|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2008 Red Hat.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/error-injection.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include "ctree.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "transaction.h" | 
|  | #include "disk-io.h" | 
|  | #include "extent_io.h" | 
|  | #include "inode-map.h" | 
|  | #include "volumes.h" | 
|  | #include "space-info.h" | 
|  | #include "delalloc-space.h" | 
|  |  | 
|  | #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL) | 
|  | #define MAX_CACHE_BYTES_PER_GIG	SZ_32K | 
|  |  | 
|  | struct btrfs_trim_range { | 
|  | u64 start; | 
|  | u64 bytes; | 
|  | struct list_head list; | 
|  | }; | 
|  |  | 
|  | static int link_free_space(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info); | 
|  | static void unlink_free_space(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info); | 
|  | static int btrfs_wait_cache_io_root(struct btrfs_root *root, | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_io_ctl *io_ctl, | 
|  | struct btrfs_path *path); | 
|  |  | 
|  | static struct inode *__lookup_free_space_inode(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key location; | 
|  | struct btrfs_disk_key disk_key; | 
|  | struct btrfs_free_space_header *header; | 
|  | struct extent_buffer *leaf; | 
|  | struct inode *inode = NULL; | 
|  | unsigned nofs_flag; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
|  | key.offset = offset; | 
|  | key.type = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return ERR_PTR(ret); | 
|  | if (ret > 0) { | 
|  | btrfs_release_path(path); | 
|  | return ERR_PTR(-ENOENT); | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | header = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_free_space_header); | 
|  | btrfs_free_space_key(leaf, header, &disk_key); | 
|  | btrfs_disk_key_to_cpu(&location, &disk_key); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * We are often under a trans handle at this point, so we need to make | 
|  | * sure NOFS is set to keep us from deadlocking. | 
|  | */ | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path); | 
|  | btrfs_release_path(path); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | if (IS_ERR(inode)) | 
|  | return inode; | 
|  |  | 
|  | mapping_set_gfp_mask(inode->i_mapping, | 
|  | mapping_gfp_constraint(inode->i_mapping, | 
|  | ~(__GFP_FS | __GFP_HIGHMEM))); | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | struct inode *lookup_free_space_inode( | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct inode *inode = NULL; | 
|  | u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->inode) | 
|  | inode = igrab(block_group->inode); | 
|  | spin_unlock(&block_group->lock); | 
|  | if (inode) | 
|  | return inode; | 
|  |  | 
|  | inode = __lookup_free_space_inode(fs_info->tree_root, path, | 
|  | block_group->key.objectid); | 
|  | if (IS_ERR(inode)) | 
|  | return inode; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | if (!((BTRFS_I(inode)->flags & flags) == flags)) { | 
|  | btrfs_info(fs_info, "Old style space inode found, converting."); | 
|  | BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM | | 
|  | BTRFS_INODE_NODATACOW; | 
|  | block_group->disk_cache_state = BTRFS_DC_CLEAR; | 
|  | } | 
|  |  | 
|  | if (!block_group->iref) { | 
|  | block_group->inode = igrab(inode); | 
|  | block_group->iref = 1; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | static int __create_free_space_inode(struct btrfs_root *root, | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | u64 ino, u64 offset) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_disk_key disk_key; | 
|  | struct btrfs_free_space_header *header; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct extent_buffer *leaf; | 
|  | u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_insert_empty_inode(trans, root, path, ino); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* We inline crc's for the free disk space cache */ | 
|  | if (ino != BTRFS_FREE_INO_OBJECTID) | 
|  | flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | inode_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | btrfs_item_key(leaf, &disk_key, path->slots[0]); | 
|  | memzero_extent_buffer(leaf, (unsigned long)inode_item, | 
|  | sizeof(*inode_item)); | 
|  | btrfs_set_inode_generation(leaf, inode_item, trans->transid); | 
|  | btrfs_set_inode_size(leaf, inode_item, 0); | 
|  | btrfs_set_inode_nbytes(leaf, inode_item, 0); | 
|  | btrfs_set_inode_uid(leaf, inode_item, 0); | 
|  | btrfs_set_inode_gid(leaf, inode_item, 0); | 
|  | btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); | 
|  | btrfs_set_inode_flags(leaf, inode_item, flags); | 
|  | btrfs_set_inode_nlink(leaf, inode_item, 1); | 
|  | btrfs_set_inode_transid(leaf, inode_item, trans->transid); | 
|  | btrfs_set_inode_block_group(leaf, inode_item, offset); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
|  | key.offset = offset; | 
|  | key.type = 0; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | sizeof(struct btrfs_free_space_header)); | 
|  | if (ret < 0) { | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | header = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_free_space_header); | 
|  | memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header)); | 
|  | btrfs_set_free_space_key(leaf, header, &disk_key); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int create_free_space_inode(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | int ret; | 
|  | u64 ino; | 
|  |  | 
|  | ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | return __create_free_space_inode(trans->fs_info->tree_root, trans, path, | 
|  | ino, block_group->key.objectid); | 
|  | } | 
|  |  | 
|  | int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *rsv) | 
|  | { | 
|  | u64 needed_bytes; | 
|  | int ret; | 
|  |  | 
|  | /* 1 for slack space, 1 for updating the inode */ | 
|  | needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) + | 
|  | btrfs_calc_trans_metadata_size(fs_info, 1); | 
|  |  | 
|  | spin_lock(&rsv->lock); | 
|  | if (rsv->reserved < needed_bytes) | 
|  | ret = -ENOSPC; | 
|  | else | 
|  | ret = 0; | 
|  | spin_unlock(&rsv->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | int ret = 0; | 
|  | bool locked = false; | 
|  |  | 
|  | if (block_group) { | 
|  | struct btrfs_path *path = btrfs_alloc_path(); | 
|  |  | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | locked = true; | 
|  | mutex_lock(&trans->transaction->cache_write_mutex); | 
|  | if (!list_empty(&block_group->io_list)) { | 
|  | list_del_init(&block_group->io_list); | 
|  |  | 
|  | btrfs_wait_cache_io(trans, block_group, path); | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * now that we've truncated the cache away, its no longer | 
|  | * setup or written | 
|  | */ | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->disk_cache_state = BTRFS_DC_CLEAR; | 
|  | spin_unlock(&block_group->lock); | 
|  | btrfs_free_path(path); | 
|  | } | 
|  |  | 
|  | btrfs_i_size_write(BTRFS_I(inode), 0); | 
|  | truncate_pagecache(inode, 0); | 
|  |  | 
|  | /* | 
|  | * We skip the throttling logic for free space cache inodes, so we don't | 
|  | * need to check for -EAGAIN. | 
|  | */ | 
|  | ret = btrfs_truncate_inode_items(trans, root, inode, | 
|  | 0, BTRFS_EXTENT_DATA_KEY); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | ret = btrfs_update_inode(trans, root, inode); | 
|  |  | 
|  | fail: | 
|  | if (locked) | 
|  | mutex_unlock(&trans->transaction->cache_write_mutex); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void readahead_cache(struct inode *inode) | 
|  | { | 
|  | struct file_ra_state *ra; | 
|  | unsigned long last_index; | 
|  |  | 
|  | ra = kzalloc(sizeof(*ra), GFP_NOFS); | 
|  | if (!ra) | 
|  | return; | 
|  |  | 
|  | file_ra_state_init(ra, inode->i_mapping); | 
|  | last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; | 
|  |  | 
|  | page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); | 
|  |  | 
|  | kfree(ra); | 
|  | } | 
|  |  | 
|  | static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode, | 
|  | int write) | 
|  | { | 
|  | int num_pages; | 
|  | int check_crcs = 0; | 
|  |  | 
|  | num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); | 
|  |  | 
|  | if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID) | 
|  | check_crcs = 1; | 
|  |  | 
|  | /* Make sure we can fit our crcs and generation into the first page */ | 
|  | if (write && check_crcs && | 
|  | (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE) | 
|  | return -ENOSPC; | 
|  |  | 
|  | memset(io_ctl, 0, sizeof(struct btrfs_io_ctl)); | 
|  |  | 
|  | io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); | 
|  | if (!io_ctl->pages) | 
|  | return -ENOMEM; | 
|  |  | 
|  | io_ctl->num_pages = num_pages; | 
|  | io_ctl->fs_info = btrfs_sb(inode->i_sb); | 
|  | io_ctl->check_crcs = check_crcs; | 
|  | io_ctl->inode = inode; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO); | 
|  |  | 
|  | static void io_ctl_free(struct btrfs_io_ctl *io_ctl) | 
|  | { | 
|  | kfree(io_ctl->pages); | 
|  | io_ctl->pages = NULL; | 
|  | } | 
|  |  | 
|  | static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl) | 
|  | { | 
|  | if (io_ctl->cur) { | 
|  | io_ctl->cur = NULL; | 
|  | io_ctl->orig = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear) | 
|  | { | 
|  | ASSERT(io_ctl->index < io_ctl->num_pages); | 
|  | io_ctl->page = io_ctl->pages[io_ctl->index++]; | 
|  | io_ctl->cur = page_address(io_ctl->page); | 
|  | io_ctl->orig = io_ctl->cur; | 
|  | io_ctl->size = PAGE_SIZE; | 
|  | if (clear) | 
|  | clear_page(io_ctl->cur); | 
|  | } | 
|  |  | 
|  | static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | io_ctl_unmap_page(io_ctl); | 
|  |  | 
|  | for (i = 0; i < io_ctl->num_pages; i++) { | 
|  | if (io_ctl->pages[i]) { | 
|  | ClearPageChecked(io_ctl->pages[i]); | 
|  | unlock_page(io_ctl->pages[i]); | 
|  | put_page(io_ctl->pages[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode, | 
|  | int uptodate) | 
|  | { | 
|  | struct page *page; | 
|  | gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < io_ctl->num_pages; i++) { | 
|  | page = find_or_create_page(inode->i_mapping, i, mask); | 
|  | if (!page) { | 
|  | io_ctl_drop_pages(io_ctl); | 
|  | return -ENOMEM; | 
|  | } | 
|  | io_ctl->pages[i] = page; | 
|  | if (uptodate && !PageUptodate(page)) { | 
|  | btrfs_readpage(NULL, page); | 
|  | lock_page(page); | 
|  | if (page->mapping != inode->i_mapping) { | 
|  | btrfs_err(BTRFS_I(inode)->root->fs_info, | 
|  | "free space cache page truncated"); | 
|  | io_ctl_drop_pages(io_ctl); | 
|  | return -EIO; | 
|  | } | 
|  | if (!PageUptodate(page)) { | 
|  | btrfs_err(BTRFS_I(inode)->root->fs_info, | 
|  | "error reading free space cache"); | 
|  | io_ctl_drop_pages(io_ctl); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < io_ctl->num_pages; i++) { | 
|  | clear_page_dirty_for_io(io_ctl->pages[i]); | 
|  | set_page_extent_mapped(io_ctl->pages[i]); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation) | 
|  | { | 
|  | __le64 *val; | 
|  |  | 
|  | io_ctl_map_page(io_ctl, 1); | 
|  |  | 
|  | /* | 
|  | * Skip the csum areas.  If we don't check crcs then we just have a | 
|  | * 64bit chunk at the front of the first page. | 
|  | */ | 
|  | if (io_ctl->check_crcs) { | 
|  | io_ctl->cur += (sizeof(u32) * io_ctl->num_pages); | 
