | entry->desc); | 
|  |  | 
|  | return has_sre; | 
|  | } | 
|  |  | 
|  | static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused) | 
|  | { | 
|  | u32 midr = read_cpuid_id(); | 
|  |  | 
|  | /* Cavium ThunderX pass 1.x and 2.x */ | 
|  | return midr_is_cpu_model_range(midr, MIDR_THUNDERX, | 
|  | MIDR_CPU_VAR_REV(0, 0), | 
|  | MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK)); | 
|  | } | 
|  |  | 
|  | static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused) | 
|  | { | 
|  | u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); | 
|  |  | 
|  | return cpuid_feature_extract_signed_field(pfr0, | 
|  | ID_AA64PFR0_FP_SHIFT) < 0; | 
|  | } | 
|  |  | 
|  | static bool has_cache_idc(const struct arm64_cpu_capabilities *entry, | 
|  | int scope) | 
|  | { | 
|  | u64 ctr; | 
|  |  | 
|  | if (scope == SCOPE_SYSTEM) | 
|  | ctr = arm64_ftr_reg_ctrel0.sys_val; | 
|  | else | 
|  | ctr = read_cpuid_effective_cachetype(); | 
|  |  | 
|  | return ctr & BIT(CTR_IDC_SHIFT); | 
|  | } | 
|  |  | 
|  | static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused) | 
|  | { | 
|  | /* | 
|  | * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively | 
|  | * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses | 
|  | * to the CTR_EL0 on this CPU and emulate it with the real/safe | 
|  | * value. | 
|  | */ | 
|  | if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT))) | 
|  | sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0); | 
|  | } | 
|  |  | 
|  | static bool has_cache_dic(const struct arm64_cpu_capabilities *entry, | 
|  | int scope) | 
|  | { | 
|  | u64 ctr; | 
|  |  | 
|  | if (scope == SCOPE_SYSTEM) | 
|  | ctr = arm64_ftr_reg_ctrel0.sys_val; | 
|  | else | 
|  | ctr = read_cpuid_cachetype(); | 
|  |  | 
|  | return ctr & BIT(CTR_DIC_SHIFT); | 
|  | } | 
|  |  | 
|  | static bool __maybe_unused | 
|  | has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope) | 
|  | { | 
|  | /* | 
|  | * Kdump isn't guaranteed to power-off all secondary CPUs, CNP | 
|  | * may share TLB entries with a CPU stuck in the crashed | 
|  | * kernel. | 
|  | */ | 
|  | if (is_kdump_kernel()) | 
|  | return false; | 
|  |  | 
|  | if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP)) | 
|  | return false; | 
|  |  | 
|  | return has_cpuid_feature(entry, scope); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This check is triggered during the early boot before the cpufeature | 
|  | * is initialised. Checking the status on the local CPU allows the boot | 
|  | * CPU to detect the need for non-global mappings and thus avoiding a | 
|  | * pagetable re-write after all the CPUs are booted. This check will be | 
|  | * anyway run on individual CPUs, allowing us to get the consistent | 
|  | * state once the SMP CPUs are up and thus make the switch to non-global | 
|  | * mappings if required. | 
|  | */ | 
|  | bool kaslr_requires_kpti(void) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * E0PD does a similar job to KPTI so can be used instead | 
|  | * where available. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_ARM64_E0PD)) { | 
|  | u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1); | 
|  | if (cpuid_feature_extract_unsigned_field(mmfr2, | 
|  | ID_AA64MMFR2_E0PD_SHIFT)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Systems affected by Cavium erratum 24756 are incompatible | 
|  | * with KPTI. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) { | 
|  | extern const struct midr_range cavium_erratum_27456_cpus[]; | 
|  |  | 
|  | if (is_midr_in_range_list(read_cpuid_id(), | 
|  | cavium_erratum_27456_cpus)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return kaslr_offset() > 0; | 
|  | } | 
|  |  | 
|  | static bool __meltdown_safe = true; | 
|  | static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */ | 
|  |  | 
|  | static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry, | 
|  | int scope) | 
|  | { | 
|  | /* List of CPUs that are not vulnerable and don't need KPTI */ | 
|  | static const struct midr_range kpti_safe_list[] = { | 
|  | MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2), | 
|  | MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN), | 
|  | MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53), | 
|  | MIDR_ALL_VERSIONS(MIDR_CORTEX_A35), | 
|  | MIDR_ALL_VERSIONS(MIDR_CORTEX_A53), | 
|  | MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), | 
|  | MIDR_ALL_VERSIONS(MIDR_CORTEX_A57), | 
|  | MIDR_ALL_VERSIONS(MIDR_CORTEX_A72), | 
|  | MIDR_ALL_VERSIONS(MIDR_CORTEX_A73), | 
|  | MIDR_ALL_VERSIONS(MIDR_HISI_TSV110), | 
|  | MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL), | 
|  | MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD), | 
|  | MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER), | 
|  | MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER), | 
|  | MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER), | 
|  | { /* sentinel */ } | 
|  | }; | 
|  | char const *str = "kpti command line option"; | 
|  | bool meltdown_safe; | 
|  |  | 
|  | meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list); | 
|  |  | 
|  | /* Defer to CPU feature registers */ | 
|  | if (has_cpuid_feature(entry, scope)) | 
|  | meltdown_safe = true; | 
|  |  | 
|  | if (!meltdown_safe) | 
|  | __meltdown_safe = false; | 
|  |  | 
|  | /* | 
|  | * For reasons that aren't entirely clear, enabling KPTI on Cavium | 
|  | * ThunderX leads to apparent I-cache corruption of kernel text, which | 
|  | * ends as well as you might imagine. Don't even try. We cannot rely | 
|  | * on the cpus_have_*cap() helpers here to detect the CPU erratum | 
|  | * because cpucap detection order may change. However, since we know | 
|  | * affected CPUs are always in a homogeneous configuration, it is | 
|  | * safe to rely on this_cpu_has_cap() here. | 
|  | */ | 
|  | if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) { | 
|  | str = "ARM64_WORKAROUND_CAVIUM_27456"; | 
|  | __kpti_forced = -1; | 
|  | } | 
|  |  | 
|  | /* Useful for KASLR robustness */ | 
|  | if (kaslr_requires_kpti()) { | 
|  | if (!__kpti_forced) { | 
|  | str = "KASLR"; | 
|  | __kpti_forced = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cpu_mitigations_off() && !__kpti_forced) { | 
|  | str = "mitigations=off"; | 
|  | __kpti_forced = -1; | 
|  | } | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) { | 
|  | pr_info_once("kernel page table isolation disabled by kernel configuration\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Forced? */ | 
|  | if (__kpti_forced) { | 
|  | pr_info_once("kernel page table isolation forced %s by %s\n", | 
|  | __kpti_forced > 0 ? "ON" : "OFF", str); | 
|  | return __kpti_forced > 0; | 
|  | } | 
|  |  | 
|  | return !meltdown_safe; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 | 
|  | static void __nocfi | 
|  | kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) | 
|  | { | 
|  | typedef void (kpti_remap_fn)(int, int, phys_addr_t); | 
|  | extern kpti_remap_fn idmap_kpti_install_ng_mappings; | 
|  | kpti_remap_fn *remap_fn; | 
|  |  | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | if (__this_cpu_read(this_cpu_vector) == vectors) { | 
|  | const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI); | 
