| // SPDX-License-Identifier: GPL-2.0+ | 
 |  | 
 | /* | 
 |  * Multifunction core driver for Zodiac Inflight Innovations RAVE | 
 |  * Supervisory Processor(SP) MCU that is connected via dedicated UART | 
 |  * port | 
 |  * | 
 |  * Copyright (C) 2017 Zodiac Inflight Innovations | 
 |  */ | 
 |  | 
 | #include <linux/atomic.h> | 
 | #include <linux/crc-ccitt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/export.h> | 
 | #include <linux/init.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mfd/rave-sp.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/serdev.h> | 
 | #include <asm/unaligned.h> | 
 |  | 
 | /* | 
 |  * UART protocol using following entities: | 
 |  *  - message to MCU => ACK response | 
 |  *  - event from MCU => event ACK | 
 |  * | 
 |  * Frame structure: | 
 |  * <STX> <DATA> <CHECKSUM> <ETX> | 
 |  * Where: | 
 |  * - STX - is start of transmission character | 
 |  * - ETX - end of transmission | 
 |  * - DATA - payload | 
 |  * - CHECKSUM - checksum calculated on <DATA> | 
 |  * | 
 |  * If <DATA> or <CHECKSUM> contain one of control characters, then it is | 
 |  * escaped using <DLE> control code. Added <DLE> does not participate in | 
 |  * checksum calculation. | 
 |  */ | 
 | #define RAVE_SP_STX			0x02 | 
 | #define RAVE_SP_ETX			0x03 | 
 | #define RAVE_SP_DLE			0x10 | 
 |  | 
 | #define RAVE_SP_MAX_DATA_SIZE		64 | 
 | #define RAVE_SP_CHECKSUM_8B2C		1 | 
 | #define RAVE_SP_CHECKSUM_CCITT		2 | 
 | #define RAVE_SP_CHECKSUM_SIZE		RAVE_SP_CHECKSUM_CCITT | 
 | /* | 
 |  * We don't store STX, ETX and unescaped bytes, so Rx is only | 
 |  * DATA + CSUM | 
 |  */ | 
 | #define RAVE_SP_RX_BUFFER_SIZE				\ | 
 | 	(RAVE_SP_MAX_DATA_SIZE + RAVE_SP_CHECKSUM_SIZE) | 
 |  | 
 | #define RAVE_SP_STX_ETX_SIZE		2 | 
 | /* | 
 |  * For Tx we have to have space for everything, STX, EXT and | 
 |  * potentially stuffed DATA + CSUM data + csum | 
 |  */ | 
 | #define RAVE_SP_TX_BUFFER_SIZE				\ | 
 | 	(RAVE_SP_STX_ETX_SIZE + 2 * RAVE_SP_RX_BUFFER_SIZE) | 
 |  | 
 | /** | 
 |  * enum rave_sp_deframer_state - Possible state for de-framer | 
 |  * | 
 |  * @RAVE_SP_EXPECT_SOF:		 Scanning input for start-of-frame marker | 
 |  * @RAVE_SP_EXPECT_DATA:	 Got start of frame marker, collecting frame | 
 |  * @RAVE_SP_EXPECT_ESCAPED_DATA: Got escape character, collecting escaped byte | 
 |  */ | 
 | enum rave_sp_deframer_state { | 
 | 	RAVE_SP_EXPECT_SOF, | 
 | 	RAVE_SP_EXPECT_DATA, | 
 | 	RAVE_SP_EXPECT_ESCAPED_DATA, | 
 | }; | 
 |  | 
 | /** | 
 |  * struct rave_sp_deframer - Device protocol deframer | 
 |  * | 
 |  * @state:  Current state of the deframer | 
 |  * @data:   Buffer used to collect deframed data | 
 |  * @length: Number of bytes de-framed so far | 
 |  */ | 
 | struct rave_sp_deframer { | 
 | 	enum rave_sp_deframer_state state; | 
 | 	unsigned char data[RAVE_SP_RX_BUFFER_SIZE]; | 
 | 	size_t length; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct rave_sp_reply - Reply as per RAVE device protocol | 
 |  * | 
 |  * @length:	Expected reply length | 
 |  * @data:	Buffer to store reply payload in | 
 |  * @code:	Expected reply code | 
 |  * @ackid:	Expected reply ACK ID | 
 |  * @completion: Successful reply reception completion | 
 |  */ | 
 | struct rave_sp_reply { | 
 | 	size_t length; | 
 | 	void  *data; | 
 | 	u8     code; | 
 | 	u8     ackid; | 