|  | io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages); | 
|  | } else { | 
|  | io_ctl->cur += sizeof(u64); | 
|  | io_ctl->size -= sizeof(u64) * 2; | 
|  | } | 
|  |  | 
|  | val = io_ctl->cur; | 
|  | *val = cpu_to_le64(generation); | 
|  | io_ctl->cur += sizeof(u64); | 
|  | } | 
|  |  | 
|  | static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation) | 
|  | { | 
|  | __le64 *gen; | 
|  |  | 
|  | /* | 
|  | * Skip the crc area.  If we don't check crcs then we just have a 64bit | 
|  | * chunk at the front of the first page. | 
|  | */ | 
|  | if (io_ctl->check_crcs) { | 
|  | io_ctl->cur += sizeof(u32) * io_ctl->num_pages; | 
|  | io_ctl->size -= sizeof(u64) + | 
|  | (sizeof(u32) * io_ctl->num_pages); | 
|  | } else { | 
|  | io_ctl->cur += sizeof(u64); | 
|  | io_ctl->size -= sizeof(u64) * 2; | 
|  | } | 
|  |  | 
|  | gen = io_ctl->cur; | 
|  | if (le64_to_cpu(*gen) != generation) { | 
|  | btrfs_err_rl(io_ctl->fs_info, | 
|  | "space cache generation (%llu) does not match inode (%llu)", | 
|  | *gen, generation); | 
|  | io_ctl_unmap_page(io_ctl); | 
|  | return -EIO; | 
|  | } | 
|  | io_ctl->cur += sizeof(u64); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index) | 
|  | { | 
|  | u32 *tmp; | 
|  | u32 crc = ~(u32)0; | 
|  | unsigned offset = 0; | 
|  |  | 
|  | if (!io_ctl->check_crcs) { | 
|  | io_ctl_unmap_page(io_ctl); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (index == 0) | 
|  | offset = sizeof(u32) * io_ctl->num_pages; | 
|  |  | 
|  | crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); | 
|  | btrfs_crc32c_final(crc, (u8 *)&crc); | 
|  | io_ctl_unmap_page(io_ctl); | 
|  | tmp = page_address(io_ctl->pages[0]); | 
|  | tmp += index; | 
|  | *tmp = crc; | 
|  | } | 
|  |  | 
|  | static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index) | 
|  | { | 
|  | u32 *tmp, val; | 
|  | u32 crc = ~(u32)0; | 
|  | unsigned offset = 0; | 
|  |  | 
|  | if (!io_ctl->check_crcs) { | 
|  | io_ctl_map_page(io_ctl, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (index == 0) | 
|  | offset = sizeof(u32) * io_ctl->num_pages; | 
|  |  | 
|  | tmp = page_address(io_ctl->pages[0]); | 
|  | tmp += index; | 
|  | val = *tmp; | 
|  |  | 
|  | io_ctl_map_page(io_ctl, 0); | 
|  | crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset); | 
|  | btrfs_crc32c_final(crc, (u8 *)&crc); | 
|  | if (val != crc) { | 
|  | btrfs_err_rl(io_ctl->fs_info, | 
|  | "csum mismatch on free space cache"); | 
|  | io_ctl_unmap_page(io_ctl); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes, | 
|  | void *bitmap) | 
|  | { | 
|  | struct btrfs_free_space_entry *entry; | 
|  |  | 
|  | if (!io_ctl->cur) | 
|  | return -ENOSPC; | 
|  |  | 
|  | entry = io_ctl->cur; | 
|  | entry->offset = cpu_to_le64(offset); | 
|  | entry->bytes = cpu_to_le64(bytes); | 
|  | entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP : | 
|  | BTRFS_FREE_SPACE_EXTENT; | 
|  | io_ctl->cur += sizeof(struct btrfs_free_space_entry); | 
|  | io_ctl->size -= sizeof(struct btrfs_free_space_entry); | 
|  |  | 
|  | if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) | 
|  | return 0; | 
|  |  | 
|  | io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
|  |  | 
|  | /* No more pages to map */ | 
|  | if (io_ctl->index >= io_ctl->num_pages) | 
|  | return 0; | 
|  |  | 
|  | /* map the next page */ | 
|  | io_ctl_map_page(io_ctl, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap) | 
|  | { | 
|  | if (!io_ctl->cur) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* | 
|  | * If we aren't at the start of the current page, unmap this one and | 
|  | * map the next one if there is any left. | 
|  | */ | 
|  | if (io_ctl->cur != io_ctl->orig) { | 
|  | io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
|  | if (io_ctl->index >= io_ctl->num_pages) | 
|  | return -ENOSPC; | 
|  | io_ctl_map_page(io_ctl, 0); | 
|  | } | 
|  |  | 
|  | copy_page(io_ctl->cur, bitmap); | 
|  | io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
|  | if (io_ctl->index < io_ctl->num_pages) | 
|  | io_ctl_map_page(io_ctl, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl) | 
|  | { | 
|  | /* | 
|  | * If we're not on the boundary we know we've modified the page and we | 
|  | * need to crc the page. | 
|  | */ | 
|  | if (io_ctl->cur != io_ctl->orig) | 
|  | io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
|  | else | 
|  | io_ctl_unmap_page(io_ctl); | 
|  |  | 
|  | while (io_ctl->index < io_ctl->num_pages) { | 
|  | io_ctl_map_page(io_ctl, 1); | 
|  | io_ctl_set_crc(io_ctl, io_ctl->index - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl, | 
|  | struct btrfs_free_space *entry, u8 *type) | 
|  | { | 
|  | struct btrfs_free_space_entry *e; | 
|  | int ret; | 
|  |  | 
|  | if (!io_ctl->cur) { | 
|  | ret = io_ctl_check_crc(io_ctl, io_ctl->index); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | e = io_ctl->cur; | 
|  | entry->offset = le64_to_cpu(e->offset); | 
|  | entry->bytes = le64_to_cpu(e->bytes); | 
|  | *type = e->type; | 
|  | io_ctl->cur += sizeof(struct btrfs_free_space_entry); | 
|  | io_ctl->size -= sizeof(struct btrfs_free_space_entry); | 
|  |  | 
|  | if (io_ctl->size >= sizeof(struct btrfs_free_space_entry)) | 
|  | return 0; | 
|  |  | 
|  | io_ctl_unmap_page(io_ctl); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl, | 
|  | struct btrfs_free_space *entry) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = io_ctl_check_crc(io_ctl, io_ctl->index); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | copy_page(entry->bitmap, io_ctl->cur); | 
|  | io_ctl_unmap_page(io_ctl); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since we attach pinned extents after the fact we can have contiguous sections | 
|  | * of free space that are split up in entries.  This poses a problem with the | 
|  | * tree logging stuff since it could have allocated across what appears to be 2 | 
|  | * entries since we would have merged the entries when adding the pinned extents | 
|  | * back to the free space cache.  So run through the space cache that we just | 
|  | * loaded and merge contiguous entries.  This will make the log replay stuff not | 
|  | * blow up and it will make for nicer allocator behavior. | 
|  | */ | 
|  | static void merge_space_tree(struct btrfs_free_space_ctl *ctl) | 
|  | { | 
|  | struct btrfs_free_space *e, *prev = NULL; | 
|  | struct rb_node *n; | 
|  |  | 
|  | again: | 
|  | spin_lock(&ctl->tree_lock); | 
|  | for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { | 
|  | e = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | if (!prev) | 
|  | goto next; | 
|  | if (e->bitmap || prev->bitmap) | 
|  | goto next; | 
|  | if (prev->offset + prev->bytes == e->offset) { | 
|  | unlink_free_space(ctl, prev); | 
|  | unlink_free_space(ctl, e); | 
|  | prev->bytes += e->bytes; | 
|  | kmem_cache_free(btrfs_free_space_cachep, e); | 
|  | link_free_space(ctl, prev); | 
|  | prev = NULL; | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | goto again; | 
|  | } | 
|  | next: | 
|  | prev = e; | 
|  | } | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | } | 
|  |  | 
|  | static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode, | 
|  | struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_path *path, u64 offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_free_space_header *header; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_io_ctl io_ctl; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_free_space *e, *n; | 
|  | LIST_HEAD(bitmaps); | 
|  | u64 num_entries; | 
|  | u64 num_bitmaps; | 
|  | u64 generation; | 
|  | u8 type; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Nothing in the space cache, goodbye */ | 
|  | if (!i_size_read(inode)) | 
|  | return 0; | 
|  |  | 
|  | key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
|  | key.offset = offset; | 
|  | key.type = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | return 0; | 
|  | else if (ret > 0) { | 
|  | btrfs_release_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = -1; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | header = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_free_space_header); | 
|  | num_entries = btrfs_free_space_entries(leaf, header); | 
|  | num_bitmaps = btrfs_free_space_bitmaps(leaf, header); | 
|  | generation = btrfs_free_space_generation(leaf, header); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (!BTRFS_I(inode)->generation) { | 
|  | btrfs_info(fs_info, | 
|  | "the free space cache file (%llu) is invalid, skip it", | 
|  | offset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (BTRFS_I(inode)->generation != generation) { | 
|  | btrfs_err(fs_info, | 
|  | "free space inode generation (%llu) did not match free space cache generation (%llu)", | 
|  | BTRFS_I(inode)->generation, generation); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!num_entries) | 
|  | return 0; | 
|  |  | 
|  | ret = io_ctl_init(&io_ctl, inode, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | readahead_cache(inode); | 
|  |  | 
|  | ret = io_ctl_prepare_pages(&io_ctl, inode, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = io_ctl_check_crc(&io_ctl, 0); | 
|  | if (ret) | 
|  | goto free_cache; | 
|  |  | 
|  | ret = io_ctl_check_generation(&io_ctl, generation); | 
|  | if (ret) | 
|  | goto free_cache; | 
|  |  | 
|  | while (num_entries) { | 
|  | e = kmem_cache_zalloc(btrfs_free_space_cachep, | 
|  | GFP_NOFS); | 
|  | if (!e) | 
|  | goto free_cache; | 
|  |  | 
|  | ret = io_ctl_read_entry(&io_ctl, e, &type); | 
|  | if (ret) { | 
|  | kmem_cache_free(btrfs_free_space_cachep, e); | 
|  | goto free_cache; | 
|  | } | 
|  |  | 
|  | if (!e->bytes) { | 
|  | kmem_cache_free(btrfs_free_space_cachep, e); | 
|  | goto free_cache; | 
|  | } | 
|  |  | 
|  | if (type == BTRFS_FREE_SPACE_EXTENT) { | 
|  | spin_lock(&ctl->tree_lock); | 
|  | ret = link_free_space(ctl, e); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, | 
|  | "Duplicate entries in free space cache, dumping"); | 
|  | kmem_cache_free(btrfs_free_space_cachep, e); | 
|  | goto free_cache; | 
|  | } | 
|  | } else { | 
|  | ASSERT(num_bitmaps); | 
|  | num_bitmaps--; | 
|  | e->bitmap = kmem_cache_zalloc( | 
|  | btrfs_free_space_bitmap_cachep, GFP_NOFS); | 
|  | if (!e->bitmap) { | 
|  | kmem_cache_free( | 
|  | btrfs_free_space_cachep, e); | 
|  | goto free_cache; | 
|  | } | 
|  | spin_lock(&ctl->tree_lock); | 
|  | ret = link_free_space(ctl, e); | 
|  | ctl->total_bitmaps++; | 
|  | ctl->op->recalc_thresholds(ctl); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | if (ret) { | 
|  | btrfs_err(fs_info, | 
|  | "Duplicate entries in free space cache, dumping"); | 
|  | kmem_cache_free(btrfs_free_space_cachep, e); | 
|  | goto free_cache; | 
|  | } | 
|  | list_add_tail(&e->list, &bitmaps); | 
|  | } | 
|  |  | 
|  | num_entries--; | 
|  | } | 
|  |  | 
|  | io_ctl_unmap_page(&io_ctl); | 
|  |  | 
|  | /* | 
|  | * We add the bitmaps at the end of the entries in order that | 
|  | * the bitmap entries are added to the cache. | 
|  | */ | 
|  | list_for_each_entry_safe(e, n, &bitmaps, list) { | 
|  | list_del_init(&e->list); | 
|  | ret = io_ctl_read_bitmap(&io_ctl, e); | 
|  | if (ret) | 
|  | goto free_cache; | 
|  | } | 
|  |  | 
|  | io_ctl_drop_pages(&io_ctl); | 
|  | merge_space_tree(ctl); | 
|  | ret = 1; | 
|  | out: | 