|  |  | 
|  | __this_cpu_write(this_cpu_vector, v); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't need to rewrite the page-tables if either we've done | 
|  | * it already or we have KASLR enabled and therefore have not | 
|  | * created any global mappings at all. | 
|  | */ | 
|  | if (arm64_use_ng_mappings) | 
|  | return; | 
|  |  | 
|  | remap_fn = (void *)__pa_symbol(function_nocfi(idmap_kpti_install_ng_mappings)); | 
|  |  | 
|  | cpu_install_idmap(); | 
|  | remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir)); | 
|  | cpu_uninstall_idmap(); | 
|  |  | 
|  | if (!cpu) | 
|  | arm64_use_ng_mappings = true; | 
|  | } | 
|  | #else | 
|  | static void | 
|  | kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused) | 
|  | { | 
|  | } | 
|  | #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */ | 
|  |  | 
|  | static int __init parse_kpti(char *str) | 
|  | { | 
|  | bool enabled; | 
|  | int ret = strtobool(str, &enabled); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | __kpti_forced = enabled ? 1 : -1; | 
|  | return 0; | 
|  | } | 
|  | early_param("kpti", parse_kpti); | 
|  |  | 
|  | #ifdef CONFIG_ARM64_HW_AFDBM | 
|  | static inline void __cpu_enable_hw_dbm(void) | 
|  | { | 
|  | u64 tcr = read_sysreg(tcr_el1) | TCR_HD; | 
|  |  | 
|  | write_sysreg(tcr, tcr_el1); | 
|  | isb(); | 
|  | local_flush_tlb_all(); | 
|  | } | 
|  |  | 
|  | static bool cpu_has_broken_dbm(void) | 
|  | { | 
|  | /* List of CPUs which have broken DBM support. */ | 
|  | static const struct midr_range cpus[] = { | 
|  | #ifdef CONFIG_ARM64_ERRATUM_1024718 | 
|  | MIDR_ALL_VERSIONS(MIDR_CORTEX_A55), | 
|  | /* Kryo4xx Silver (rdpe => r1p0) */ | 
|  | MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe), | 
|  | #endif | 
|  | #ifdef CONFIG_ARM64_ERRATUM_2051678 | 
|  | MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2), | 
|  | #endif | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | return is_midr_in_range_list(read_cpuid_id(), cpus); | 
|  | } | 
|  |  | 
|  | static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap) | 
|  | { | 
|  | return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) && | 
|  | !cpu_has_broken_dbm(); | 
|  | } | 
|  |  | 
|  | static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap) | 
|  | { | 
|  | if (cpu_can_use_dbm(cap)) | 
|  | __cpu_enable_hw_dbm(); | 
|  | } | 
|  |  | 
|  | static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap, | 
|  | int __unused) | 
|  | { | 
|  | static bool detected = false; | 
|  | /* | 
|  | * DBM is a non-conflicting feature. i.e, the kernel can safely | 
|  | * run a mix of CPUs with and without the feature. So, we | 
|  | * unconditionally enable the capability to allow any late CPU | 
|  | * to use the feature. We only enable the control bits on the | 
|  | * CPU, if it actually supports. | 
|  | * | 
|  | * We have to make sure we print the "feature" detection only | 
|  | * when at least one CPU actually uses it. So check if this CPU | 
|  | * can actually use it and print the message exactly once. | 
|  | * | 
|  | * This is safe as all CPUs (including secondary CPUs - due to the | 
|  | * LOCAL_CPU scope - and the hotplugged CPUs - via verification) | 
|  | * goes through the "matches" check exactly once. Also if a CPU | 
|  | * matches the criteria, it is guaranteed that the CPU will turn | 
|  | * the DBM on, as the capability is unconditionally enabled. | 
|  | */ | 
|  | if (!detected && cpu_can_use_dbm(cap)) { | 
|  | detected = true; | 
|  | pr_info("detected: Hardware dirty bit management\n"); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ARM64_AMU_EXTN | 
|  |  | 
|  | /* | 
|  | * The "amu_cpus" cpumask only signals that the CPU implementation for the | 
|  | * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide | 
|  | * information regarding all the events that it supports. When a CPU bit is | 
|  | * set in the cpumask, the user of this feature can only rely on the presence | 
|  | * of the 4 fixed counters for that CPU. But this does not guarantee that the | 
|  | * counters are enabled or access to these counters is enabled by code | 
|  | * executed at higher exception levels (firmware). | 
|  | */ | 
|  | static struct cpumask amu_cpus __read_mostly; | 
|  |  | 
|  | bool cpu_has_amu_feat(int cpu) | 
|  | { | 
|  | return cpumask_test_cpu(cpu, &amu_cpus); | 
|  | } | 
|  |  | 
|  | int get_cpu_with_amu_feat(void) | 
|  | { | 
|  | return cpumask_any(&amu_cpus); | 
|  | } | 
|  |  | 
|  | static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap) | 
|  | { | 
|  | if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) { | 
|  | pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n", | 
|  | smp_processor_id()); | 
|  | cpumask_set_cpu(smp_processor_id(), &amu_cpus); | 
|  | update_freq_counters_refs(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool has_amu(const struct arm64_cpu_capabilities *cap, | 
|  | int __unused) | 
|  | { | 
|  | /* | 
|  | * The AMU extension is a non-conflicting feature: the kernel can | 
|  | * safely run a mix of CPUs with and without support for the | 
|  | * activity monitors extension. Therefore, unconditionally enable | 
|  | * the capability to allow any late CPU to use the feature. | 
|  | * | 
|  | * With this feature unconditionally enabled, the cpu_enable | 
|  | * function will be called for all CPUs that match the criteria, | 
|  | * including secondary and hotplugged, marking this feature as | 
|  | * present on that respective CPU. The enable function will also | 
|  | * print a detection message. | 
|  | */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | int get_cpu_with_amu_feat(void) | 
|  | { | 
|  | return nr_cpu_ids; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused) | 
|  | { | 
|  | return is_kernel_in_hyp_mode(); | 
|  | } | 
|  |  | 
|  | static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused) | 
|  | { | 
|  | /* | 
|  | * Copy register values that aren't redirected by hardware. | 
|  | * | 
|  | * Before code patching, we only set tpidr_el1, all CPUs need to copy | 
|  | * this value to tpidr_el2 before we patch the code. Once we've done | 
|  | * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to | 
|  | * do anything here. | 
|  | */ | 
|  | if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN)) | 
|  | write_sysreg(read_sysreg(tpidr_el1), tpidr_el2); | 
|  | } | 
|  |  | 
|  | static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused) | 
|  | { | 
|  | u64 val = read_sysreg_s(SYS_CLIDR_EL1); | 
|  |  | 
|  | /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */ | 
|  | WARN_ON(CLIDR_LOUU(val) || CLIDR_LOUIS(val)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM64_PAN | 
|  | static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused) | 
|  | { | 
|  | /* | 
|  | * We modify PSTATE. This won't work from irq context as the PSTATE | 
|  | * is discarded once we return from the exception. | 
|  | */ | 
|  | WARN_ON_ONCE(in_interrupt()); | 
|  |  | 
|  | sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0); | 
|  | set_pstate_pan(1); | 
|  | } | 
|  | #endif /* CONFIG_ARM64_PAN */ | 
|  |  | 
|  | #ifdef CONFIG_ARM64_RAS_EXTN | 
|  | static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused) | 