 | 	struct completion received; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct rave_sp_checksum - Variant specific checksum implementation details | 
 |  * | 
 |  * @length:	Calculated checksum length | 
 |  * @subroutine:	Utilized checksum algorithm implementation | 
 |  */ | 
 | struct rave_sp_checksum { | 
 | 	size_t length; | 
 | 	void (*subroutine)(const u8 *, size_t, u8 *); | 
 | }; | 
 |  | 
 | struct rave_sp_version { | 
 | 	u8     hardware; | 
 | 	__le16 major; | 
 | 	u8     minor; | 
 | 	u8     letter[2]; | 
 | } __packed; | 
 |  | 
 | struct rave_sp_status { | 
 | 	struct rave_sp_version bootloader_version; | 
 | 	struct rave_sp_version firmware_version; | 
 | 	u16 rdu_eeprom_flag; | 
 | 	u16 dds_eeprom_flag; | 
 | 	u8  pic_flag; | 
 | 	u8  orientation; | 
 | 	u32 etc; | 
 | 	s16 temp[2]; | 
 | 	u8  backlight_current[3]; | 
 | 	u8  dip_switch; | 
 | 	u8  host_interrupt; | 
 | 	u16 voltage_28; | 
 | 	u8  i2c_device_status; | 
 | 	u8  power_status; | 
 | 	u8  general_status; | 
 | 	u8  deprecated1; | 
 | 	u8  power_led_status; | 
 | 	u8  deprecated2; | 
 | 	u8  periph_power_shutoff; | 
 | } __packed; | 
 |  | 
 | /** | 
 |  * struct rave_sp_variant_cmds - Variant specific command routines | 
 |  * | 
 |  * @translate:	Generic to variant specific command mapping routine | 
 |  * @get_status: Variant specific implementation of CMD_GET_STATUS | 
 |  */ | 
 | struct rave_sp_variant_cmds { | 
 | 	int (*translate)(enum rave_sp_command); | 
 | 	int (*get_status)(struct rave_sp *sp, struct rave_sp_status *); | 
 | }; | 
 |  | 
 | /** | 
 |  * struct rave_sp_variant - RAVE supervisory processor core variant | 
 |  * | 
 |  * @checksum:	Variant specific checksum implementation | 
 |  * @cmd:	Variant specific command pointer table | 
 |  * | 
 |  */ | 
 | struct rave_sp_variant { | 
 | 	const struct rave_sp_checksum *checksum; | 
 | 	struct rave_sp_variant_cmds cmd; | 
 | }; | 
 |  | 
 | /** | 
 |  * struct rave_sp - RAVE supervisory processor core | 
 |  * | 
 |  * @serdev:			Pointer to underlying serdev | 
 |  * @deframer:			Stored state of the protocol deframer | 
 |  * @ackid:			ACK ID used in last reply sent to the device | 
 |  * @bus_lock:			Lock to serialize access to the device | 
 |  * @reply_lock:			Lock protecting @reply | 
 |  * @reply:			Pointer to memory to store reply payload | 
 |  * | 
 |  * @variant:			Device variant specific information | 
 |  * @event_notifier_list:	Input event notification chain | 
 |  * | 
 |  * @part_number_firmware:	Firmware version | 
 |  * @part_number_bootloader:	Bootloader version | 
 |  */ | 
 | struct rave_sp { | 
 | 	struct serdev_device *serdev; | 
 | 	struct rave_sp_deframer deframer; | 
 | 	atomic_t ackid; | 
 | 	struct mutex bus_lock; | 
 | 	struct mutex reply_lock; | 
 | 	struct rave_sp_reply *reply; | 
 |  | 
 | 	const struct rave_sp_variant *variant; | 
 | 	struct blocking_notifier_head event_notifier_list; | 
 |  | 
 | 	const char *part_number_firmware; | 
 | 	const char *part_number_bootloader; | 
 | }; | 
 |  | 
 | static bool rave_sp_id_is_event(u8 code) | 
 | { | 
 | 	return (code & 0xF0) == RAVE_SP_EVNT_BASE; | 
 | } | 
 |  | 
 | static void rave_sp_unregister_event_notifier(struct device *dev, void *res) | 
 | { | 
 | 	struct rave_sp *sp = dev_get_drvdata(dev->parent); | 