|  | io_ctl_free(&io_ctl); | 
|  | return ret; | 
|  | free_cache: | 
|  | io_ctl_drop_pages(&io_ctl); | 
|  | __btrfs_remove_free_space_cache(ctl); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | int load_free_space_cache(struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct inode *inode; | 
|  | struct btrfs_path *path; | 
|  | int ret = 0; | 
|  | bool matched; | 
|  | u64 used = btrfs_block_group_used(&block_group->item); | 
|  |  | 
|  | /* | 
|  | * If this block group has been marked to be cleared for one reason or | 
|  | * another then we can't trust the on disk cache, so just return. | 
|  | */ | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { | 
|  | spin_unlock(&block_group->lock); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return 0; | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | /* | 
|  | * We must pass a path with search_commit_root set to btrfs_iget in | 
|  | * order to avoid a deadlock when allocating extents for the tree root. | 
|  | * | 
|  | * When we are COWing an extent buffer from the tree root, when looking | 
|  | * for a free extent, at extent-tree.c:find_free_extent(), we can find | 
|  | * block group without its free space cache loaded. When we find one | 
|  | * we must load its space cache which requires reading its free space | 
|  | * cache's inode item from the root tree. If this inode item is located | 
|  | * in the same leaf that we started COWing before, then we end up in | 
|  | * deadlock on the extent buffer (trying to read lock it when we | 
|  | * previously write locked it). | 
|  | * | 
|  | * It's safe to read the inode item using the commit root because | 
|  | * block groups, once loaded, stay in memory forever (until they are | 
|  | * removed) as well as their space caches once loaded. New block groups | 
|  | * once created get their ->cached field set to BTRFS_CACHE_FINISHED so | 
|  | * we will never try to read their inode item while the fs is mounted. | 
|  | */ | 
|  | inode = lookup_free_space_inode(block_group, path); | 
|  | if (IS_ERR(inode)) { | 
|  | btrfs_free_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We may have converted the inode and made the cache invalid. */ | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { | 
|  | spin_unlock(&block_group->lock); | 
|  | btrfs_free_path(path); | 
|  | goto out; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | ret = __load_free_space_cache(fs_info->tree_root, inode, ctl, | 
|  | path, block_group->key.objectid); | 
|  | btrfs_free_path(path); | 
|  | if (ret <= 0) | 
|  | goto out; | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  | matched = (ctl->free_space == (block_group->key.offset - used - | 
|  | block_group->bytes_super)); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | if (!matched) { | 
|  | __btrfs_remove_free_space_cache(ctl); | 
|  | btrfs_warn(fs_info, | 
|  | "block group %llu has wrong amount of free space", | 
|  | block_group->key.objectid); | 
|  | ret = -1; | 
|  | } | 
|  | out: | 
|  | if (ret < 0) { | 
|  | /* This cache is bogus, make sure it gets cleared */ | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->disk_cache_state = BTRFS_DC_CLEAR; | 
|  | spin_unlock(&block_group->lock); | 
|  | ret = 0; | 
|  |  | 
|  | btrfs_warn(fs_info, | 
|  | "failed to load free space cache for block group %llu, rebuilding it now", | 
|  | block_group->key.objectid); | 
|  | } | 
|  |  | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl, | 
|  | struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | int *entries, int *bitmaps, | 
|  | struct list_head *bitmap_list) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_free_cluster *cluster = NULL; | 
|  | struct btrfs_free_cluster *cluster_locked = NULL; | 
|  | struct rb_node *node = rb_first(&ctl->free_space_offset); | 
|  | struct btrfs_trim_range *trim_entry; | 
|  |  | 
|  | /* Get the cluster for this block_group if it exists */ | 
|  | if (block_group && !list_empty(&block_group->cluster_list)) { | 
|  | cluster = list_entry(block_group->cluster_list.next, | 
|  | struct btrfs_free_cluster, | 
|  | block_group_list); | 
|  | } | 
|  |  | 
|  | if (!node && cluster) { | 
|  | cluster_locked = cluster; | 
|  | spin_lock(&cluster_locked->lock); | 
|  | node = rb_first(&cluster->root); | 
|  | cluster = NULL; | 
|  | } | 
|  |  | 
|  | /* Write out the extent entries */ | 
|  | while (node) { | 
|  | struct btrfs_free_space *e; | 
|  |  | 
|  | e = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | *entries += 1; | 
|  |  | 
|  | ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes, | 
|  | e->bitmap); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | if (e->bitmap) { | 
|  | list_add_tail(&e->list, bitmap_list); | 
|  | *bitmaps += 1; | 
|  | } | 
|  | node = rb_next(node); | 
|  | if (!node && cluster) { | 
|  | node = rb_first(&cluster->root); | 
|  | cluster_locked = cluster; | 
|  | spin_lock(&cluster_locked->lock); | 
|  | cluster = NULL; | 
|  | } | 
|  | } | 
|  | if (cluster_locked) { | 
|  | spin_unlock(&cluster_locked->lock); | 
|  | cluster_locked = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure we don't miss any range that was removed from our rbtree | 
|  | * because trimming is running. Otherwise after a umount+mount (or crash | 
|  | * after committing the transaction) we would leak free space and get | 
|  | * an inconsistent free space cache report from fsck. | 
|  | */ | 
|  | list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) { | 
|  | ret = io_ctl_add_entry(io_ctl, trim_entry->start, | 
|  | trim_entry->bytes, NULL); | 
|  | if (ret) | 
|  | goto fail; | 
|  | *entries += 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | if (cluster_locked) | 
|  | spin_unlock(&cluster_locked->lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int | 
|  | update_cache_item(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct inode *inode, | 
|  | struct btrfs_path *path, u64 offset, | 
|  | int entries, int bitmaps) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_free_space_header *header; | 
|  | struct extent_buffer *leaf; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
|  | key.offset = offset; | 
|  | key.type = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
|  | if (ret < 0) { | 
|  | clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, | 
|  | EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL); | 
|  | goto fail; | 
|  | } | 
|  | leaf = path->nodes[0]; | 
|  | if (ret > 0) { | 
|  | struct btrfs_key found_key; | 
|  | ASSERT(path->slots[0]); | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  | if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || | 
|  | found_key.offset != offset) { | 
|  | clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, | 
|  | inode->i_size - 1, | 
|  | EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, | 
|  | NULL); | 
|  | btrfs_release_path(path); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | BTRFS_I(inode)->generation = trans->transid; | 
|  | header = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_free_space_header); | 
|  | btrfs_set_free_space_entries(leaf, header, entries); | 
|  | btrfs_set_free_space_bitmaps(leaf, header, bitmaps); | 
|  | btrfs_set_free_space_generation(leaf, header, trans->transid); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int write_pinned_extent_entries( | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_io_ctl *io_ctl, | 
|  | int *entries) | 
|  | { | 
|  | u64 start, extent_start, extent_end, len; | 
|  | struct extent_io_tree *unpin = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (!block_group) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We want to add any pinned extents to our free space cache | 
|  | * so we don't leak the space | 
|  | * | 
|  | * We shouldn't have switched the pinned extents yet so this is the | 
|  | * right one | 
|  | */ | 
|  | unpin = block_group->fs_info->pinned_extents; | 
|  |  | 
|  | start = block_group->key.objectid; | 
|  |  | 
|  | while (start < block_group->key.objectid + block_group->key.offset) { | 
|  | ret = find_first_extent_bit(unpin, start, | 
|  | &extent_start, &extent_end, | 
|  | EXTENT_DIRTY, NULL); | 
|  | if (ret) | 
|  | return 0; | 
|  |  | 
|  | /* This pinned extent is out of our range */ | 
|  | if (extent_start >= block_group->key.objectid + | 
|  | block_group->key.offset) | 
|  | return 0; | 
|  |  | 
|  | extent_start = max(extent_start, start); | 
|  | extent_end = min(block_group->key.objectid + | 
|  | block_group->key.offset, extent_end + 1); | 
|  | len = extent_end - extent_start; | 
|  |  | 
|  | *entries += 1; | 
|  | ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL); | 
|  | if (ret) | 
|  | return -ENOSPC; | 
|  |  | 
|  | start = extent_end; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int | 
|  | write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list) | 
|  | { | 
|  | struct btrfs_free_space *entry, *next; | 
|  | int ret; | 
|  |  | 
|  | /* Write out the bitmaps */ | 
|  | list_for_each_entry_safe(entry, next, bitmap_list, list) { | 
|  | ret = io_ctl_add_bitmap(io_ctl, entry->bitmap); | 
|  | if (ret) | 
|  | return -ENOSPC; | 
|  | list_del_init(&entry->list); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int flush_dirty_cache(struct inode *inode) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); | 
|  | if (ret) | 
|  | clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1, | 
|  | EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void noinline_for_stack | 
|  | cleanup_bitmap_list(struct list_head *bitmap_list) | 
|  | { | 
|  | struct btrfs_free_space *entry, *next; | 
|  |  | 
|  | list_for_each_entry_safe(entry, next, bitmap_list, list) | 
|  | list_del_init(&entry->list); | 
|  | } | 
|  |  | 
|  | static void noinline_for_stack | 
|  | cleanup_write_cache_enospc(struct inode *inode, | 
|  | struct btrfs_io_ctl *io_ctl, | 
|  | struct extent_state **cached_state) | 
|  | { | 
|  | io_ctl_drop_pages(io_ctl); | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, | 
|  | i_size_read(inode) - 1, cached_state); | 
|  | } | 
|  |  | 
|  | static int __btrfs_wait_cache_io(struct btrfs_root *root, | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_io_ctl *io_ctl, | 
|  | struct btrfs_path *path, u64 offset) | 
|  | { | 
|  | int ret; | 
|  | struct inode *inode = io_ctl->inode; | 
|  |  | 
|  | if (!inode) | 
|  | return 0; | 
|  |  | 
|  | /* Flush the dirty pages in the cache file. */ | 
|  | ret = flush_dirty_cache(inode); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* Update the cache item to tell everyone this cache file is valid. */ | 
|  | ret = update_cache_item(trans, root, inode, path, offset, | 
|  | io_ctl->entries, io_ctl->bitmaps); | 
|  | out: | 
|  | io_ctl_free(io_ctl); | 
|  | if (ret) { | 
|  | invalidate_inode_pages2(inode->i_mapping); | 
|  | BTRFS_I(inode)->generation = 0; | 
|  | if (block_group) { | 
|  | #ifdef DEBUG | 
|  | btrfs_err(root->fs_info, | 
|  | "failed to write free space cache for block group %llu", | 
|  | block_group->key.objectid); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | btrfs_update_inode(trans, root, inode); | 
|  |  | 
|  | if (block_group) { | 
|  | /* the dirty list is protected by the dirty_bgs_lock */ | 
|  | spin_lock(&trans->transaction->dirty_bgs_lock); | 
|  |  | 
|  | /* the disk_cache_state is protected by the block group lock */ | 