|  | { | 
|  | /* Firmware may have left a deferred SError in this register. */ | 
|  | write_sysreg_s(0, SYS_DISR_EL1); | 
|  | } | 
|  | #endif /* CONFIG_ARM64_RAS_EXTN */ | 
|  |  | 
|  | #ifdef CONFIG_ARM64_PTR_AUTH | 
|  | static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope) | 
|  | { | 
|  | int boot_val, sec_val; | 
|  |  | 
|  | /* We don't expect to be called with SCOPE_SYSTEM */ | 
|  | WARN_ON(scope == SCOPE_SYSTEM); | 
|  | /* | 
|  | * The ptr-auth feature levels are not intercompatible with lower | 
|  | * levels. Hence we must match ptr-auth feature level of the secondary | 
|  | * CPUs with that of the boot CPU. The level of boot cpu is fetched | 
|  | * from the sanitised register whereas direct register read is done for | 
|  | * the secondary CPUs. | 
|  | * The sanitised feature state is guaranteed to match that of the | 
|  | * boot CPU as a mismatched secondary CPU is parked before it gets | 
|  | * a chance to update the state, with the capability. | 
|  | */ | 
|  | boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg), | 
|  | entry->field_pos, entry->sign); | 
|  | if (scope & SCOPE_BOOT_CPU) | 
|  | return boot_val >= entry->min_field_value; | 
|  | /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */ | 
|  | sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg), | 
|  | entry->field_pos, entry->sign); | 
|  | return sec_val == boot_val; | 
|  | } | 
|  |  | 
|  | static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry, | 
|  | int scope) | 
|  | { | 
|  | return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) || | 
|  | has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope); | 
|  | } | 
|  |  | 
|  | static bool has_generic_auth(const struct arm64_cpu_capabilities *entry, | 
|  | int __unused) | 
|  | { | 
|  | return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) || | 
|  | __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF); | 
|  | } | 
|  | #endif /* CONFIG_ARM64_PTR_AUTH */ | 
|  |  | 
|  | #ifdef CONFIG_ARM64_E0PD | 
|  | static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap) | 
|  | { | 
|  | if (this_cpu_has_cap(ARM64_HAS_E0PD)) | 
|  | sysreg_clear_set(tcr_el1, 0, TCR_E0PD1); | 
|  | } | 
|  | #endif /* CONFIG_ARM64_E0PD */ | 
|  |  | 
|  | #ifdef CONFIG_ARM64_PSEUDO_NMI | 
|  | static bool enable_pseudo_nmi; | 
|  |  | 
|  | static int __init early_enable_pseudo_nmi(char *p) | 
|  | { | 
|  | return strtobool(p, &enable_pseudo_nmi); | 
|  | } | 
|  | early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi); | 
|  |  | 
|  | static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry, | 
|  | int scope) | 
|  | { | 
|  | return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ARM64_BTI | 
|  | static void bti_enable(const struct arm64_cpu_capabilities *__unused) | 
|  | { | 
|  | /* | 
|  | * Use of X16/X17 for tail-calls and trampolines that jump to | 
|  | * function entry points using BR is a requirement for | 
|  | * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI. | 
|  | * So, be strict and forbid other BRs using other registers to | 
|  | * jump onto a PACIxSP instruction: | 
|  | */ | 
|  | sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1); | 
|  | isb(); | 
|  | } | 
|  | #endif /* CONFIG_ARM64_BTI */ | 
|  |  | 
|  | #ifdef CONFIG_ARM64_MTE | 
|  | static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap) | 
|  | { | 
|  | sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0); | 
|  | isb(); | 
|  |  | 
|  | /* | 
|  | * Clear the tags in the zero page. This needs to be done via the | 
|  | * linear map which has the Tagged attribute. | 
|  | */ | 
|  | if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags)) | 
|  | mte_clear_page_tags(lm_alias(empty_zero_page)); | 
|  |  | 
|  | kasan_init_hw_tags_cpu(); | 
|  | } | 
|  | #endif /* CONFIG_ARM64_MTE */ | 
|  |  | 
|  | #ifdef CONFIG_KVM | 
|  | static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused) | 
|  | { | 
|  | if (kvm_get_mode() != KVM_MODE_PROTECTED) | 
|  | return false; | 
|  |  | 
|  | if (is_kernel_in_hyp_mode()) { | 
|  | pr_warn("Protected KVM not available with VHE\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif /* CONFIG_KVM */ | 
|  |  | 
|  | /* Internal helper functions to match cpu capability type */ | 
|  | static bool | 
|  | cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap) | 
|  | { | 
|  | return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap) | 
|  | { | 
|  | return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap) | 
|  | { | 
|  | return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT); | 
|  | } | 
|  |  | 
|  | static const struct arm64_cpu_capabilities arm64_features[] = { | 
|  | { | 
|  | .desc = "GIC system register CPU interface", | 
|  | .capability = ARM64_HAS_SYSREG_GIC_CPUIF, | 
|  | .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, | 
|  | .matches = has_useable_gicv3_cpuif, | 
|  | .sys_reg = SYS_ID_AA64PFR0_EL1, | 
|  | .field_pos = ID_AA64PFR0_GIC_SHIFT, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .min_field_value = 1, | 
|  | }, | 
|  | { | 
|  | .desc = "Enhanced Counter Virtualization", | 
|  | .capability = ARM64_HAS_ECV, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64MMFR0_EL1, | 
|  | .field_pos = ID_AA64MMFR0_ECV_SHIFT, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .min_field_value = 1, | 
|  | }, | 
|  | #ifdef CONFIG_ARM64_PAN | 
|  | { | 
|  | .desc = "Privileged Access Never", | 
|  | .capability = ARM64_HAS_PAN, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64MMFR1_EL1, | 
|  | .field_pos = ID_AA64MMFR1_PAN_SHIFT, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .min_field_value = 1, | 
|  | .cpu_enable = cpu_enable_pan, | 
|  | }, | 
|  | #endif /* CONFIG_ARM64_PAN */ | 
|  | #ifdef CONFIG_ARM64_EPAN | 
|  | { | 
|  | .desc = "Enhanced Privileged Access Never", | 
|  | .capability = ARM64_HAS_EPAN, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64MMFR1_EL1, | 
|  | .field_pos = ID_AA64MMFR1_PAN_SHIFT, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .min_field_value = 3, | 
|  | }, | 
|  | #endif /* CONFIG_ARM64_EPAN */ | 
|  | #ifdef CONFIG_ARM64_LSE_ATOMICS | 
|  | { | 
|  | .desc = "LSE atomic instructions", | 
|  | .capability = ARM64_HAS_LSE_ATOMICS, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64ISAR0_EL1, | 
|  | .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .min_field_value = 2, | 
|  | }, | 
|  | #endif /* CONFIG_ARM64_LSE_ATOMICS */ | 
|  | { | 
|  | .desc = "Software prefetching using PRFM", | 
|  | .capability = ARM64_HAS_NO_HW_PREFETCH, | 
|  | .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, | 
|  | .matches = has_no_hw_prefetch, | 
|  | }, | 
|  | { | 
|  | .desc = "Virtualization Host Extensions", | 
|  | .capability = ARM64_HAS_VIRT_HOST_EXTN, | 
|  | .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, | 
|  | .matches = runs_at_el2, | 
|  | .cpu_enable = cpu_copy_el2regs, | 
|  | }, | 
|  | { | 
|  | .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_32bit_el0, | 
|  | .sys_reg = SYS_ID_AA64PFR0_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64PFR0_EL0_SHIFT, | 
|  | .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT, | 
|  | }, | 
|  | #ifdef CONFIG_KVM | 