 | 	struct notifier_block *nb = *(struct notifier_block **)res; | 
 | 	struct blocking_notifier_head *bnh = &sp->event_notifier_list; | 
 |  | 
 | 	WARN_ON(blocking_notifier_chain_unregister(bnh, nb)); | 
 | } | 
 |  | 
 | int devm_rave_sp_register_event_notifier(struct device *dev, | 
 | 					 struct notifier_block *nb) | 
 | { | 
 | 	struct rave_sp *sp = dev_get_drvdata(dev->parent); | 
 | 	struct notifier_block **rcnb; | 
 | 	int ret; | 
 |  | 
 | 	rcnb = devres_alloc(rave_sp_unregister_event_notifier, | 
 | 			    sizeof(*rcnb), GFP_KERNEL); | 
 | 	if (!rcnb) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = blocking_notifier_chain_register(&sp->event_notifier_list, nb); | 
 | 	if (!ret) { | 
 | 		*rcnb = nb; | 
 | 		devres_add(dev, rcnb); | 
 | 	} else { | 
 | 		devres_free(rcnb); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(devm_rave_sp_register_event_notifier); | 
 |  | 
 | static void csum_8b2c(const u8 *buf, size_t size, u8 *crc) | 
 | { | 
 | 	*crc = *buf++; | 
 | 	size--; | 
 |  | 
 | 	while (size--) | 
 | 		*crc += *buf++; | 
 |  | 
 | 	*crc = 1 + ~(*crc); | 
 | } | 
 |  | 
 | static void csum_ccitt(const u8 *buf, size_t size, u8 *crc) | 
 | { | 
 | 	const u16 calculated = crc_ccitt_false(0xffff, buf, size); | 
 |  | 
 | 	/* | 
 | 	 * While the rest of the wire protocol is little-endian, | 
 | 	 * CCITT-16 CRC in RDU2 device is sent out in big-endian order. | 
 | 	 */ | 
 | 	put_unaligned_be16(calculated, crc); | 
 | } | 
 |  | 
 | static void *stuff(unsigned char *dest, const unsigned char *src, size_t n) | 
 | { | 
 | 	while (n--) { | 
 | 		const unsigned char byte = *src++; | 
 |  | 
 | 		switch (byte) { | 
 | 		case RAVE_SP_STX: | 
 | 		case RAVE_SP_ETX: | 
 | 		case RAVE_SP_DLE: | 
 | 			*dest++ = RAVE_SP_DLE; | 
 | 			/* FALLTHROUGH */ | 
 | 		default: | 
 | 			*dest++ = byte; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return dest; | 
 | } | 
 |  | 
 | static int rave_sp_write(struct rave_sp *sp, const u8 *data, u8 data_size) | 
 | { | 
 | 	const size_t checksum_length = sp->variant->checksum->length; | 
 | 	unsigned char frame[RAVE_SP_TX_BUFFER_SIZE]; | 
 | 	unsigned char crc[RAVE_SP_CHECKSUM_SIZE]; | 
 | 	unsigned char *dest = frame; | 
 | 	size_t length; | 
 |  | 
 | 	if (WARN_ON(checksum_length > sizeof(crc))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (WARN_ON(data_size > sizeof(frame))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sp->variant->checksum->subroutine(data, data_size, crc); | 
 |  | 
 | 	*dest++ = RAVE_SP_STX; | 
 | 	dest = stuff(dest, data, data_size); | 
 | 	dest = stuff(dest, crc, checksum_length); | 
 | 	*dest++ = RAVE_SP_ETX; | 
 |  | 
 | 	length = dest - frame; | 
 |  | 
 | 	print_hex_dump_debug("rave-sp tx: ", DUMP_PREFIX_NONE, | 
 | 			     16, 1, frame, length, false); | 
 |  | 
 | 	return serdev_device_write(sp->serdev, frame, length, HZ); | 
 | } | 
 |  | 
 | static u8 rave_sp_reply_code(u8 command) | 
 | { | 
 | 	/* | 
 | 	 * There isn't a single rule that describes command code -> | 
 | 	 * ACK code transformation, but, going through various | 
 | 	 * versions of ICDs, there appear to be three distinct groups | 
 | 	 * that can be described by simple transformation. | 
 | 	 */ | 
 | 	switch (command) { | 
 | 	case 0xA0 ... 0xBE: | 
 | 		/* | 
 | 		 * Commands implemented by firmware found in RDU1 and | 