|  | spin_lock(&block_group->lock); | 
|  |  | 
|  | /* | 
|  | * only mark this as written if we didn't get put back on | 
|  | * the dirty list while waiting for IO.   Otherwise our | 
|  | * cache state won't be right, and we won't get written again | 
|  | */ | 
|  | if (!ret && list_empty(&block_group->dirty_list)) | 
|  | block_group->disk_cache_state = BTRFS_DC_WRITTEN; | 
|  | else if (ret) | 
|  | block_group->disk_cache_state = BTRFS_DC_ERROR; | 
|  |  | 
|  | spin_unlock(&block_group->lock); | 
|  | spin_unlock(&trans->transaction->dirty_bgs_lock); | 
|  | io_ctl->inode = NULL; | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int btrfs_wait_cache_io_root(struct btrfs_root *root, | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_io_ctl *io_ctl, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0); | 
|  | } | 
|  |  | 
|  | int btrfs_wait_cache_io(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans, | 
|  | block_group, &block_group->io_ctl, | 
|  | path, block_group->key.objectid); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __btrfs_write_out_cache - write out cached info to an inode | 
|  | * @root - the root the inode belongs to | 
|  | * @ctl - the free space cache we are going to write out | 
|  | * @block_group - the block_group for this cache if it belongs to a block_group | 
|  | * @trans - the trans handle | 
|  | * | 
|  | * This function writes out a free space cache struct to disk for quick recovery | 
|  | * on mount.  This will return 0 if it was successful in writing the cache out, | 
|  | * or an errno if it was not. | 
|  | */ | 
|  | static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode, | 
|  | struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_io_ctl *io_ctl, | 
|  | struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct extent_state *cached_state = NULL; | 
|  | LIST_HEAD(bitmap_list); | 
|  | int entries = 0; | 
|  | int bitmaps = 0; | 
|  | int ret; | 
|  | int must_iput = 0; | 
|  |  | 
|  | if (!i_size_read(inode)) | 
|  | return -EIO; | 
|  |  | 
|  | WARN_ON(io_ctl->pages); | 
|  | ret = io_ctl_init(io_ctl, inode, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) { | 
|  | down_write(&block_group->data_rwsem); | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->delalloc_bytes) { | 
|  | block_group->disk_cache_state = BTRFS_DC_WRITTEN; | 
|  | spin_unlock(&block_group->lock); | 
|  | up_write(&block_group->data_rwsem); | 
|  | BTRFS_I(inode)->generation = 0; | 
|  | ret = 0; | 
|  | must_iput = 1; | 
|  | goto out; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  | } | 
|  |  | 
|  | /* Lock all pages first so we can lock the extent safely. */ | 
|  | ret = io_ctl_prepare_pages(io_ctl, inode, 0); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, | 
|  | &cached_state); | 
|  |  | 
|  | io_ctl_set_generation(io_ctl, trans->transid); | 
|  |  | 
|  | mutex_lock(&ctl->cache_writeout_mutex); | 
|  | /* Write out the extent entries in the free space cache */ | 
|  | spin_lock(&ctl->tree_lock); | 
|  | ret = write_cache_extent_entries(io_ctl, ctl, | 
|  | block_group, &entries, &bitmaps, | 
|  | &bitmap_list); | 
|  | if (ret) | 
|  | goto out_nospc_locked; | 
|  |  | 
|  | /* | 
|  | * Some spaces that are freed in the current transaction are pinned, | 
|  | * they will be added into free space cache after the transaction is | 
|  | * committed, we shouldn't lose them. | 
|  | * | 
|  | * If this changes while we are working we'll get added back to | 
|  | * the dirty list and redo it.  No locking needed | 
|  | */ | 
|  | ret = write_pinned_extent_entries(block_group, io_ctl, &entries); | 
|  | if (ret) | 
|  | goto out_nospc_locked; | 
|  |  | 
|  | /* | 
|  | * At last, we write out all the bitmaps and keep cache_writeout_mutex | 
|  | * locked while doing it because a concurrent trim can be manipulating | 
|  | * or freeing the bitmap. | 
|  | */ | 
|  | ret = write_bitmap_entries(io_ctl, &bitmap_list); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  | if (ret) | 
|  | goto out_nospc; | 
|  |  | 
|  | /* Zero out the rest of the pages just to make sure */ | 
|  | io_ctl_zero_remaining_pages(io_ctl); | 
|  |  | 
|  | /* Everything is written out, now we dirty the pages in the file. */ | 
|  | ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0, | 
|  | i_size_read(inode), &cached_state); | 
|  | if (ret) | 
|  | goto out_nospc; | 
|  |  | 
|  | if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) | 
|  | up_write(&block_group->data_rwsem); | 
|  | /* | 
|  | * Release the pages and unlock the extent, we will flush | 
|  | * them out later | 
|  | */ | 
|  | io_ctl_drop_pages(io_ctl); | 
|  |  | 
|  | unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, | 
|  | i_size_read(inode) - 1, &cached_state); | 
|  |  | 
|  | /* | 
|  | * at this point the pages are under IO and we're happy, | 
|  | * The caller is responsible for waiting on them and updating the | 
|  | * the cache and the inode | 
|  | */ | 
|  | io_ctl->entries = entries; | 
|  | io_ctl->bitmaps = bitmaps; | 
|  |  | 
|  | ret = btrfs_fdatawrite_range(inode, 0, (u64)-1); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | io_ctl->inode = NULL; | 
|  | io_ctl_free(io_ctl); | 
|  | if (ret) { | 
|  | invalidate_inode_pages2(inode->i_mapping); | 
|  | BTRFS_I(inode)->generation = 0; | 
|  | } | 
|  | btrfs_update_inode(trans, root, inode); | 
|  | if (must_iput) | 
|  | iput(inode); | 
|  | return ret; | 
|  |  | 
|  | out_nospc_locked: | 
|  | cleanup_bitmap_list(&bitmap_list); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  |  | 
|  | out_nospc: | 
|  | cleanup_write_cache_enospc(inode, io_ctl, &cached_state); | 
|  |  | 
|  | out_unlock: | 
|  | if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) | 
|  | up_write(&block_group->data_rwsem); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | int btrfs_write_out_cache(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct inode *inode; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->disk_cache_state < BTRFS_DC_SETUP) { | 
|  | spin_unlock(&block_group->lock); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | inode = lookup_free_space_inode(block_group, path); | 
|  | if (IS_ERR(inode)) | 
|  | return 0; | 
|  |  | 
|  | ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl, | 
|  | block_group, &block_group->io_ctl, trans); | 
|  | if (ret) { | 
|  | #ifdef DEBUG | 
|  | btrfs_err(fs_info, | 
|  | "failed to write free space cache for block group %llu", | 
|  | block_group->key.objectid); | 
|  | #endif | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->disk_cache_state = BTRFS_DC_ERROR; | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | block_group->io_ctl.inode = NULL; | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if ret == 0 the caller is expected to call btrfs_wait_cache_io | 
|  | * to wait for IO and put the inode | 
|  | */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit, | 
|  | u64 offset) | 
|  | { | 
|  | ASSERT(offset >= bitmap_start); | 
|  | offset -= bitmap_start; | 
|  | return (unsigned long)(div_u64(offset, unit)); | 
|  | } | 
|  |  | 
|  | static inline unsigned long bytes_to_bits(u64 bytes, u32 unit) | 
|  | { | 
|  | return (unsigned long)(div_u64(bytes, unit)); | 
|  | } | 
|  |  | 
|  | static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl, | 
|  | u64 offset) | 
|  | { | 
|  | u64 bitmap_start; | 
|  | u64 bytes_per_bitmap; | 
|  |  | 
|  | bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit; | 
|  | bitmap_start = offset - ctl->start; | 
|  | bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); | 
|  | bitmap_start *= bytes_per_bitmap; | 
|  | bitmap_start += ctl->start; | 
|  |  | 
|  | return bitmap_start; | 
|  | } | 
|  |  | 
|  | static int tree_insert_offset(struct rb_root *root, u64 offset, | 
|  | struct rb_node *node, int bitmap) | 
|  | { | 
|  | struct rb_node **p = &root->rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct btrfs_free_space *info; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | info = rb_entry(parent, struct btrfs_free_space, offset_index); | 
|  |  | 
|  | if (offset < info->offset) { | 
|  | p = &(*p)->rb_left; | 
|  | } else if (offset > info->offset) { | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | /* | 
|  | * we could have a bitmap entry and an extent entry | 
|  | * share the same offset.  If this is the case, we want | 
|  | * the extent entry to always be found first if we do a | 
|  | * linear search through the tree, since we want to have | 
|  | * the quickest allocation time, and allocating from an | 
|  | * extent is faster than allocating from a bitmap.  So | 
|  | * if we're inserting a bitmap and we find an entry at | 
|  | * this offset, we want to go right, or after this entry | 
|  | * logically.  If we are inserting an extent and we've | 
|  | * found a bitmap, we want to go left, or before | 
|  | * logically. | 
|  | */ | 
|  | if (bitmap) { | 
|  | if (info->bitmap) { | 
|  | WARN_ON_ONCE(1); | 
|  | return -EEXIST; | 
|  | } | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | if (!info->bitmap) { | 
|  | WARN_ON_ONCE(1); | 
|  | return -EEXIST; | 
|  | } | 
|  | p = &(*p)->rb_left; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(node, parent, p); | 
|  | rb_insert_color(node, root); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * searches the tree for the given offset. | 
|  | * | 
|  | * fuzzy - If this is set, then we are trying to make an allocation, and we just | 
|  | * want a section that has at least bytes size and comes at or after the given | 
|  | * offset. | 
|  | */ | 
|  | static struct btrfs_free_space * | 
|  | tree_search_offset(struct btrfs_free_space_ctl *ctl, | 
|  | u64 offset, int bitmap_only, int fuzzy) | 
|  | { | 
|  | struct rb_node *n = ctl->free_space_offset.rb_node; | 
|  | struct btrfs_free_space *entry, *prev = NULL; | 
|  |  | 
|  | /* find entry that is closest to the 'offset' */ | 
|  | while (1) { | 
|  | if (!n) { | 
|  | entry = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | prev = entry; | 
|  |  | 
|  | if (offset < entry->offset) | 
|  | n = n->rb_left; | 
|  | else if (offset > entry->offset) | 
|  | n = n->rb_right; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (bitmap_only) { | 
|  | if (!entry) | 
|  | return NULL; | 
|  | if (entry->bitmap) | 
|  | return entry; | 
|  |  | 
|  | /* | 
|  | * bitmap entry and extent entry may share same offset, | 
|  | * in that case, bitmap entry comes after extent entry. | 
|  | */ | 
|  | n = rb_next(n); | 
|  | if (!n) | 
|  | return NULL; | 
|  | entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | if (entry->offset != offset) | 
|  | return NULL; | 
|  |  | 
|  | WARN_ON(!entry->bitmap); | 
|  | return entry; | 
|  | } else if (entry) { | 
|  | if (entry->bitmap) { | 
|  | /* | 
|  | * if previous extent entry covers the offset, | 
|  | * we should return it instead of the bitmap entry | 
|  | */ | 
|  | n = rb_prev(&entry->offset_index); | 
|  | if (n) { | 
|  | prev = rb_entry(n, struct btrfs_free_space, | 
|  | offset_index); | 
|  | if (!prev->bitmap && | 
|  | prev->offset + prev->bytes > offset) | 
|  | entry = prev; | 
|  | } | 
|  | } | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | if (!prev) | 
|  | return NULL; | 
|  |  | 
|  | /* find last entry before the 'offset' */ | 
|  | entry = prev; | 