|  | { | 
|  | .desc = "32-bit EL1 Support", | 
|  | .capability = ARM64_HAS_32BIT_EL1, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64PFR0_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64PFR0_EL1_SHIFT, | 
|  | .min_field_value = ID_AA64PFR0_ELx_32BIT_64BIT, | 
|  | }, | 
|  | { | 
|  | .desc = "Protected KVM", | 
|  | .capability = ARM64_KVM_PROTECTED_MODE, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = is_kvm_protected_mode, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | .desc = "Kernel page table isolation (KPTI)", | 
|  | .capability = ARM64_UNMAP_KERNEL_AT_EL0, | 
|  | .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, | 
|  | /* | 
|  | * The ID feature fields below are used to indicate that | 
|  | * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for | 
|  | * more details. | 
|  | */ | 
|  | .sys_reg = SYS_ID_AA64PFR0_EL1, | 
|  | .field_pos = ID_AA64PFR0_CSV3_SHIFT, | 
|  | .min_field_value = 1, | 
|  | .matches = unmap_kernel_at_el0, | 
|  | .cpu_enable = kpti_install_ng_mappings, | 
|  | }, | 
|  | { | 
|  | /* FP/SIMD is not implemented */ | 
|  | .capability = ARM64_HAS_NO_FPSIMD, | 
|  | .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE, | 
|  | .min_field_value = 0, | 
|  | .matches = has_no_fpsimd, | 
|  | }, | 
|  | #ifdef CONFIG_ARM64_PMEM | 
|  | { | 
|  | .desc = "Data cache clean to Point of Persistence", | 
|  | .capability = ARM64_HAS_DCPOP, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64ISAR1_EL1, | 
|  | .field_pos = ID_AA64ISAR1_DPB_SHIFT, | 
|  | .min_field_value = 1, | 
|  | }, | 
|  | { | 
|  | .desc = "Data cache clean to Point of Deep Persistence", | 
|  | .capability = ARM64_HAS_DCPODP, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64ISAR1_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64ISAR1_DPB_SHIFT, | 
|  | .min_field_value = 2, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_ARM64_SVE | 
|  | { | 
|  | .desc = "Scalable Vector Extension", | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .capability = ARM64_SVE, | 
|  | .sys_reg = SYS_ID_AA64PFR0_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64PFR0_SVE_SHIFT, | 
|  | .min_field_value = ID_AA64PFR0_SVE, | 
|  | .matches = has_cpuid_feature, | 
|  | .cpu_enable = sve_kernel_enable, | 
|  | }, | 
|  | #endif /* CONFIG_ARM64_SVE */ | 
|  | #ifdef CONFIG_ARM64_RAS_EXTN | 
|  | { | 
|  | .desc = "RAS Extension Support", | 
|  | .capability = ARM64_HAS_RAS_EXTN, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64PFR0_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64PFR0_RAS_SHIFT, | 
|  | .min_field_value = ID_AA64PFR0_RAS_V1, | 
|  | .cpu_enable = cpu_clear_disr, | 
|  | }, | 
|  | #endif /* CONFIG_ARM64_RAS_EXTN */ | 
|  | #ifdef CONFIG_ARM64_AMU_EXTN | 
|  | { | 
|  | /* | 
|  | * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y. | 
|  | * Therefore, don't provide .desc as we don't want the detection | 
|  | * message to be shown until at least one CPU is detected to | 
|  | * support the feature. | 
|  | */ | 
|  | .capability = ARM64_HAS_AMU_EXTN, | 
|  | .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, | 
|  | .matches = has_amu, | 
|  | .sys_reg = SYS_ID_AA64PFR0_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64PFR0_AMU_SHIFT, | 
|  | .min_field_value = ID_AA64PFR0_AMU, | 
|  | .cpu_enable = cpu_amu_enable, | 
|  | }, | 
|  | #endif /* CONFIG_ARM64_AMU_EXTN */ | 
|  | { | 
|  | .desc = "Data cache clean to the PoU not required for I/D coherence", | 
|  | .capability = ARM64_HAS_CACHE_IDC, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cache_idc, | 
|  | .cpu_enable = cpu_emulate_effective_ctr, | 
|  | }, | 
|  | { | 
|  | .desc = "Instruction cache invalidation not required for I/D coherence", | 
|  | .capability = ARM64_HAS_CACHE_DIC, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cache_dic, | 
|  | }, | 
|  | { | 
|  | .desc = "Stage-2 Force Write-Back", | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .capability = ARM64_HAS_STAGE2_FWB, | 
|  | .sys_reg = SYS_ID_AA64MMFR2_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64MMFR2_FWB_SHIFT, | 
|  | .min_field_value = 1, | 
|  | .matches = has_cpuid_feature, | 
|  | .cpu_enable = cpu_has_fwb, | 
|  | }, | 
|  | { | 
|  | .desc = "ARMv8.4 Translation Table Level", | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .capability = ARM64_HAS_ARMv8_4_TTL, | 
|  | .sys_reg = SYS_ID_AA64MMFR2_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64MMFR2_TTL_SHIFT, | 
|  | .min_field_value = 1, | 
|  | .matches = has_cpuid_feature, | 
|  | }, | 
|  | { | 
|  | .desc = "TLB range maintenance instructions", | 
|  | .capability = ARM64_HAS_TLB_RANGE, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64ISAR0_EL1, | 
|  | .field_pos = ID_AA64ISAR0_TLB_SHIFT, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .min_field_value = ID_AA64ISAR0_TLB_RANGE, | 
|  | }, | 
|  | #ifdef CONFIG_ARM64_HW_AFDBM | 
|  | { | 
|  | /* | 
|  | * Since we turn this on always, we don't want the user to | 
|  | * think that the feature is available when it may not be. | 
|  | * So hide the description. | 
|  | * | 
|  | * .desc = "Hardware pagetable Dirty Bit Management", | 
|  | * | 
|  | */ | 
|  | .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE, | 
|  | .capability = ARM64_HW_DBM, | 
|  | .sys_reg = SYS_ID_AA64MMFR1_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64MMFR1_HADBS_SHIFT, | 
|  | .min_field_value = 2, | 
|  | .matches = has_hw_dbm, | 
|  | .cpu_enable = cpu_enable_hw_dbm, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | .desc = "CRC32 instructions", | 
|  | .capability = ARM64_HAS_CRC32, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64ISAR0_EL1, | 
|  | .field_pos = ID_AA64ISAR0_CRC32_SHIFT, | 
|  | .min_field_value = 1, | 
|  | }, | 
|  | { | 
|  | .desc = "Speculative Store Bypassing Safe (SSBS)", | 
|  | .capability = ARM64_SSBS, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64PFR1_EL1, | 
|  | .field_pos = ID_AA64PFR1_SSBS_SHIFT, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY, | 
|  | }, | 
|  | #ifdef CONFIG_ARM64_CNP | 
|  | { | 
|  | .desc = "Common not Private translations", | 
|  | .capability = ARM64_HAS_CNP, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_useable_cnp, | 
|  | .sys_reg = SYS_ID_AA64MMFR2_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64MMFR2_CNP_SHIFT, | 
|  | .min_field_value = 1, | 
|  | .cpu_enable = cpu_enable_cnp, | 
|  | }, | 
|  | #endif | 
|  | { | 
|  | .desc = "Speculation barrier (SB)", | 
|  | .capability = ARM64_HAS_SB, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64ISAR1_EL1, | 
|  | .field_pos = ID_AA64ISAR1_SB_SHIFT, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .min_field_value = 1, | 
|  | }, | 
|  | #ifdef CONFIG_ARM64_PTR_AUTH | 
|  | { | 
|  | .desc = "Address authentication (architected algorithm)", | 
|  | .capability = ARM64_HAS_ADDRESS_AUTH_ARCH, | 
|  | .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, | 
|  | .sys_reg = SYS_ID_AA64ISAR1_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64ISAR1_APA_SHIFT, | 
|  | .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED, | 
|  | .matches = has_address_auth_cpucap, | 
|  | }, | 
|  | { | 
|  | .desc = "Address authentication (IMP DEF algorithm)", | 