 | 		 * older devices all seem to obey the following rule | 
 | 		 */ | 
 | 		return command + 0x20; | 
 | 	case 0xE0 ... 0xEF: | 
 | 		/* | 
 | 		 * Events emitted by all versions of the firmare use | 
 | 		 * least significant bit to get an ACK code | 
 | 		 */ | 
 | 		return command | 0x01; | 
 | 	default: | 
 | 		/* | 
 | 		 * Commands implemented by firmware found in RDU2 are | 
 | 		 * similar to "old" commands, but they use slightly | 
 | 		 * different offset | 
 | 		 */ | 
 | 		return command + 0x40; | 
 | 	} | 
 | } | 
 |  | 
 | int rave_sp_exec(struct rave_sp *sp, | 
 | 		 void *__data,  size_t data_size, | 
 | 		 void *reply_data, size_t reply_data_size) | 
 | { | 
 | 	struct rave_sp_reply reply = { | 
 | 		.data     = reply_data, | 
 | 		.length   = reply_data_size, | 
 | 		.received = COMPLETION_INITIALIZER_ONSTACK(reply.received), | 
 | 	}; | 
 | 	unsigned char *data = __data; | 
 | 	int command, ret = 0; | 
 | 	u8 ackid; | 
 |  | 
 | 	command = sp->variant->cmd.translate(data[0]); | 
 | 	if (command < 0) | 
 | 		return command; | 
 |  | 
 | 	ackid       = atomic_inc_return(&sp->ackid); | 
 | 	reply.ackid = ackid; | 
 | 	reply.code  = rave_sp_reply_code((u8)command), | 
 |  | 
 | 	mutex_lock(&sp->bus_lock); | 
 |  | 
 | 	mutex_lock(&sp->reply_lock); | 
 | 	sp->reply = &reply; | 
 | 	mutex_unlock(&sp->reply_lock); | 
 |  | 
 | 	data[0] = command; | 
 | 	data[1] = ackid; | 
 |  | 
 | 	rave_sp_write(sp, data, data_size); | 
 |  | 
 | 	if (!wait_for_completion_timeout(&reply.received, HZ)) { | 
 | 		dev_err(&sp->serdev->dev, "Command timeout\n"); | 
 | 		ret = -ETIMEDOUT; | 
 |  | 
 | 		mutex_lock(&sp->reply_lock); | 
 | 		sp->reply = NULL; | 
 | 		mutex_unlock(&sp->reply_lock); | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&sp->bus_lock); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(rave_sp_exec); | 
 |  | 
 | static void rave_sp_receive_event(struct rave_sp *sp, | 
 | 				  const unsigned char *data, size_t length) | 
 | { | 
 | 	u8 cmd[] = { | 
 | 		[0] = rave_sp_reply_code(data[0]), | 
 | 		[1] = data[1], | 
 | 	}; | 
 |  | 
 | 	rave_sp_write(sp, cmd, sizeof(cmd)); | 
 |  | 
 | 	blocking_notifier_call_chain(&sp->event_notifier_list, | 
 | 				     rave_sp_action_pack(data[0], data[2]), | 
 | 				     NULL); | 
 | } | 
 |  | 
 | static void rave_sp_receive_reply(struct rave_sp *sp, | 
 | 				  const unsigned char *data, size_t length) | 
 | { | 
 | 	struct device *dev = &sp->serdev->dev; | 
 | 	struct rave_sp_reply *reply; | 
 | 	const  size_t payload_length = length - 2; | 
 |  | 
 | 	mutex_lock(&sp->reply_lock); | 
 | 	reply = sp->reply; | 
 |  | 
 | 	if (reply) { | 
 | 		if (reply->code == data[0] && reply->ackid == data[1] && | 
 | 		    payload_length >= reply->length) { | 
 | 			/* | 
 | 			 * We are relying on memcpy(dst, src, 0) to be a no-op | 
 | 			 * when handling commands that have a no-payload reply | 
 | 			 */ | 
 | 			memcpy(reply->data, &data[2], reply->length); | 
 | 			complete(&reply->received); | 
 | 			sp->reply = NULL; | 
 | 		} else { | 
 | 			dev_err(dev, "Ignoring incorrect reply\n"); | 
 | 			dev_dbg(dev, "Code:   expected = 0x%08x received = 0x%08x\n", | 
 | 				reply->code, data[0]); | 
 | 			dev_dbg(dev, "ACK ID: expected = 0x%08x received = 0x%08x\n", | 
 | 				reply->ackid, data[1]); | 