|  | if (entry->offset > offset) { | 
|  | n = rb_prev(&entry->offset_index); | 
|  | if (n) { | 
|  | entry = rb_entry(n, struct btrfs_free_space, | 
|  | offset_index); | 
|  | ASSERT(entry->offset <= offset); | 
|  | } else { | 
|  | if (fuzzy) | 
|  | return entry; | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (entry->bitmap) { | 
|  | n = rb_prev(&entry->offset_index); | 
|  | if (n) { | 
|  | prev = rb_entry(n, struct btrfs_free_space, | 
|  | offset_index); | 
|  | if (!prev->bitmap && | 
|  | prev->offset + prev->bytes > offset) | 
|  | return prev; | 
|  | } | 
|  | if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset) | 
|  | return entry; | 
|  | } else if (entry->offset + entry->bytes > offset) | 
|  | return entry; | 
|  |  | 
|  | if (!fuzzy) | 
|  | return NULL; | 
|  |  | 
|  | while (1) { | 
|  | if (entry->bitmap) { | 
|  | if (entry->offset + BITS_PER_BITMAP * | 
|  | ctl->unit > offset) | 
|  | break; | 
|  | } else { | 
|  | if (entry->offset + entry->bytes > offset) | 
|  | break; | 
|  | } | 
|  |  | 
|  | n = rb_next(&entry->offset_index); | 
|  | if (!n) | 
|  | return NULL; | 
|  | entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | } | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __unlink_free_space(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info) | 
|  | { | 
|  | rb_erase(&info->offset_index, &ctl->free_space_offset); | 
|  | ctl->free_extents--; | 
|  | } | 
|  |  | 
|  | static void unlink_free_space(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info) | 
|  | { | 
|  | __unlink_free_space(ctl, info); | 
|  | ctl->free_space -= info->bytes; | 
|  | } | 
|  |  | 
|  | static int link_free_space(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | ASSERT(info->bytes || info->bitmap); | 
|  | ret = tree_insert_offset(&ctl->free_space_offset, info->offset, | 
|  | &info->offset_index, (info->bitmap != NULL)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ctl->free_space += info->bytes; | 
|  | ctl->free_extents++; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group = ctl->private; | 
|  | u64 max_bytes; | 
|  | u64 bitmap_bytes; | 
|  | u64 extent_bytes; | 
|  | u64 size = block_group->key.offset; | 
|  | u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit; | 
|  | u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg); | 
|  |  | 
|  | max_bitmaps = max_t(u64, max_bitmaps, 1); | 
|  |  | 
|  | ASSERT(ctl->total_bitmaps <= max_bitmaps); | 
|  |  | 
|  | /* | 
|  | * The goal is to keep the total amount of memory used per 1gb of space | 
|  | * at or below 32k, so we need to adjust how much memory we allow to be | 
|  | * used by extent based free space tracking | 
|  | */ | 
|  | if (size < SZ_1G) | 
|  | max_bytes = MAX_CACHE_BYTES_PER_GIG; | 
|  | else | 
|  | max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G); | 
|  |  | 
|  | /* | 
|  | * we want to account for 1 more bitmap than what we have so we can make | 
|  | * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as | 
|  | * we add more bitmaps. | 
|  | */ | 
|  | bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit; | 
|  |  | 
|  | if (bitmap_bytes >= max_bytes) { | 
|  | ctl->extents_thresh = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we want the extent entry threshold to always be at most 1/2 the max | 
|  | * bytes we can have, or whatever is less than that. | 
|  | */ | 
|  | extent_bytes = max_bytes - bitmap_bytes; | 
|  | extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1); | 
|  |  | 
|  | ctl->extents_thresh = | 
|  | div_u64(extent_bytes, sizeof(struct btrfs_free_space)); | 
|  | } | 
|  |  | 
|  | static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info, | 
|  | u64 offset, u64 bytes) | 
|  | { | 
|  | unsigned long start, count; | 
|  |  | 
|  | start = offset_to_bit(info->offset, ctl->unit, offset); | 
|  | count = bytes_to_bits(bytes, ctl->unit); | 
|  | ASSERT(start + count <= BITS_PER_BITMAP); | 
|  |  | 
|  | bitmap_clear(info->bitmap, start, count); | 
|  |  | 
|  | info->bytes -= bytes; | 
|  | if (info->max_extent_size > ctl->unit) | 
|  | info->max_extent_size = 0; | 
|  | } | 
|  |  | 
|  | static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info, u64 offset, | 
|  | u64 bytes) | 
|  | { | 
|  | __bitmap_clear_bits(ctl, info, offset, bytes); | 
|  | ctl->free_space -= bytes; | 
|  | } | 
|  |  | 
|  | static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info, u64 offset, | 
|  | u64 bytes) | 
|  | { | 
|  | unsigned long start, count; | 
|  |  | 
|  | start = offset_to_bit(info->offset, ctl->unit, offset); | 
|  | count = bytes_to_bits(bytes, ctl->unit); | 
|  | ASSERT(start + count <= BITS_PER_BITMAP); | 
|  |  | 
|  | bitmap_set(info->bitmap, start, count); | 
|  |  | 
|  | info->bytes += bytes; | 
|  | ctl->free_space += bytes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we can not find suitable extent, we will use bytes to record | 
|  | * the size of the max extent. | 
|  | */ | 
|  | static int search_bitmap(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *bitmap_info, u64 *offset, | 
|  | u64 *bytes, bool for_alloc) | 
|  | { | 
|  | unsigned long found_bits = 0; | 
|  | unsigned long max_bits = 0; | 
|  | unsigned long bits, i; | 
|  | unsigned long next_zero; | 
|  | unsigned long extent_bits; | 
|  |  | 
|  | /* | 
|  | * Skip searching the bitmap if we don't have a contiguous section that | 
|  | * is large enough for this allocation. | 
|  | */ | 
|  | if (for_alloc && | 
|  | bitmap_info->max_extent_size && | 
|  | bitmap_info->max_extent_size < *bytes) { | 
|  | *bytes = bitmap_info->max_extent_size; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | i = offset_to_bit(bitmap_info->offset, ctl->unit, | 
|  | max_t(u64, *offset, bitmap_info->offset)); | 
|  | bits = bytes_to_bits(*bytes, ctl->unit); | 
|  |  | 
|  | for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) { | 
|  | if (for_alloc && bits == 1) { | 
|  | found_bits = 1; | 
|  | break; | 
|  | } | 
|  | next_zero = find_next_zero_bit(bitmap_info->bitmap, | 
|  | BITS_PER_BITMAP, i); | 
|  | extent_bits = next_zero - i; | 
|  | if (extent_bits >= bits) { | 
|  | found_bits = extent_bits; | 
|  | break; | 
|  | } else if (extent_bits > max_bits) { | 
|  | max_bits = extent_bits; | 
|  | } | 
|  | i = next_zero; | 
|  | } | 
|  |  | 
|  | if (found_bits) { | 
|  | *offset = (u64)(i * ctl->unit) + bitmap_info->offset; | 
|  | *bytes = (u64)(found_bits) * ctl->unit; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *bytes = (u64)(max_bits) * ctl->unit; | 
|  | bitmap_info->max_extent_size = *bytes; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline u64 get_max_extent_size(struct btrfs_free_space *entry) | 
|  | { | 
|  | if (entry->bitmap) | 
|  | return entry->max_extent_size; | 
|  | return entry->bytes; | 
|  | } | 
|  |  | 
|  | /* Cache the size of the max extent in bytes */ | 
|  | static struct btrfs_free_space * | 
|  | find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes, | 
|  | unsigned long align, u64 *max_extent_size) | 
|  | { | 
|  | struct btrfs_free_space *entry; | 
|  | struct rb_node *node; | 
|  | u64 tmp; | 
|  | u64 align_off; | 
|  | int ret; | 
|  |  | 
|  | if (!ctl->free_space_offset.rb_node) | 
|  | goto out; | 
|  |  | 
|  | entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1); | 
|  | if (!entry) | 
|  | goto out; | 
|  |  | 
|  | for (node = &entry->offset_index; node; node = rb_next(node)) { | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | if (entry->bytes < *bytes) { | 
|  | *max_extent_size = max(get_max_extent_size(entry), | 
|  | *max_extent_size); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* make sure the space returned is big enough | 
|  | * to match our requested alignment | 
|  | */ | 
|  | if (*bytes >= align) { | 
|  | tmp = entry->offset - ctl->start + align - 1; | 
|  | tmp = div64_u64(tmp, align); | 
|  | tmp = tmp * align + ctl->start; | 
|  | align_off = tmp - entry->offset; | 
|  | } else { | 
|  | align_off = 0; | 
|  | tmp = entry->offset; | 
|  | } | 
|  |  | 
|  | if (entry->bytes < *bytes + align_off) { | 
|  | *max_extent_size = max(get_max_extent_size(entry), | 
|  | *max_extent_size); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (entry->bitmap) { | 
|  | u64 size = *bytes; | 
|  |  | 
|  | ret = search_bitmap(ctl, entry, &tmp, &size, true); | 
|  | if (!ret) { | 
|  | *offset = tmp; | 
|  | *bytes = size; | 
|  | return entry; | 
|  | } else { | 
|  | *max_extent_size = | 
|  | max(get_max_extent_size(entry), | 
|  | *max_extent_size); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | *offset = tmp; | 
|  | *bytes = entry->bytes - align_off; | 
|  | return entry; | 
|  | } | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void add_new_bitmap(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info, u64 offset) | 
|  | { | 
|  | info->offset = offset_to_bitmap(ctl, offset); | 
|  | info->bytes = 0; | 
|  | INIT_LIST_HEAD(&info->list); | 
|  | link_free_space(ctl, info); | 
|  | ctl->total_bitmaps++; | 
|  |  | 
|  | ctl->op->recalc_thresholds(ctl); | 
|  | } | 
|  |  | 
|  | static void free_bitmap(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *bitmap_info) | 
|  | { | 
|  | unlink_free_space(ctl, bitmap_info); | 
|  | kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap); | 
|  | kmem_cache_free(btrfs_free_space_cachep, bitmap_info); | 
|  | ctl->total_bitmaps--; | 
|  | ctl->op->recalc_thresholds(ctl); | 
|  | } | 
|  |  | 
|  | static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *bitmap_info, | 
|  | u64 *offset, u64 *bytes) | 
|  | { | 
|  | u64 end; | 
|  | u64 search_start, search_bytes; | 
|  | int ret; | 
|  |  | 
|  | again: | 
|  | end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1; | 
|  |  | 
|  | /* | 
|  | * We need to search for bits in this bitmap.  We could only cover some | 
|  | * of the extent in this bitmap thanks to how we add space, so we need | 
|  | * to search for as much as it as we can and clear that amount, and then | 
|  | * go searching for the next bit. | 
|  | */ | 
|  | search_start = *offset; | 
|  | search_bytes = ctl->unit; | 
|  | search_bytes = min(search_bytes, end - search_start + 1); | 
|  | ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes, | 
|  | false); | 
|  | if (ret < 0 || search_start != *offset) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* We may have found more bits than what we need */ | 
|  | search_bytes = min(search_bytes, *bytes); | 
|  |  | 
|  | /* Cannot clear past the end of the bitmap */ | 
|  | search_bytes = min(search_bytes, end - search_start + 1); | 
|  |  | 
|  | bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes); | 
|  | *offset += search_bytes; | 
|  | *bytes -= search_bytes; | 
|  |  | 
|  | if (*bytes) { | 
|  | struct rb_node *next = rb_next(&bitmap_info->offset_index); | 
|  | if (!bitmap_info->bytes) | 
|  | free_bitmap(ctl, bitmap_info); | 
|  |  | 
|  | /* | 
|  | * no entry after this bitmap, but we still have bytes to | 
|  | * remove, so something has gone wrong. | 
|  | */ | 
|  | if (!next) | 
|  | return -EINVAL; | 
|  |  | 
|  | bitmap_info = rb_entry(next, struct btrfs_free_space, | 
|  | offset_index); | 
|  |  | 
|  | /* | 
|  | * if the next entry isn't a bitmap we need to return to let the | 
|  | * extent stuff do its work. | 
|  | */ | 