|  | .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF, | 
|  | .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, | 
|  | .sys_reg = SYS_ID_AA64ISAR1_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64ISAR1_API_SHIFT, | 
|  | .min_field_value = ID_AA64ISAR1_API_IMP_DEF, | 
|  | .matches = has_address_auth_cpucap, | 
|  | }, | 
|  | { | 
|  | .capability = ARM64_HAS_ADDRESS_AUTH, | 
|  | .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, | 
|  | .matches = has_address_auth_metacap, | 
|  | }, | 
|  | { | 
|  | .desc = "Generic authentication (architected algorithm)", | 
|  | .capability = ARM64_HAS_GENERIC_AUTH_ARCH, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .sys_reg = SYS_ID_AA64ISAR1_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64ISAR1_GPA_SHIFT, | 
|  | .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED, | 
|  | .matches = has_cpuid_feature, | 
|  | }, | 
|  | { | 
|  | .desc = "Generic authentication (IMP DEF algorithm)", | 
|  | .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .sys_reg = SYS_ID_AA64ISAR1_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64ISAR1_GPI_SHIFT, | 
|  | .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF, | 
|  | .matches = has_cpuid_feature, | 
|  | }, | 
|  | { | 
|  | .capability = ARM64_HAS_GENERIC_AUTH, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_generic_auth, | 
|  | }, | 
|  | #endif /* CONFIG_ARM64_PTR_AUTH */ | 
|  | #ifdef CONFIG_ARM64_PSEUDO_NMI | 
|  | { | 
|  | /* | 
|  | * Depends on having GICv3 | 
|  | */ | 
|  | .desc = "IRQ priority masking", | 
|  | .capability = ARM64_HAS_IRQ_PRIO_MASKING, | 
|  | .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, | 
|  | .matches = can_use_gic_priorities, | 
|  | .sys_reg = SYS_ID_AA64PFR0_EL1, | 
|  | .field_pos = ID_AA64PFR0_GIC_SHIFT, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .min_field_value = 1, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_ARM64_E0PD | 
|  | { | 
|  | .desc = "E0PD", | 
|  | .capability = ARM64_HAS_E0PD, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .sys_reg = SYS_ID_AA64MMFR2_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64MMFR2_E0PD_SHIFT, | 
|  | .matches = has_cpuid_feature, | 
|  | .min_field_value = 1, | 
|  | .cpu_enable = cpu_enable_e0pd, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_ARCH_RANDOM | 
|  | { | 
|  | .desc = "Random Number Generator", | 
|  | .capability = ARM64_HAS_RNG, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64ISAR0_EL1, | 
|  | .field_pos = ID_AA64ISAR0_RNDR_SHIFT, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .min_field_value = 1, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_ARM64_BTI | 
|  | { | 
|  | .desc = "Branch Target Identification", | 
|  | .capability = ARM64_BTI, | 
|  | #ifdef CONFIG_ARM64_BTI_KERNEL | 
|  | .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, | 
|  | #else | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | #endif | 
|  | .matches = has_cpuid_feature, | 
|  | .cpu_enable = bti_enable, | 
|  | .sys_reg = SYS_ID_AA64PFR1_EL1, | 
|  | .field_pos = ID_AA64PFR1_BT_SHIFT, | 
|  | .min_field_value = ID_AA64PFR1_BT_BTI, | 
|  | .sign = FTR_UNSIGNED, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_ARM64_MTE | 
|  | { | 
|  | .desc = "Memory Tagging Extension", | 
|  | .capability = ARM64_MTE, | 
|  | .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64PFR1_EL1, | 
|  | .field_pos = ID_AA64PFR1_MTE_SHIFT, | 
|  | .min_field_value = ID_AA64PFR1_MTE, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .cpu_enable = cpu_enable_mte, | 
|  | }, | 
|  | { | 
|  | .desc = "Asymmetric MTE Tag Check Fault", | 
|  | .capability = ARM64_MTE_ASYMM, | 
|  | .type = ARM64_CPUCAP_BOOT_CPU_FEATURE, | 
|  | .matches = has_cpuid_feature, | 
|  | .sys_reg = SYS_ID_AA64PFR1_EL1, | 
|  | .field_pos = ID_AA64PFR1_MTE_SHIFT, | 
|  | .min_field_value = ID_AA64PFR1_MTE_ASYMM, | 
|  | .sign = FTR_UNSIGNED, | 
|  | }, | 
|  | #endif /* CONFIG_ARM64_MTE */ | 
|  | { | 
|  | .desc = "RCpc load-acquire (LDAPR)", | 
|  | .capability = ARM64_HAS_LDAPR, | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE, | 
|  | .sys_reg = SYS_ID_AA64ISAR1_EL1, | 
|  | .sign = FTR_UNSIGNED, | 
|  | .field_pos = ID_AA64ISAR1_LRCPC_SHIFT, | 
|  | .matches = has_cpuid_feature, | 
|  | .min_field_value = 1, | 
|  | }, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | #define HWCAP_CPUID_MATCH(reg, field, s, min_value)				\ | 
|  | .matches = has_cpuid_feature,					\ | 
|  | .sys_reg = reg,							\ | 
|  | .field_pos = field,						\ | 
|  | .sign = s,							\ | 
|  | .min_field_value = min_value, | 
|  |  | 
|  | #define __HWCAP_CAP(name, cap_type, cap)					\ | 
|  | .desc = name,							\ | 
|  | .type = ARM64_CPUCAP_SYSTEM_FEATURE,				\ | 
|  | .hwcap_type = cap_type,						\ | 
|  | .hwcap = cap,							\ | 
|  |  | 
|  | #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)			\ | 
|  | {									\ | 
|  | __HWCAP_CAP(#cap, cap_type, cap)				\ | 
|  | HWCAP_CPUID_MATCH(reg, field, s, min_value)			\ | 
|  | } | 
|  |  | 
|  | #define HWCAP_MULTI_CAP(list, cap_type, cap)					\ | 
|  | {									\ | 
|  | __HWCAP_CAP(#cap, cap_type, cap)				\ | 
|  | .matches = cpucap_multi_entry_cap_matches,			\ | 
|  | .match_list = list,						\ | 
|  | } | 
|  |  | 
|  | #define HWCAP_CAP_MATCH(match, cap_type, cap)					\ | 
|  | {									\ | 
|  | __HWCAP_CAP(#cap, cap_type, cap)				\ | 
|  | .matches = match,						\ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM64_PTR_AUTH | 
|  | static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = { | 
|  | { | 
|  | HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT, | 
|  | FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED) | 
|  | }, | 
|  | { | 
|  | HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT, | 
|  | FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF) | 
|  | }, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = { | 
|  | { | 
|  | HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT, | 
|  | FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED) | 
|  | }, | 
|  | { | 
|  | HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT, | 
|  | FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF) | 
|  | }, | 
|  | {}, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = { | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG), | 
|  | HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP), | 
|  | HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP), | 
|  | HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD), | 
|  | HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP), | 
|  | HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM), | 
|  | HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT), | 
|  | #ifdef CONFIG_ARM64_SVE | 
|  | HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE), | 
|  | HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2), | 
|  | HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES), | 
|  | HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL), | 
|  | HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM), | 
|  | HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16), | 
|  | HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3), | 