 | 			dev_dbg(dev, "Length: expected = %zu received = %zu\n", | 
 | 				reply->length, payload_length); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&sp->reply_lock); | 
 | } | 
 |  | 
 | static void rave_sp_receive_frame(struct rave_sp *sp, | 
 | 				  const unsigned char *data, | 
 | 				  size_t length) | 
 | { | 
 | 	const size_t checksum_length = sp->variant->checksum->length; | 
 | 	const size_t payload_length  = length - checksum_length; | 
 | 	const u8 *crc_reported       = &data[payload_length]; | 
 | 	struct device *dev           = &sp->serdev->dev; | 
 | 	u8 crc_calculated[RAVE_SP_CHECKSUM_SIZE]; | 
 |  | 
 | 	if (unlikely(checksum_length > sizeof(crc_calculated))) { | 
 | 		dev_warn(dev, "Checksum too long, dropping\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	print_hex_dump_debug("rave-sp rx: ", DUMP_PREFIX_NONE, | 
 | 			     16, 1, data, length, false); | 
 |  | 
 | 	if (unlikely(length <= checksum_length)) { | 
 | 		dev_warn(dev, "Dropping short frame\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	sp->variant->checksum->subroutine(data, payload_length, | 
 | 					  crc_calculated); | 
 |  | 
 | 	if (memcmp(crc_calculated, crc_reported, checksum_length)) { | 
 | 		dev_warn(dev, "Dropping bad frame\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (rave_sp_id_is_event(data[0])) | 
 | 		rave_sp_receive_event(sp, data, length); | 
 | 	else | 
 | 		rave_sp_receive_reply(sp, data, length); | 
 | } | 
 |  | 
 | static int rave_sp_receive_buf(struct serdev_device *serdev, | 
 | 			       const unsigned char *buf, size_t size) | 
 | { | 
 | 	struct device *dev = &serdev->dev; | 
 | 	struct rave_sp *sp = dev_get_drvdata(dev); | 
 | 	struct rave_sp_deframer *deframer = &sp->deframer; | 
 | 	const unsigned char *src = buf; | 
 | 	const unsigned char *end = buf + size; | 
 |  | 
 | 	while (src < end) { | 
 | 		const unsigned char byte = *src++; | 
 |  | 
 | 		switch (deframer->state) { | 
 | 		case RAVE_SP_EXPECT_SOF: | 
 | 			if (byte == RAVE_SP_STX) | 
 | 				deframer->state = RAVE_SP_EXPECT_DATA; | 
 | 			break; | 
 |  | 
 | 		case RAVE_SP_EXPECT_DATA: | 
 | 			/* | 
 | 			 * Treat special byte values first | 
 | 			 */ | 
 | 			switch (byte) { | 
 | 			case RAVE_SP_ETX: | 
 | 				rave_sp_receive_frame(sp, | 
 | 						      deframer->data, | 
 | 						      deframer->length); | 
 | 				/* | 
 | 				 * Once we extracted a complete frame | 
 | 				 * out of a stream, we call it done | 
 | 				 * and proceed to bailing out while | 
 | 				 * resetting the framer to initial | 
 | 				 * state, regardless if we've consumed | 
 | 				 * all of the stream or not. | 
 | 				 */ | 
 | 				goto reset_framer; | 
 | 			case RAVE_SP_STX: | 
 | 				dev_warn(dev, "Bad frame: STX before ETX\n"); | 
 | 				/* | 
 | 				 * If we encounter second "start of | 
 | 				 * the frame" marker before seeing | 
 | 				 * corresponding "end of frame", we | 
 | 				 * reset the framer and ignore both: | 
 | 				 * frame started by first SOF and | 
 | 				 * frame started by current SOF. | 
 | 				 * | 
 | 				 * NOTE: The above means that only the | 
 | 				 * frame started by third SOF, sent | 
 | 				 * after this one will have a chance | 
 | 				 * to get throught. | 
 | 				 */ | 
 | 				goto reset_framer; | 
 | 			case RAVE_SP_DLE: | 
 | 				deframer->state = RAVE_SP_EXPECT_ESCAPED_DATA; | 