|  | if (!bitmap_info->bitmap) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * Ok the next item is a bitmap, but it may not actually hold | 
|  | * the information for the rest of this free space stuff, so | 
|  | * look for it, and if we don't find it return so we can try | 
|  | * everything over again. | 
|  | */ | 
|  | search_start = *offset; | 
|  | search_bytes = ctl->unit; | 
|  | ret = search_bitmap(ctl, bitmap_info, &search_start, | 
|  | &search_bytes, false); | 
|  | if (ret < 0 || search_start != *offset) | 
|  | return -EAGAIN; | 
|  |  | 
|  | goto again; | 
|  | } else if (!bitmap_info->bytes) | 
|  | free_bitmap(ctl, bitmap_info); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info, u64 offset, | 
|  | u64 bytes) | 
|  | { | 
|  | u64 bytes_to_set = 0; | 
|  | u64 end; | 
|  |  | 
|  | end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit); | 
|  |  | 
|  | bytes_to_set = min(end - offset, bytes); | 
|  |  | 
|  | bitmap_set_bits(ctl, info, offset, bytes_to_set); | 
|  |  | 
|  | /* | 
|  | * We set some bytes, we have no idea what the max extent size is | 
|  | * anymore. | 
|  | */ | 
|  | info->max_extent_size = 0; | 
|  |  | 
|  | return bytes_to_set; | 
|  |  | 
|  | } | 
|  |  | 
|  | static bool use_bitmap(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group = ctl->private; | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | bool forced = false; | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | if (btrfs_should_fragment_free_space(block_group)) | 
|  | forced = true; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If we are below the extents threshold then we can add this as an | 
|  | * extent, and don't have to deal with the bitmap | 
|  | */ | 
|  | if (!forced && ctl->free_extents < ctl->extents_thresh) { | 
|  | /* | 
|  | * If this block group has some small extents we don't want to | 
|  | * use up all of our free slots in the cache with them, we want | 
|  | * to reserve them to larger extents, however if we have plenty | 
|  | * of cache left then go ahead an dadd them, no sense in adding | 
|  | * the overhead of a bitmap if we don't have to. | 
|  | */ | 
|  | if (info->bytes <= fs_info->sectorsize * 4) { | 
|  | if (ctl->free_extents * 2 <= ctl->extents_thresh) | 
|  | return false; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The original block groups from mkfs can be really small, like 8 | 
|  | * megabytes, so don't bother with a bitmap for those entries.  However | 
|  | * some block groups can be smaller than what a bitmap would cover but | 
|  | * are still large enough that they could overflow the 32k memory limit, | 
|  | * so allow those block groups to still be allowed to have a bitmap | 
|  | * entry. | 
|  | */ | 
|  | if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const struct btrfs_free_space_op free_space_op = { | 
|  | .recalc_thresholds	= recalculate_thresholds, | 
|  | .use_bitmap		= use_bitmap, | 
|  | }; | 
|  |  | 
|  | static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info) | 
|  | { | 
|  | struct btrfs_free_space *bitmap_info; | 
|  | struct btrfs_block_group_cache *block_group = NULL; | 
|  | int added = 0; | 
|  | u64 bytes, offset, bytes_added; | 
|  | int ret; | 
|  |  | 
|  | bytes = info->bytes; | 
|  | offset = info->offset; | 
|  |  | 
|  | if (!ctl->op->use_bitmap(ctl, info)) | 
|  | return 0; | 
|  |  | 
|  | if (ctl->op == &free_space_op) | 
|  | block_group = ctl->private; | 
|  | again: | 
|  | /* | 
|  | * Since we link bitmaps right into the cluster we need to see if we | 
|  | * have a cluster here, and if so and it has our bitmap we need to add | 
|  | * the free space to that bitmap. | 
|  | */ | 
|  | if (block_group && !list_empty(&block_group->cluster_list)) { | 
|  | struct btrfs_free_cluster *cluster; | 
|  | struct rb_node *node; | 
|  | struct btrfs_free_space *entry; | 
|  |  | 
|  | cluster = list_entry(block_group->cluster_list.next, | 
|  | struct btrfs_free_cluster, | 
|  | block_group_list); | 
|  | spin_lock(&cluster->lock); | 
|  | node = rb_first(&cluster->root); | 
|  | if (!node) { | 
|  | spin_unlock(&cluster->lock); | 
|  | goto no_cluster_bitmap; | 
|  | } | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | if (!entry->bitmap) { | 
|  | spin_unlock(&cluster->lock); | 
|  | goto no_cluster_bitmap; | 
|  | } | 
|  |  | 
|  | if (entry->offset == offset_to_bitmap(ctl, offset)) { | 
|  | bytes_added = add_bytes_to_bitmap(ctl, entry, | 
|  | offset, bytes); | 
|  | bytes -= bytes_added; | 
|  | offset += bytes_added; | 
|  | } | 
|  | spin_unlock(&cluster->lock); | 
|  | if (!bytes) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | no_cluster_bitmap: | 
|  | bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), | 
|  | 1, 0); | 
|  | if (!bitmap_info) { | 
|  | ASSERT(added == 0); | 
|  | goto new_bitmap; | 
|  | } | 
|  |  | 
|  | bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); | 
|  | bytes -= bytes_added; | 
|  | offset += bytes_added; | 
|  | added = 0; | 
|  |  | 
|  | if (!bytes) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } else | 
|  | goto again; | 
|  |  | 
|  | new_bitmap: | 
|  | if (info && info->bitmap) { | 
|  | add_new_bitmap(ctl, info, offset); | 
|  | added = 1; | 
|  | info = NULL; | 
|  | goto again; | 
|  | } else { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | /* no pre-allocated info, allocate a new one */ | 
|  | if (!info) { | 
|  | info = kmem_cache_zalloc(btrfs_free_space_cachep, | 
|  | GFP_NOFS); | 
|  | if (!info) { | 
|  | spin_lock(&ctl->tree_lock); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* allocate the bitmap */ | 
|  | info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, | 
|  | GFP_NOFS); | 
|  | spin_lock(&ctl->tree_lock); | 
|  | if (!info->bitmap) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (info) { | 
|  | if (info->bitmap) | 
|  | kmem_cache_free(btrfs_free_space_bitmap_cachep, | 
|  | info->bitmap); | 
|  | kmem_cache_free(btrfs_free_space_cachep, info); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info, bool update_stat) | 
|  | { | 
|  | struct btrfs_free_space *left_info; | 
|  | struct btrfs_free_space *right_info; | 
|  | bool merged = false; | 
|  | u64 offset = info->offset; | 
|  | u64 bytes = info->bytes; | 
|  |  | 
|  | /* | 
|  | * first we want to see if there is free space adjacent to the range we | 
|  | * are adding, if there is remove that struct and add a new one to | 
|  | * cover the entire range | 
|  | */ | 
|  | right_info = tree_search_offset(ctl, offset + bytes, 0, 0); | 
|  | if (right_info && rb_prev(&right_info->offset_index)) | 
|  | left_info = rb_entry(rb_prev(&right_info->offset_index), | 
|  | struct btrfs_free_space, offset_index); | 
|  | else | 
|  | left_info = tree_search_offset(ctl, offset - 1, 0, 0); | 
|  |  | 
|  | if (right_info && !right_info->bitmap) { | 
|  | if (update_stat) | 
|  | unlink_free_space(ctl, right_info); | 
|  | else | 
|  | __unlink_free_space(ctl, right_info); | 
|  | info->bytes += right_info->bytes; | 
|  | kmem_cache_free(btrfs_free_space_cachep, right_info); | 
|  | merged = true; | 
|  | } | 
|  |  | 
|  | if (left_info && !left_info->bitmap && | 
|  | left_info->offset + left_info->bytes == offset) { | 
|  | if (update_stat) | 
|  | unlink_free_space(ctl, left_info); | 
|  | else | 
|  | __unlink_free_space(ctl, left_info); | 
|  | info->offset = left_info->offset; | 
|  | info->bytes += left_info->bytes; | 
|  | kmem_cache_free(btrfs_free_space_cachep, left_info); | 
|  | merged = true; | 
|  | } | 
|  |  | 
|  | return merged; | 
|  | } | 
|  |  | 
|  | static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info, | 
|  | bool update_stat) | 
|  | { | 
|  | struct btrfs_free_space *bitmap; | 
|  | unsigned long i; | 
|  | unsigned long j; | 
|  | const u64 end = info->offset + info->bytes; | 
|  | const u64 bitmap_offset = offset_to_bitmap(ctl, end); | 
|  | u64 bytes; | 
|  |  | 
|  | bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); | 
|  | if (!bitmap) | 
|  | return false; | 
|  |  | 
|  | i = offset_to_bit(bitmap->offset, ctl->unit, end); | 
|  | j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i); | 
|  | if (j == i) | 
|  | return false; | 
|  | bytes = (j - i) * ctl->unit; | 
|  | info->bytes += bytes; | 
|  |  | 
|  | if (update_stat) | 
|  | bitmap_clear_bits(ctl, bitmap, end, bytes); | 
|  | else | 
|  | __bitmap_clear_bits(ctl, bitmap, end, bytes); | 
|  |  | 
|  | if (!bitmap->bytes) | 
|  | free_bitmap(ctl, bitmap); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info, | 
|  | bool update_stat) | 
|  | { | 
|  | struct btrfs_free_space *bitmap; | 
|  | u64 bitmap_offset; | 
|  | unsigned long i; | 
|  | unsigned long j; | 
|  | unsigned long prev_j; | 
|  | u64 bytes; | 
|  |  | 
|  | bitmap_offset = offset_to_bitmap(ctl, info->offset); | 
|  | /* If we're on a boundary, try the previous logical bitmap. */ | 
|  | if (bitmap_offset == info->offset) { | 
|  | if (info->offset == 0) | 
|  | return false; | 
|  | bitmap_offset = offset_to_bitmap(ctl, info->offset - 1); | 
|  | } | 
|  |  | 
|  | bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0); | 
|  | if (!bitmap) | 
|  | return false; | 
|  |  | 
|  | i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1; | 
|  | j = 0; | 
|  | prev_j = (unsigned long)-1; | 
|  | for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) { | 
|  | if (j > i) | 
|  | break; | 
|  | prev_j = j; | 
|  | } | 
|  | if (prev_j == i) | 
|  | return false; | 
|  |  | 
|  | if (prev_j == (unsigned long)-1) | 
|  | bytes = (i + 1) * ctl->unit; | 
|  | else | 
|  | bytes = (i - prev_j) * ctl->unit; | 
|  |  | 
|  | info->offset -= bytes; | 
|  | info->bytes += bytes; | 
|  |  | 
|  | if (update_stat) | 
|  | bitmap_clear_bits(ctl, bitmap, info->offset, bytes); | 
|  | else | 
|  | __bitmap_clear_bits(ctl, bitmap, info->offset, bytes); | 
|  |  | 
|  | if (!bitmap->bytes) | 
|  | free_bitmap(ctl, bitmap); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We prefer always to allocate from extent entries, both for clustered and | 
|  | * non-clustered allocation requests. So when attempting to add a new extent | 
|  | * entry, try to see if there's adjacent free space in bitmap entries, and if | 
|  | * there is, migrate that space from the bitmaps to the extent. | 
|  | * Like this we get better chances of satisfying space allocation requests | 
|  | * because we attempt to satisfy them based on a single cache entry, and never | 
|  | * on 2 or more entries - even if the entries represent a contiguous free space | 
|  | * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry | 
|  | * ends). | 
|  | */ | 
|  | static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl, | 
|  | struct btrfs_free_space *info, | 
|  | bool update_stat) | 
|  | { | 
|  | /* | 
|  | * Only work with disconnected entries, as we can change their offset, | 
|  | * and must be extent entries. | 
|  | */ | 
|  | ASSERT(!info->bitmap); | 
|  | ASSERT(RB_EMPTY_NODE(&info->offset_index)); | 
|  |  | 
|  | if (ctl->total_bitmaps > 0) { | 
|  | bool stole_end; | 
|  | bool stole_front = false; | 
|  |  | 
|  | stole_end = steal_from_bitmap_to_end(ctl, info, update_stat); | 
|  | if (ctl->total_bitmaps > 0) | 
|  | stole_front = steal_from_bitmap_to_front(ctl, info, | 
|  | update_stat); | 
|  |  | 
|  | if (stole_end || stole_front) | 