|  | HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4), | 
|  | HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM), | 
|  | HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM), | 
|  | HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM), | 
|  | #endif | 
|  | HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS), | 
|  | #ifdef CONFIG_ARM64_BTI | 
|  | HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI), | 
|  | #endif | 
|  | #ifdef CONFIG_ARM64_PTR_AUTH | 
|  | HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA), | 
|  | HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG), | 
|  | #endif | 
|  | #ifdef CONFIG_ARM64_MTE | 
|  | HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE), | 
|  | #endif /* CONFIG_ARM64_MTE */ | 
|  | HWCAP_CAP(SYS_ID_AA64MMFR0_EL1, ID_AA64MMFR0_ECV_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ECV), | 
|  | HWCAP_CAP(SYS_ID_AA64MMFR1_EL1, ID_AA64MMFR1_AFP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AFP), | 
|  | HWCAP_CAP(SYS_ID_AA64ISAR2_EL1, ID_AA64ISAR2_RPRES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RPRES), | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope) | 
|  | { | 
|  | /* | 
|  | * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available, | 
|  | * in line with that of arm32 as in vfp_init(). We make sure that the | 
|  | * check is future proof, by making sure value is non-zero. | 
|  | */ | 
|  | u32 mvfr1; | 
|  |  | 
|  | WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible()); | 
|  | if (scope == SCOPE_SYSTEM) | 
|  | mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1); | 
|  | else | 
|  | mvfr1 = read_sysreg_s(SYS_MVFR1_EL1); | 
|  |  | 
|  | return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) && | 
|  | cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) && | 
|  | cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = { | 
|  | #ifdef CONFIG_COMPAT | 
|  | HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON), | 
|  | HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4), | 
|  | /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */ | 
|  | HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP), | 
|  | HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3), | 
|  | HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL), | 
|  | HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES), | 
|  | HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1), | 
|  | HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2), | 
|  | HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32), | 
|  | #endif | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap) | 
|  | { | 
|  | switch (cap->hwcap_type) { | 
|  | case CAP_HWCAP: | 
|  | cpu_set_feature(cap->hwcap); | 
|  | break; | 
|  | #ifdef CONFIG_COMPAT | 
|  | case CAP_COMPAT_HWCAP: | 
|  | compat_elf_hwcap |= (u32)cap->hwcap; | 
|  | break; | 
|  | case CAP_COMPAT_HWCAP2: | 
|  | compat_elf_hwcap2 |= (u32)cap->hwcap; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | WARN_ON(1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check if we have a particular HWCAP enabled */ | 
|  | static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap) | 
|  | { | 
|  | bool rc; | 
|  |  | 
|  | switch (cap->hwcap_type) { | 
|  | case CAP_HWCAP: | 
|  | rc = cpu_have_feature(cap->hwcap); | 
|  | break; | 
|  | #ifdef CONFIG_COMPAT | 
|  | case CAP_COMPAT_HWCAP: | 
|  | rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0; | 
|  | break; | 
|  | case CAP_COMPAT_HWCAP2: | 
|  | rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | WARN_ON(1); | 
|  | rc = false; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps) | 
|  | { | 
|  | /* We support emulation of accesses to CPU ID feature registers */ | 
|  | cpu_set_named_feature(CPUID); | 
|  | for (; hwcaps->matches; hwcaps++) | 
|  | if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps))) | 
|  | cap_set_elf_hwcap(hwcaps); | 
|  | } | 
|  |  | 
|  | static void update_cpu_capabilities(u16 scope_mask) | 
|  | { | 
|  | int i; | 
|  | const struct arm64_cpu_capabilities *caps; | 
|  |  | 
|  | scope_mask &= ARM64_CPUCAP_SCOPE_MASK; | 
|  | for (i = 0; i < ARM64_NCAPS; i++) { | 
|  | caps = cpu_hwcaps_ptrs[i]; | 
|  | if (!caps || !(caps->type & scope_mask) || | 
|  | cpus_have_cap(caps->capability) || | 
|  | !caps->matches(caps, cpucap_default_scope(caps))) | 
|  | continue; | 
|  |  | 
|  | if (caps->desc) | 
|  | pr_info("detected: %s\n", caps->desc); | 
|  | cpus_set_cap(caps->capability); | 
|  |  | 
|  | if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU)) | 
|  | set_bit(caps->capability, boot_capabilities); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable all the available capabilities on this CPU. The capabilities | 
|  | * with BOOT_CPU scope are handled separately and hence skipped here. | 
|  | */ | 
|  | static int cpu_enable_non_boot_scope_capabilities(void *__unused) | 
|  | { | 
|  | int i; | 
|  | u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU; | 
|  |  | 
|  | for_each_available_cap(i) { | 
|  | const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i]; | 
|  |  | 
|  | if (WARN_ON(!cap)) | 
|  | continue; | 
|  |  | 
|  | if (!(cap->type & non_boot_scope)) | 
|  | continue; | 
|  |  | 
|  | if (cap->cpu_enable) | 
|  | cap->cpu_enable(cap); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run through the enabled capabilities and enable() it on all active | 
|  | * CPUs | 
|  | */ | 
|  | static void __init enable_cpu_capabilities(u16 scope_mask) | 
|  | { | 
|  | int i; | 
|  | const struct arm64_cpu_capabilities *caps; | 
|  | bool boot_scope; | 
|  |  | 
|  | scope_mask &= ARM64_CPUCAP_SCOPE_MASK; | 
|  | boot_scope = !!(scope_mask & SCOPE_BOOT_CPU); | 
|  |  | 
|  | for (i = 0; i < ARM64_NCAPS; i++) { | 
|  | unsigned int num; | 
|  |  | 
|  | caps = cpu_hwcaps_ptrs[i]; | 
|  | if (!caps || !(caps->type & scope_mask)) | 
|  | continue; | 
|  | num = caps->capability; | 
|  | if (!cpus_have_cap(num)) | 
|  | continue; | 
|  |  | 
|  | /* Ensure cpus_have_const_cap(num) works */ | 
|  | static_branch_enable(&cpu_hwcap_keys[num]); | 
|  |  | 
|  | if (boot_scope && caps->cpu_enable) | 
|  | /* | 
|  | * Capabilities with SCOPE_BOOT_CPU scope are finalised | 
|  | * before any secondary CPU boots. Thus, each secondary | 
|  | * will enable the capability as appropriate via | 
|  | * check_local_cpu_capabilities(). The only exception is | 
|  | * the boot CPU, for which the capability must be | 
|  | * enabled here. This approach avoids costly | 
|  | * stop_machine() calls for this case. | 
|  | */ | 
|  | caps->cpu_enable(caps); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For all non-boot scope capabilities, use stop_machine() | 
|  | * as it schedules the work allowing us to modify PSTATE, | 
|  | * instead of on_each_cpu() which uses an IPI, giving us a | 
|  | * PSTATE that disappears when we return. | 
|  | */ | 
|  | if (!boot_scope) | 
|  | stop_machine(cpu_enable_non_boot_scope_capabilities, | 
|  | NULL, cpu_online_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run through the list of capabilities to check for conflicts. | 
|  | * If the system has already detected a capability, take necessary | 
|  | * action on this CPU. | 