 | 				/* | 
 | 				 * If we encounter escape sequence we | 
 | 				 * need to skip it and collect the | 
 | 				 * byte that follows. We do it by | 
 | 				 * forcing the next iteration of the | 
 | 				 * encompassing while loop. | 
 | 				 */ | 
 | 				continue; | 
 | 			} | 
 | 			/* | 
 | 			 * For the rest of the bytes, that are not | 
 | 			 * speical snoflakes, we do the same thing | 
 | 			 * that we do to escaped data - collect it in | 
 | 			 * deframer buffer | 
 | 			 */ | 
 |  | 
 | 			/* FALLTHROUGH */ | 
 |  | 
 | 		case RAVE_SP_EXPECT_ESCAPED_DATA: | 
 | 			if (deframer->length == sizeof(deframer->data)) { | 
 | 				dev_warn(dev, "Bad frame: Too long\n"); | 
 | 				/* | 
 | 				 * If the amount of data we've | 
 | 				 * accumulated for current frame so | 
 | 				 * far starts to exceed the capacity | 
 | 				 * of deframer's buffer, there's | 
 | 				 * nothing else we can do but to | 
 | 				 * discard that data and start | 
 | 				 * assemblying a new frame again | 
 | 				 */ | 
 | 				goto reset_framer; | 
 | 			} | 
 |  | 
 | 			deframer->data[deframer->length++] = byte; | 
 |  | 
 | 			/* | 
 | 			 * We've extracted out special byte, now we | 
 | 			 * can go back to regular data collecting | 
 | 			 */ | 
 | 			deframer->state = RAVE_SP_EXPECT_DATA; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The only way to get out of the above loop and end up here | 
 | 	 * is throught consuming all of the supplied data, so here we | 
 | 	 * report that we processed it all. | 
 | 	 */ | 
 | 	return size; | 
 |  | 
 | reset_framer: | 
 | 	/* | 
 | 	 * NOTE: A number of codepaths that will drop us here will do | 
 | 	 * so before consuming all 'size' bytes of the data passed by | 
 | 	 * serdev layer. We rely on the fact that serdev layer will | 
 | 	 * re-execute this handler with the remainder of the Rx bytes | 
 | 	 * once we report actual number of bytes that we processed. | 
 | 	 */ | 
 | 	deframer->state  = RAVE_SP_EXPECT_SOF; | 
 | 	deframer->length = 0; | 
 |  | 
 | 	return src - buf; | 
 | } | 
 |  | 
 | static int rave_sp_rdu1_cmd_translate(enum rave_sp_command command) | 
 | { | 
 | 	if (command >= RAVE_SP_CMD_STATUS && | 
 | 	    command <= RAVE_SP_CMD_CONTROL_EVENTS) | 
 | 		return command; | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int rave_sp_rdu2_cmd_translate(enum rave_sp_command command) | 
 | { | 
 | 	if (command >= RAVE_SP_CMD_GET_FIRMWARE_VERSION && | 
 | 	    command <= RAVE_SP_CMD_GET_GPIO_STATE) | 
 | 		return command; | 
 |  | 
 | 	if (command == RAVE_SP_CMD_REQ_COPPER_REV) { | 
 | 		/* | 
 | 		 * As per RDU2 ICD 3.4.47 CMD_GET_COPPER_REV code is | 
 | 		 * different from that for RDU1 and it is set to 0x28. | 
 | 		 */ | 
 | 		return 0x28; | 
 | 	} | 
 |  | 
 | 	return rave_sp_rdu1_cmd_translate(command); | 
 | } | 
 |  | 
 | static int rave_sp_default_cmd_translate(enum rave_sp_command command) | 
 | { | 
 | 	/* | 
 | 	 * All of the following command codes were taken from "Table : | 
 | 	 * Communications Protocol Message Types" in section 3.3 | 
 | 	 * "MESSAGE TYPES" of Rave PIC24 ICD. | 
 | 	 */ | 
 | 	switch (command) { | 
 | 	case RAVE_SP_CMD_GET_FIRMWARE_VERSION: | 
 | 		return 0x11; | 
 | 	case RAVE_SP_CMD_GET_BOOTLOADER_VERSION: | 
 | 		return 0x12; | 
 | 	case RAVE_SP_CMD_BOOT_SOURCE: | 
 | 		return 0x14; | 