|  | try_merge_free_space(ctl, info, update_stat); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __btrfs_add_free_space(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_free_space_ctl *ctl, | 
|  | u64 offset, u64 bytes) | 
|  | { | 
|  | struct btrfs_free_space *info; | 
|  | int ret = 0; | 
|  |  | 
|  | info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | info->offset = offset; | 
|  | info->bytes = bytes; | 
|  | RB_CLEAR_NODE(&info->offset_index); | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  |  | 
|  | if (try_merge_free_space(ctl, info, true)) | 
|  | goto link; | 
|  |  | 
|  | /* | 
|  | * There was no extent directly to the left or right of this new | 
|  | * extent then we know we're going to have to allocate a new extent, so | 
|  | * before we do that see if we need to drop this into a bitmap | 
|  | */ | 
|  | ret = insert_into_bitmap(ctl, info); | 
|  | if (ret < 0) { | 
|  | goto out; | 
|  | } else if (ret) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | link: | 
|  | /* | 
|  | * Only steal free space from adjacent bitmaps if we're sure we're not | 
|  | * going to add the new free space to existing bitmap entries - because | 
|  | * that would mean unnecessary work that would be reverted. Therefore | 
|  | * attempt to steal space from bitmaps if we're adding an extent entry. | 
|  | */ | 
|  | steal_from_bitmap(ctl, info, true); | 
|  |  | 
|  | ret = link_free_space(ctl, info); | 
|  | if (ret) | 
|  | kmem_cache_free(btrfs_free_space_cachep, info); | 
|  | out: | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | if (ret) { | 
|  | btrfs_crit(fs_info, "unable to add free space :%d", ret); | 
|  | ASSERT(ret != -EEXIST); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, | 
|  | u64 offset, u64 bytes) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_space *info; | 
|  | int ret; | 
|  | bool re_search = false; | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  |  | 
|  | again: | 
|  | ret = 0; | 
|  | if (!bytes) | 
|  | goto out_lock; | 
|  |  | 
|  | info = tree_search_offset(ctl, offset, 0, 0); | 
|  | if (!info) { | 
|  | /* | 
|  | * oops didn't find an extent that matched the space we wanted | 
|  | * to remove, look for a bitmap instead | 
|  | */ | 
|  | info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), | 
|  | 1, 0); | 
|  | if (!info) { | 
|  | /* | 
|  | * If we found a partial bit of our free space in a | 
|  | * bitmap but then couldn't find the other part this may | 
|  | * be a problem, so WARN about it. | 
|  | */ | 
|  | WARN_ON(re_search); | 
|  | goto out_lock; | 
|  | } | 
|  | } | 
|  |  | 
|  | re_search = false; | 
|  | if (!info->bitmap) { | 
|  | unlink_free_space(ctl, info); | 
|  | if (offset == info->offset) { | 
|  | u64 to_free = min(bytes, info->bytes); | 
|  |  | 
|  | info->bytes -= to_free; | 
|  | info->offset += to_free; | 
|  | if (info->bytes) { | 
|  | ret = link_free_space(ctl, info); | 
|  | WARN_ON(ret); | 
|  | } else { | 
|  | kmem_cache_free(btrfs_free_space_cachep, info); | 
|  | } | 
|  |  | 
|  | offset += to_free; | 
|  | bytes -= to_free; | 
|  | goto again; | 
|  | } else { | 
|  | u64 old_end = info->bytes + info->offset; | 
|  |  | 
|  | info->bytes = offset - info->offset; | 
|  | ret = link_free_space(ctl, info); | 
|  | WARN_ON(ret); | 
|  | if (ret) | 
|  | goto out_lock; | 
|  |  | 
|  | /* Not enough bytes in this entry to satisfy us */ | 
|  | if (old_end < offset + bytes) { | 
|  | bytes -= old_end - offset; | 
|  | offset = old_end; | 
|  | goto again; | 
|  | } else if (old_end == offset + bytes) { | 
|  | /* all done */ | 
|  | goto out_lock; | 
|  | } | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | ret = btrfs_add_free_space(block_group, offset + bytes, | 
|  | old_end - (offset + bytes)); | 
|  | WARN_ON(ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = remove_from_bitmap(ctl, info, &offset, &bytes); | 
|  | if (ret == -EAGAIN) { | 
|  | re_search = true; | 
|  | goto again; | 
|  | } | 
|  | out_lock: | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, | 
|  | u64 bytes) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_space *info; | 
|  | struct rb_node *n; | 
|  | int count = 0; | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  | for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) { | 
|  | info = rb_entry(n, struct btrfs_free_space, offset_index); | 
|  | if (info->bytes >= bytes && !block_group->ro) | 
|  | count++; | 
|  | btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s", | 
|  | info->offset, info->bytes, | 
|  | (info->bitmap) ? "yes" : "no"); | 
|  | } | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | btrfs_info(fs_info, "block group has cluster?: %s", | 
|  | list_empty(&block_group->cluster_list) ? "no" : "yes"); | 
|  | btrfs_info(fs_info, | 
|  | "%d blocks of free space at or bigger than bytes is", count); | 
|  | } | 
|  |  | 
|  | void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  |  | 
|  | spin_lock_init(&ctl->tree_lock); | 
|  | ctl->unit = fs_info->sectorsize; | 
|  | ctl->start = block_group->key.objectid; | 
|  | ctl->private = block_group; | 
|  | ctl->op = &free_space_op; | 
|  | INIT_LIST_HEAD(&ctl->trimming_ranges); | 
|  | mutex_init(&ctl->cache_writeout_mutex); | 
|  |  | 
|  | /* | 
|  | * we only want to have 32k of ram per block group for keeping | 
|  | * track of free space, and if we pass 1/2 of that we want to | 
|  | * start converting things over to using bitmaps | 
|  | */ | 
|  | ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for a given cluster, put all of its extents back into the free | 
|  | * space cache.  If the block group passed doesn't match the block group | 
|  | * pointed to by the cluster, someone else raced in and freed the | 
|  | * cluster already.  In that case, we just return without changing anything | 
|  | */ | 
|  | static int | 
|  | __btrfs_return_cluster_to_free_space( | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_space *entry; | 
|  | struct rb_node *node; | 
|  |  | 
|  | spin_lock(&cluster->lock); | 
|  | if (cluster->block_group != block_group) | 
|  | goto out; | 
|  |  | 
|  | cluster->block_group = NULL; | 
|  | cluster->window_start = 0; | 
|  | list_del_init(&cluster->block_group_list); | 
|  |  | 
|  | node = rb_first(&cluster->root); | 
|  | while (node) { | 
|  | bool bitmap; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | node = rb_next(&entry->offset_index); | 
|  | rb_erase(&entry->offset_index, &cluster->root); | 
|  | RB_CLEAR_NODE(&entry->offset_index); | 
|  |  | 
|  | bitmap = (entry->bitmap != NULL); | 
|  | if (!bitmap) { | 
|  | try_merge_free_space(ctl, entry, false); | 
|  | steal_from_bitmap(ctl, entry, false); | 
|  | } | 
|  | tree_insert_offset(&ctl->free_space_offset, | 
|  | entry->offset, &entry->offset_index, bitmap); | 
|  | } | 
|  | cluster->root = RB_ROOT; | 
|  |  | 
|  | out: | 
|  | spin_unlock(&cluster->lock); | 
|  | btrfs_put_block_group(block_group); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __btrfs_remove_free_space_cache_locked( | 
|  | struct btrfs_free_space_ctl *ctl) | 
|  | { | 
|  | struct btrfs_free_space *info; | 
|  | struct rb_node *node; | 
|  |  | 
|  | while ((node = rb_last(&ctl->free_space_offset)) != NULL) { | 
|  | info = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | if (!info->bitmap) { | 
|  | unlink_free_space(ctl, info); | 
|  | kmem_cache_free(btrfs_free_space_cachep, info); | 
|  | } else { | 
|  | free_bitmap(ctl, info); | 
|  | } | 
|  |  | 
|  | cond_resched_lock(&ctl->tree_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl) | 
|  | { | 
|  | spin_lock(&ctl->tree_lock); | 
|  | __btrfs_remove_free_space_cache_locked(ctl); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | } | 
|  |  | 
|  | void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_cluster *cluster; | 
|  | struct list_head *head; | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  | while ((head = block_group->cluster_list.next) != | 
|  | &block_group->cluster_list) { | 
|  | cluster = list_entry(head, struct btrfs_free_cluster, | 
|  | block_group_list); | 
|  |  | 
|  | WARN_ON(cluster->block_group != block_group); | 
|  | __btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  |  | 
|  | cond_resched_lock(&ctl->tree_lock); | 
|  | } | 
|  | __btrfs_remove_free_space_cache_locked(ctl); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | } | 
|  |  | 
|  | u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, | 
|  | u64 offset, u64 bytes, u64 empty_size, | 
|  | u64 *max_extent_size) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | u64 bytes_search = bytes + empty_size; | 
|  | u64 ret = 0; | 
|  | u64 align_gap = 0; | 
|  | u64 align_gap_len = 0; | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  | entry = find_free_space(ctl, &offset, &bytes_search, | 
|  | block_group->full_stripe_len, max_extent_size); | 
|  | if (!entry) | 
|  | goto out; | 
|  |  | 
|  | ret = offset; | 
|  | if (entry->bitmap) { | 
|  | bitmap_clear_bits(ctl, entry, offset, bytes); | 
|  | if (!entry->bytes) | 
|  | free_bitmap(ctl, entry); | 
|  | } else { | 
|  | unlink_free_space(ctl, entry); | 
|  | align_gap_len = offset - entry->offset; | 
|  | align_gap = entry->offset; | 
|  |  | 
|  | entry->offset = offset + bytes; | 
|  | WARN_ON(entry->bytes < bytes + align_gap_len); | 
|  |  | 
|  | entry->bytes -= bytes + align_gap_len; | 
|  | if (!entry->bytes) | 
|  | kmem_cache_free(btrfs_free_space_cachep, entry); | 
|  | else | 
|  | link_free_space(ctl, entry); | 
|  | } | 
|  | out: | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | if (align_gap_len) | 
|  | __btrfs_add_free_space(block_group->fs_info, ctl, | 
|  | align_gap, align_gap_len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given a cluster, put all of its extents back into the free space | 
|  | * cache.  If a block group is passed, this function will only free | 
|  | * a cluster that belongs to the passed block group. | 
|  | * | 
|  | * Otherwise, it'll get a reference on the block group pointed to by the | 
|  | * cluster and remove the cluster from it. | 
|  | */ | 
|  | int btrfs_return_cluster_to_free_space( | 
|  | struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl; | 
|  | int ret; | 
|  |  | 
|  | /* first, get a safe pointer to the block group */ | 
|  | spin_lock(&cluster->lock); | 
|  | if (!block_group) { | 
|  | block_group = cluster->block_group; | 
|  | if (!block_group) { | 
|  | spin_unlock(&cluster->lock); | 
|  | return 0; | 
|  | } | 
|  | } else if (cluster->block_group != block_group) { | 
|  | /* someone else has already freed it don't redo their work */ | 
|  | spin_unlock(&cluster->lock); | 
|  | return 0; | 
|  | } | 
|  | atomic_inc(&block_group->count); | 
|  | spin_unlock(&cluster->lock); | 
|  |  | 
|  | ctl = block_group->free_space_ctl; | 
|  |  | 
|  | /* now return any extents the cluster had on it */ | 
|  | spin_lock(&ctl->tree_lock); | 
|  | ret = __btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | /* finally drop our ref */ | 
|  | btrfs_put_block_group(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | struct btrfs_free_space *entry, | 
|  | u64 bytes, u64 min_start, | 
|  | u64 *max_extent_size) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | int err; | 
|  | u64 search_start = cluster->window_start; | 
|  | u64 search_bytes = bytes; | 
|  | u64 ret = 0; | 
|  |  | 
|  | search_start = min_start; | 
|  | search_bytes = bytes; | 