|  | */ | 
|  | static void verify_local_cpu_caps(u16 scope_mask) | 
|  | { | 
|  | int i; | 
|  | bool cpu_has_cap, system_has_cap; | 
|  | const struct arm64_cpu_capabilities *caps; | 
|  |  | 
|  | scope_mask &= ARM64_CPUCAP_SCOPE_MASK; | 
|  |  | 
|  | for (i = 0; i < ARM64_NCAPS; i++) { | 
|  | caps = cpu_hwcaps_ptrs[i]; | 
|  | if (!caps || !(caps->type & scope_mask)) | 
|  | continue; | 
|  |  | 
|  | cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU); | 
|  | system_has_cap = cpus_have_cap(caps->capability); | 
|  |  | 
|  | if (system_has_cap) { | 
|  | /* | 
|  | * Check if the new CPU misses an advertised feature, | 
|  | * which is not safe to miss. | 
|  | */ | 
|  | if (!cpu_has_cap && !cpucap_late_cpu_optional(caps)) | 
|  | break; | 
|  | /* | 
|  | * We have to issue cpu_enable() irrespective of | 
|  | * whether the CPU has it or not, as it is enabeld | 
|  | * system wide. It is upto the call back to take | 
|  | * appropriate action on this CPU. | 
|  | */ | 
|  | if (caps->cpu_enable) | 
|  | caps->cpu_enable(caps); | 
|  | } else { | 
|  | /* | 
|  | * Check if the CPU has this capability if it isn't | 
|  | * safe to have when the system doesn't. | 
|  | */ | 
|  | if (cpu_has_cap && !cpucap_late_cpu_permitted(caps)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i < ARM64_NCAPS) { | 
|  | pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n", | 
|  | smp_processor_id(), caps->capability, | 
|  | caps->desc, system_has_cap, cpu_has_cap); | 
|  |  | 
|  | if (cpucap_panic_on_conflict(caps)) | 
|  | cpu_panic_kernel(); | 
|  | else | 
|  | cpu_die_early(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for CPU features that are used in early boot | 
|  | * based on the Boot CPU value. | 
|  | */ | 
|  | static void check_early_cpu_features(void) | 
|  | { | 
|  | verify_cpu_asid_bits(); | 
|  |  | 
|  | verify_local_cpu_caps(SCOPE_BOOT_CPU); | 
|  | } | 
|  |  | 
|  | static void | 
|  | __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps) | 
|  | { | 
|  |  | 
|  | for (; caps->matches; caps++) | 
|  | if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) { | 
|  | pr_crit("CPU%d: missing HWCAP: %s\n", | 
|  | smp_processor_id(), caps->desc); | 
|  | cpu_die_early(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void verify_local_elf_hwcaps(void) | 
|  | { | 
|  | __verify_local_elf_hwcaps(arm64_elf_hwcaps); | 
|  |  | 
|  | if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1))) | 
|  | __verify_local_elf_hwcaps(compat_elf_hwcaps); | 
|  | } | 
|  |  | 
|  | static void verify_sve_features(void) | 
|  | { | 
|  | u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1); | 
|  | u64 zcr = read_zcr_features(); | 
|  |  | 
|  | unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK; | 
|  | unsigned int len = zcr & ZCR_ELx_LEN_MASK; | 
|  |  | 
|  | if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) { | 
|  | pr_crit("CPU%d: SVE: vector length support mismatch\n", | 
|  | smp_processor_id()); | 
|  | cpu_die_early(); | 
|  | } | 
|  |  | 
|  | /* Add checks on other ZCR bits here if necessary */ | 
|  | } | 
|  |  | 
|  | static void verify_hyp_capabilities(void) | 
|  | { | 
|  | u64 safe_mmfr1, mmfr0, mmfr1; | 
|  | int parange, ipa_max; | 
|  | unsigned int safe_vmid_bits, vmid_bits; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_KVM)) | 
|  | return; | 
|  |  | 
|  | safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); | 
|  | mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); | 
|  | mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); | 
|  |  | 
|  | /* Verify VMID bits */ | 
|  | safe_vmid_bits = get_vmid_bits(safe_mmfr1); | 
|  | vmid_bits = get_vmid_bits(mmfr1); | 
|  | if (vmid_bits < safe_vmid_bits) { | 
|  | pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id()); | 
|  | cpu_die_early(); | 
|  | } | 
|  |  | 
|  | /* Verify IPA range */ | 
|  | parange = cpuid_feature_extract_unsigned_field(mmfr0, | 
|  | ID_AA64MMFR0_PARANGE_SHIFT); | 
|  | ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange); | 
|  | if (ipa_max < get_kvm_ipa_limit()) { | 
|  | pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id()); | 
|  | cpu_die_early(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run through the enabled system capabilities and enable() it on this CPU. | 
|  | * The capabilities were decided based on the available CPUs at the boot time. | 
|  | * Any new CPU should match the system wide status of the capability. If the | 
|  | * new CPU doesn't have a capability which the system now has enabled, we | 
|  | * cannot do anything to fix it up and could cause unexpected failures. So | 
|  | * we park the CPU. | 
|  | */ | 
|  | static void verify_local_cpu_capabilities(void) | 
|  | { | 
|  | /* | 
|  | * The capabilities with SCOPE_BOOT_CPU are checked from | 
|  | * check_early_cpu_features(), as they need to be verified | 
|  | * on all secondary CPUs. | 
|  | */ | 
|  | verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU); | 
|  | verify_local_elf_hwcaps(); | 
|  |  | 
|  | if (system_supports_sve()) | 
|  | verify_sve_features(); | 
|  |  | 
|  | if (is_hyp_mode_available()) | 
|  | verify_hyp_capabilities(); | 
|  | } | 
|  |  | 
|  | void check_local_cpu_capabilities(void) | 
|  | { | 
|  | /* | 
|  | * All secondary CPUs should conform to the early CPU features | 
|  | * in use by the kernel based on boot CPU. | 
|  | */ | 
|  | check_early_cpu_features(); | 
|  |  | 
|  | /* | 
|  | * If we haven't finalised the system capabilities, this CPU gets | 
|  | * a chance to update the errata work arounds and local features. | 
|  | * Otherwise, this CPU should verify that it has all the system | 
|  | * advertised capabilities. | 
|  | */ | 
|  | if (!system_capabilities_finalized()) | 
|  | update_cpu_capabilities(SCOPE_LOCAL_CPU); | 
|  | else | 
|  | verify_local_cpu_capabilities(); | 
|  | } | 
|  |  | 
|  | static void __init setup_boot_cpu_capabilities(void) | 
|  | { | 
|  | /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */ | 
|  | update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU); | 
|  | /* Enable the SCOPE_BOOT_CPU capabilities alone right away */ | 
|  | enable_cpu_capabilities(SCOPE_BOOT_CPU); | 
|  | } | 
|  |  | 
|  | bool this_cpu_has_cap(unsigned int n) | 
|  | { | 
|  | if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) { | 
|  | const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; | 
|  |  | 
|  | if (cap) | 
|  | return cap->matches(cap, SCOPE_LOCAL_CPU); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(this_cpu_has_cap); | 
|  |  | 
|  | /* | 
|  | * This helper function is used in a narrow window when, | 
|  | * - The system wide safe registers are set with all the SMP CPUs and, | 
|  | * - The SYSTEM_FEATURE cpu_hwcaps may not have been set. | 
|  | * In all other cases cpus_have_{const_}cap() should be used. | 
|  | */ | 
|  | static bool __maybe_unused __system_matches_cap(unsigned int n) | 
|  | { | 
|  | if (n < ARM64_NCAPS) { | 
|  | const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n]; | 
|  |  | 
|  | if (cap) | 
|  | return cap->matches(cap, SCOPE_SYSTEM); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void cpu_set_feature(unsigned int num) | 
|  | { | 