 | 	case RAVE_SP_CMD_SW_WDT: | 
 | 		return 0x1C; | 
 | 	case RAVE_SP_CMD_PET_WDT: | 
 | 		return 0x1D; | 
 | 	case RAVE_SP_CMD_RESET: | 
 | 		return 0x1E; | 
 | 	case RAVE_SP_CMD_RESET_REASON: | 
 | 		return 0x1F; | 
 | 	case RAVE_SP_CMD_RMB_EEPROM: | 
 | 		return 0x20; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 | } | 
 |  | 
 | static const char *devm_rave_sp_version(struct device *dev, | 
 | 					struct rave_sp_version *version) | 
 | { | 
 | 	/* | 
 | 	 * NOTE: The format string below uses %02d to display u16 | 
 | 	 * intentionally for the sake of backwards compatibility with | 
 | 	 * legacy software. | 
 | 	 */ | 
 | 	return devm_kasprintf(dev, GFP_KERNEL, "%02d%02d%02d.%c%c\n", | 
 | 			      version->hardware, | 
 | 			      le16_to_cpu(version->major), | 
 | 			      version->minor, | 
 | 			      version->letter[0], | 
 | 			      version->letter[1]); | 
 | } | 
 |  | 
 | static int rave_sp_rdu1_get_status(struct rave_sp *sp, | 
 | 				   struct rave_sp_status *status) | 
 | { | 
 | 	u8 cmd[] = { | 
 | 		[0] = RAVE_SP_CMD_STATUS, | 
 | 		[1] = 0 | 
 | 	}; | 
 |  | 
 | 	return rave_sp_exec(sp, cmd, sizeof(cmd), status, sizeof(*status)); | 
 | } | 
 |  | 
 | static int rave_sp_emulated_get_status(struct rave_sp *sp, | 
 | 				       struct rave_sp_status *status) | 
 | { | 
 | 	u8 cmd[] = { | 
 | 		[0] = RAVE_SP_CMD_GET_FIRMWARE_VERSION, | 
 | 		[1] = 0, | 
 | 	}; | 
 | 	int ret; | 
 |  | 
 | 	ret = rave_sp_exec(sp, cmd, sizeof(cmd), &status->firmware_version, | 
 | 			   sizeof(status->firmware_version)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	cmd[0] = RAVE_SP_CMD_GET_BOOTLOADER_VERSION; | 
 | 	return rave_sp_exec(sp, cmd, sizeof(cmd), &status->bootloader_version, | 
 | 			    sizeof(status->bootloader_version)); | 
 | } | 
 |  | 
 | static int rave_sp_get_status(struct rave_sp *sp) | 
 | { | 
 | 	struct device *dev = &sp->serdev->dev; | 
 | 	struct rave_sp_status status; | 
 | 	const char *version; | 
 | 	int ret; | 
 |  | 
 | 	ret = sp->variant->cmd.get_status(sp, &status); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	version = devm_rave_sp_version(dev, &status.firmware_version); | 
 | 	if (!version) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sp->part_number_firmware = version; | 
 |  | 
 | 	version = devm_rave_sp_version(dev, &status.bootloader_version); | 
 | 	if (!version) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sp->part_number_bootloader = version; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct rave_sp_checksum rave_sp_checksum_8b2c = { | 
 | 	.length     = 1, | 
 | 	.subroutine = csum_8b2c, | 
 | }; | 
 |  | 
 | static const struct rave_sp_checksum rave_sp_checksum_ccitt = { | 
 | 	.length     = 2, | 
 | 	.subroutine = csum_ccitt, | 
 | }; | 
 |  | 
 | static const struct rave_sp_variant rave_sp_legacy = { | 
 | 	.checksum = &rave_sp_checksum_ccitt, | 
 | 	.cmd = { | 
 | 		.translate = rave_sp_default_cmd_translate, | 
 | 		.get_status = rave_sp_emulated_get_status, | 
 | 	}, | 
 | }; | 
 |  | 
 | static const struct rave_sp_variant rave_sp_rdu1 = { | 
 | 	.checksum = &rave_sp_checksum_8b2c, | 
 | 	.cmd = { | 
 | 		.translate = rave_sp_rdu1_cmd_translate, | 
 | 		.get_status = rave_sp_rdu1_get_status, | 
 | 	}, | 
 | }; | 
 |  | 
 | static const struct rave_sp_variant rave_sp_rdu2 = { | 
 | 	.checksum = &rave_sp_checksum_ccitt, | 
 | 	.cmd = { | 
 | 		.translate = rave_sp_rdu2_cmd_translate, | 
 | 		.get_status = rave_sp_emulated_get_status, | 
 | 	}, | 
 | }; | 
 |  | 
 | static const struct of_device_id rave_sp_dt_ids[] = { | 
 | 	{ .compatible = "zii,rave-sp-niu",  .data = &rave_sp_legacy }, | 
 | 	{ .compatible = "zii,rave-sp-mezz", .data = &rave_sp_legacy }, | 
 | 	{ .compatible = "zii,rave-sp-esb",  .data = &rave_sp_legacy }, | 
 | 	{ .compatible = "zii,rave-sp-rdu1", .data = &rave_sp_rdu1   }, | 
 | 	{ .compatible = "zii,rave-sp-rdu2", .data = &rave_sp_rdu2   }, | 
 | 	{ /* sentinel */ } | 
 | }; | 
 |  | 
 | static const struct serdev_device_ops rave_sp_serdev_device_ops = { | 
 | 	.receive_buf  = rave_sp_receive_buf, | 
 | 	.write_wakeup = serdev_device_write_wakeup, | 
 | }; | 
 |  | 
 | static int rave_sp_probe(struct serdev_device *serdev) | 
 | { | 
 | 	struct device *dev = &serdev->dev; | 
 | 	const char *unknown = "unknown\n"; | 
 | 	struct rave_sp *sp; | 
 | 	u32 baud; | 
 | 	int ret; | 
 |  | 
 | 	if (of_property_read_u32(dev->of_node, "current-speed", &baud)) { | 
 | 		dev_err(dev, | 
 | 			"'current-speed' is not specified in device node\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	sp = devm_kzalloc(dev, sizeof(*sp), GFP_KERNEL); | 
 | 	if (!sp) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	sp->serdev = serdev; | 
 | 	dev_set_drvdata(dev, sp); | 
 |  | 
 | 	sp->variant = of_device_get_match_data(dev); | 
 | 	if (!sp->variant) | 
 | 		return -ENODEV; | 
 |  | 
 | 	mutex_init(&sp->bus_lock); | 
 | 	mutex_init(&sp->reply_lock); | 
 | 	BLOCKING_INIT_NOTIFIER_HEAD(&sp->event_notifier_list); | 
 |  | 
 | 	serdev_device_set_client_ops(serdev, &rave_sp_serdev_device_ops); | 
 | 	ret = devm_serdev_device_open(dev, serdev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	serdev_device_set_baudrate(serdev, baud); | 
 | 	serdev_device_set_flow_control(serdev, false); | 
 |  | 
 | 	ret = serdev_device_set_parity(serdev, SERDEV_PARITY_NONE); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "Failed to set parity\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = rave_sp_get_status(sp); | 
 | 	if (ret) { | 
 | 		dev_warn(dev, "Failed to get firmware status: %d\n", ret); | 
 | 		sp->part_number_firmware   = unknown; | 
 | 		sp->part_number_bootloader = unknown; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Those strings already have a \n embedded, so there's no | 
 | 	 * need to have one in format string. | 
 | 	 */ | 
 | 	dev_info(dev, "Firmware version: %s",   sp->part_number_firmware); | 
 | 	dev_info(dev, "Bootloader version: %s", sp->part_number_bootloader); | 
 |  | 
 | 	return devm_of_platform_populate(dev); | 
 | } | 
 |  | 
 | MODULE_DEVICE_TABLE(of, rave_sp_dt_ids); | 
 |  | 
 | static struct serdev_device_driver rave_sp_drv = { | 
 | 	.probe			= rave_sp_probe, | 
 | 	.driver = { | 
 | 		.name		= "rave-sp", | 
 | 		.of_match_table	= rave_sp_dt_ids, | 
 | 	}, | 
 | }; | 
 | module_serdev_device_driver(rave_sp_drv); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Andrey Vostrikov <andrey.vostrikov@cogentembedded.com>"); | 
 | MODULE_AUTHOR("Nikita Yushchenko <nikita.yoush@cogentembedded.com>"); | 
 | MODULE_AUTHOR("Andrey Smirnov <andrew.smirnov@gmail.com>"); | 
 | MODULE_DESCRIPTION("RAVE SP core driver"); |