|  | WARN_ON(num >= MAX_CPU_FEATURES); | 
|  | elf_hwcap |= BIT(num); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cpu_set_feature); | 
|  |  | 
|  | bool cpu_have_feature(unsigned int num) | 
|  | { | 
|  | WARN_ON(num >= MAX_CPU_FEATURES); | 
|  | return elf_hwcap & BIT(num); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cpu_have_feature); | 
|  |  | 
|  | unsigned long cpu_get_elf_hwcap(void) | 
|  | { | 
|  | /* | 
|  | * We currently only populate the first 32 bits of AT_HWCAP. Please | 
|  | * note that for userspace compatibility we guarantee that bits 62 | 
|  | * and 63 will always be returned as 0. | 
|  | */ | 
|  | return lower_32_bits(elf_hwcap); | 
|  | } | 
|  |  | 
|  | unsigned long cpu_get_elf_hwcap2(void) | 
|  | { | 
|  | return upper_32_bits(elf_hwcap); | 
|  | } | 
|  |  | 
|  | static void __init setup_system_capabilities(void) | 
|  | { | 
|  | /* | 
|  | * We have finalised the system-wide safe feature | 
|  | * registers, finalise the capabilities that depend | 
|  | * on it. Also enable all the available capabilities, | 
|  | * that are not enabled already. | 
|  | */ | 
|  | update_cpu_capabilities(SCOPE_SYSTEM); | 
|  | enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU); | 
|  | } | 
|  |  | 
|  | void __init setup_cpu_features(void) | 
|  | { | 
|  | u32 cwg; | 
|  |  | 
|  | setup_system_capabilities(); | 
|  | setup_elf_hwcaps(arm64_elf_hwcaps); | 
|  |  | 
|  | if (system_supports_32bit_el0()) | 
|  | setup_elf_hwcaps(compat_elf_hwcaps); | 
|  |  | 
|  | if (system_uses_ttbr0_pan()) | 
|  | pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n"); | 
|  |  | 
|  | sve_setup(); | 
|  | minsigstksz_setup(); | 
|  |  | 
|  | /* Advertise that we have computed the system capabilities */ | 
|  | finalize_system_capabilities(); | 
|  |  | 
|  | /* | 
|  | * Check for sane CTR_EL0.CWG value. | 
|  | */ | 
|  | cwg = cache_type_cwg(); | 
|  | if (!cwg) | 
|  | pr_warn("No Cache Writeback Granule information, assuming %d\n", | 
|  | ARCH_DMA_MINALIGN); | 
|  | } | 
|  |  | 
|  | static int enable_mismatched_32bit_el0(unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * The first 32-bit-capable CPU we detected and so can no longer | 
|  | * be offlined by userspace. -1 indicates we haven't yet onlined | 
|  | * a 32-bit-capable CPU. | 
|  | */ | 
|  | static int lucky_winner = -1; | 
|  |  | 
|  | struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu); | 
|  | bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0); | 
|  |  | 
|  | if (cpu_32bit) { | 
|  | cpumask_set_cpu(cpu, cpu_32bit_el0_mask); | 
|  | static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0); | 
|  | } | 
|  |  | 
|  | if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit) | 
|  | return 0; | 
|  |  | 
|  | if (lucky_winner >= 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We've detected a mismatch. We need to keep one of our CPUs with | 
|  | * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting | 
|  | * every CPU in the system for a 32-bit task. | 
|  | */ | 
|  | lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask, | 
|  | cpu_active_mask); | 
|  | get_cpu_device(lucky_winner)->offline_disabled = true; | 
|  | setup_elf_hwcaps(compat_elf_hwcaps); | 
|  | pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n", | 
|  | cpu, lucky_winner); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init init_32bit_el0_mask(void) | 
|  | { | 
|  | if (!allow_mismatched_32bit_el0) | 
|  | return 0; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, | 
|  | "arm64/mismatched_32bit_el0:online", | 
|  | enable_mismatched_32bit_el0, NULL); | 
|  | } | 
|  | subsys_initcall_sync(init_32bit_el0_mask); | 
|  |  | 
|  | static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap) | 
|  | { | 
|  | cpu_replace_ttbr1(lm_alias(swapper_pg_dir)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We emulate only the following system register space. | 
|  | * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7] | 
|  | * See Table C5-6 System instruction encodings for System register accesses, | 
|  | * ARMv8 ARM(ARM DDI 0487A.f) for more details. | 
|  | */ | 
|  | static inline bool __attribute_const__ is_emulated(u32 id) | 
|  | { | 
|  | return (sys_reg_Op0(id) == 0x3 && | 
|  | sys_reg_CRn(id) == 0x0 && | 
|  | sys_reg_Op1(id) == 0x0 && | 
|  | (sys_reg_CRm(id) == 0 || | 
|  | ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With CRm == 0, reg should be one of : | 
|  | * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1. | 
|  | */ | 
|  | static inline int emulate_id_reg(u32 id, u64 *valp) | 
|  | { | 
|  | switch (id) { | 
|  | case SYS_MIDR_EL1: | 
|  | *valp = read_cpuid_id(); | 
|  | break; | 
|  | case SYS_MPIDR_EL1: | 
|  | *valp = SYS_MPIDR_SAFE_VAL; | 
|  | break; | 
|  | case SYS_REVIDR_EL1: | 
|  | /* IMPLEMENTATION DEFINED values are emulated with 0 */ | 
|  | *valp = 0; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int emulate_sys_reg(u32 id, u64 *valp) | 
|  | { | 
|  | struct arm64_ftr_reg *regp; | 
|  |  | 
|  | if (!is_emulated(id)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (sys_reg_CRm(id) == 0) | 
|  | return emulate_id_reg(id, valp); | 
|  |  | 
|  | regp = get_arm64_ftr_reg_nowarn(id); | 
|  | if (regp) | 
|  | *valp = arm64_ftr_reg_user_value(regp); | 
|  | else | 
|  | /* | 
|  | * The untracked registers are either IMPLEMENTATION DEFINED | 
|  | * (e.g, ID_AFR0_EL1) or reserved RAZ. | 
|  | */ | 
|  | *valp = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt) | 
|  | { | 
|  | int rc; | 
|  | u64 val; | 
|  |  | 
|  | rc = emulate_sys_reg(sys_reg, &val); | 
|  | if (!rc) { | 
|  | pt_regs_write_reg(regs, rt, val); | 
|  | arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int emulate_mrs(struct pt_regs *regs, u32 insn) | 
|  | { | 
|  | u32 sys_reg, rt; | 
|  |  | 
|  | /* | 
|  | * sys_reg values are defined as used in mrs/msr instruction. | 
|  | * shift the imm value to get the encoding. | 
|  | */ | 
|  | sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5; | 
|  | rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn); | 
|  | return do_emulate_mrs(regs, sys_reg, rt); | 
|  | } | 
|  |  | 
|  | static struct undef_hook mrs_hook = { | 
|  | .instr_mask = 0xffff0000, | 
|  | .instr_val  = 0xd5380000, | 
|  | .pstate_mask = PSR_AA32_MODE_MASK, | 
|  | .pstate_val = PSR_MODE_EL0t, | 
|  | .fn = emulate_mrs, | 
|  | }; | 
|  |  | 
|  | static int __init enable_mrs_emulation(void) | 
|  | { | 
|  | register_undef_hook(&mrs_hook); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | core_initcall(enable_mrs_emulation); | 
|  |  | 
|  | enum mitigation_state arm64_get_meltdown_state(void) | 
|  | { | 
|  | if (__meltdown_safe) | 
|  | return SPECTRE_UNAFFECTED; | 
|  |  | 
|  | if (arm64_kernel_unmapped_at_el0()) | 
|  | return SPECTRE_MITIGATED; | 
|  |  | 
|  | return SPECTRE_VULNERABLE; | 
|  | } | 
|  |  | 
|  | ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | switch (arm64_get_meltdown_state()) { | 
|  | case SPECTRE_UNAFFECTED: | 
|  | return sprintf(buf, "Not affected\n"); | 
|  |  | 
|  | case SPECTRE_MITIGATED: | 
|  | return sprintf(buf, "Mitigation: PTI\n"); | 
|  |  | 
|  | default: | 
|  | return sprintf(buf, "Vulnerable\n"); | 
|  | } | 
|  | } |