|  |  | 
|  | err = search_bitmap(ctl, entry, &search_start, &search_bytes, true); | 
|  | if (err) { | 
|  | *max_extent_size = max(get_max_extent_size(entry), | 
|  | *max_extent_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = search_start; | 
|  | __bitmap_clear_bits(ctl, entry, ret, bytes); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given a cluster, try to allocate 'bytes' from it, returns 0 | 
|  | * if it couldn't find anything suitably large, or a logical disk offset | 
|  | * if things worked out | 
|  | */ | 
|  | u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, u64 bytes, | 
|  | u64 min_start, u64 *max_extent_size) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | struct rb_node *node; | 
|  | u64 ret = 0; | 
|  |  | 
|  | spin_lock(&cluster->lock); | 
|  | if (bytes > cluster->max_size) | 
|  | goto out; | 
|  |  | 
|  | if (cluster->block_group != block_group) | 
|  | goto out; | 
|  |  | 
|  | node = rb_first(&cluster->root); | 
|  | if (!node) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | while (1) { | 
|  | if (entry->bytes < bytes) | 
|  | *max_extent_size = max(get_max_extent_size(entry), | 
|  | *max_extent_size); | 
|  |  | 
|  | if (entry->bytes < bytes || | 
|  | (!entry->bitmap && entry->offset < min_start)) { | 
|  | node = rb_next(&entry->offset_index); | 
|  | if (!node) | 
|  | break; | 
|  | entry = rb_entry(node, struct btrfs_free_space, | 
|  | offset_index); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (entry->bitmap) { | 
|  | ret = btrfs_alloc_from_bitmap(block_group, | 
|  | cluster, entry, bytes, | 
|  | cluster->window_start, | 
|  | max_extent_size); | 
|  | if (ret == 0) { | 
|  | node = rb_next(&entry->offset_index); | 
|  | if (!node) | 
|  | break; | 
|  | entry = rb_entry(node, struct btrfs_free_space, | 
|  | offset_index); | 
|  | continue; | 
|  | } | 
|  | cluster->window_start += bytes; | 
|  | } else { | 
|  | ret = entry->offset; | 
|  |  | 
|  | entry->offset += bytes; | 
|  | entry->bytes -= bytes; | 
|  | } | 
|  |  | 
|  | if (entry->bytes == 0) | 
|  | rb_erase(&entry->offset_index, &cluster->root); | 
|  | break; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&cluster->lock); | 
|  |  | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  |  | 
|  | ctl->free_space -= bytes; | 
|  | if (entry->bytes == 0) { | 
|  | ctl->free_extents--; | 
|  | if (entry->bitmap) { | 
|  | kmem_cache_free(btrfs_free_space_bitmap_cachep, | 
|  | entry->bitmap); | 
|  | ctl->total_bitmaps--; | 
|  | ctl->op->recalc_thresholds(ctl); | 
|  | } | 
|  | kmem_cache_free(btrfs_free_space_cachep, entry); | 
|  | } | 
|  |  | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_space *entry, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | u64 offset, u64 bytes, | 
|  | u64 cont1_bytes, u64 min_bytes) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | unsigned long next_zero; | 
|  | unsigned long i; | 
|  | unsigned long want_bits; | 
|  | unsigned long min_bits; | 
|  | unsigned long found_bits; | 
|  | unsigned long max_bits = 0; | 
|  | unsigned long start = 0; | 
|  | unsigned long total_found = 0; | 
|  | int ret; | 
|  |  | 
|  | i = offset_to_bit(entry->offset, ctl->unit, | 
|  | max_t(u64, offset, entry->offset)); | 
|  | want_bits = bytes_to_bits(bytes, ctl->unit); | 
|  | min_bits = bytes_to_bits(min_bytes, ctl->unit); | 
|  |  | 
|  | /* | 
|  | * Don't bother looking for a cluster in this bitmap if it's heavily | 
|  | * fragmented. | 
|  | */ | 
|  | if (entry->max_extent_size && | 
|  | entry->max_extent_size < cont1_bytes) | 
|  | return -ENOSPC; | 
|  | again: | 
|  | found_bits = 0; | 
|  | for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) { | 
|  | next_zero = find_next_zero_bit(entry->bitmap, | 
|  | BITS_PER_BITMAP, i); | 
|  | if (next_zero - i >= min_bits) { | 
|  | found_bits = next_zero - i; | 
|  | if (found_bits > max_bits) | 
|  | max_bits = found_bits; | 
|  | break; | 
|  | } | 
|  | if (next_zero - i > max_bits) | 
|  | max_bits = next_zero - i; | 
|  | i = next_zero; | 
|  | } | 
|  |  | 
|  | if (!found_bits) { | 
|  | entry->max_extent_size = (u64)max_bits * ctl->unit; | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | if (!total_found) { | 
|  | start = i; | 
|  | cluster->max_size = 0; | 
|  | } | 
|  |  | 
|  | total_found += found_bits; | 
|  |  | 
|  | if (cluster->max_size < found_bits * ctl->unit) | 
|  | cluster->max_size = found_bits * ctl->unit; | 
|  |  | 
|  | if (total_found < want_bits || cluster->max_size < cont1_bytes) { | 
|  | i = next_zero + 1; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | cluster->window_start = start * ctl->unit + entry->offset; | 
|  | rb_erase(&entry->offset_index, &ctl->free_space_offset); | 
|  | ret = tree_insert_offset(&cluster->root, entry->offset, | 
|  | &entry->offset_index, 1); | 
|  | ASSERT(!ret); /* -EEXIST; Logic error */ | 
|  |  | 
|  | trace_btrfs_setup_cluster(block_group, cluster, | 
|  | total_found * ctl->unit, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This searches the block group for just extents to fill the cluster with. | 
|  | * Try to find a cluster with at least bytes total bytes, at least one | 
|  | * extent of cont1_bytes, and other clusters of at least min_bytes. | 
|  | */ | 
|  | static noinline int | 
|  | setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | struct list_head *bitmaps, u64 offset, u64 bytes, | 
|  | u64 cont1_bytes, u64 min_bytes) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_space *first = NULL; | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | struct btrfs_free_space *last; | 
|  | struct rb_node *node; | 
|  | u64 window_free; | 
|  | u64 max_extent; | 
|  | u64 total_size = 0; | 
|  |  | 
|  | entry = tree_search_offset(ctl, offset, 0, 1); | 
|  | if (!entry) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* | 
|  | * We don't want bitmaps, so just move along until we find a normal | 
|  | * extent entry. | 
|  | */ | 
|  | while (entry->bitmap || entry->bytes < min_bytes) { | 
|  | if (entry->bitmap && list_empty(&entry->list)) | 
|  | list_add_tail(&entry->list, bitmaps); | 
|  | node = rb_next(&entry->offset_index); | 
|  | if (!node) | 
|  | return -ENOSPC; | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | } | 
|  |  | 
|  | window_free = entry->bytes; | 
|  | max_extent = entry->bytes; | 
|  | first = entry; | 
|  | last = entry; | 
|  |  | 
|  | for (node = rb_next(&entry->offset_index); node; | 
|  | node = rb_next(&entry->offset_index)) { | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  |  | 
|  | if (entry->bitmap) { | 
|  | if (list_empty(&entry->list)) | 
|  | list_add_tail(&entry->list, bitmaps); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (entry->bytes < min_bytes) | 
|  | continue; | 
|  |  | 
|  | last = entry; | 
|  | window_free += entry->bytes; | 
|  | if (entry->bytes > max_extent) | 
|  | max_extent = entry->bytes; | 
|  | } | 
|  |  | 
|  | if (window_free < bytes || max_extent < cont1_bytes) | 
|  | return -ENOSPC; | 
|  |  | 
|  | cluster->window_start = first->offset; | 
|  |  | 
|  | node = &first->offset_index; | 
|  |  | 
|  | /* | 
|  | * now we've found our entries, pull them out of the free space | 
|  | * cache and put them into the cluster rbtree | 
|  | */ | 
|  | do { | 
|  | int ret; | 
|  |  | 
|  | entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
|  | node = rb_next(&entry->offset_index); | 
|  | if (entry->bitmap || entry->bytes < min_bytes) | 
|  | continue; | 
|  |  | 
|  | rb_erase(&entry->offset_index, &ctl->free_space_offset); | 
|  | ret = tree_insert_offset(&cluster->root, entry->offset, | 
|  | &entry->offset_index, 0); | 
|  | total_size += entry->bytes; | 
|  | ASSERT(!ret); /* -EEXIST; Logic error */ | 
|  | } while (node && entry != last); | 
|  |  | 
|  | cluster->max_size = max_extent; | 
|  | trace_btrfs_setup_cluster(block_group, cluster, total_size, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This specifically looks for bitmaps that may work in the cluster, we assume | 
|  | * that we have already failed to find extents that will work. | 
|  | */ | 
|  | static noinline int | 
|  | setup_cluster_bitmap(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | struct list_head *bitmaps, u64 offset, u64 bytes, | 
|  | u64 cont1_bytes, u64 min_bytes) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | int ret = -ENOSPC; | 
|  | u64 bitmap_offset = offset_to_bitmap(ctl, offset); | 
|  |  | 
|  | if (ctl->total_bitmaps == 0) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* | 
|  | * The bitmap that covers offset won't be in the list unless offset | 
|  | * is just its start offset. | 
|  | */ | 
|  | if (!list_empty(bitmaps)) | 
|  | entry = list_first_entry(bitmaps, struct btrfs_free_space, list); | 
|  |  | 
|  | if (!entry || entry->offset != bitmap_offset) { | 
|  | entry = tree_search_offset(ctl, bitmap_offset, 1, 0); | 
|  | if (entry && list_empty(&entry->list)) | 
|  | list_add(&entry->list, bitmaps); | 
|  | } | 
|  |  | 
|  | list_for_each_entry(entry, bitmaps, list) { | 
|  | if (entry->bytes < bytes) | 
|  | continue; | 
|  | ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, | 
|  | bytes, cont1_bytes, min_bytes); | 
|  | if (!ret) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The bitmaps list has all the bitmaps that record free space | 
|  | * starting after offset, so no more search is required. | 
|  | */ | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * here we try to find a cluster of blocks in a block group.  The goal | 
|  | * is to find at least bytes+empty_size. | 
|  | * We might not find them all in one contiguous area. | 
|  | * | 
|  | * returns zero and sets up cluster if things worked out, otherwise | 
|  | * it returns -enospc | 
|  | */ | 
|  | int btrfs_find_space_cluster(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | u64 offset, u64 bytes, u64 empty_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_space *entry, *tmp; | 
|  | LIST_HEAD(bitmaps); | 
|  | u64 min_bytes; | 
|  | u64 cont1_bytes; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Choose the minimum extent size we'll require for this | 
|  | * cluster.  For SSD_SPREAD, don't allow any fragmentation. | 
|  | * For metadata, allow allocates with smaller extents.  For | 
|  | * data, keep it dense. | 
|  | */ | 
|  | if (btrfs_test_opt(fs_info, SSD_SPREAD)) { | 
|  | cont1_bytes = min_bytes = bytes + empty_size; | 
|  | } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
|  | cont1_bytes = bytes; | 
|  | min_bytes = fs_info->sectorsize; | 
|  | } else { | 
|  | cont1_bytes = max(bytes, (bytes + empty_size) >> 2); | 
|  | min_bytes = fs_info->sectorsize; | 
|  | } | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  |  | 
|  | /* | 
|  | * If we know we don't have enough space to make a cluster don't even | 
|  | * bother doing all the work to try and find one. | 
|  | */ | 
|  | if (ctl->free_space < bytes) { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | spin_lock(&cluster->lock); | 
|  |  | 
|  | /* someone already found a cluster, hooray */ | 
|  | if (cluster->block_group) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trace_btrfs_find_cluster(block_group, offset, bytes, empty_size, | 
|  | min_bytes); | 
|  |  | 
|  | ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset, | 
|  | bytes + empty_size, | 
|  | cont1_bytes, min_bytes); | 
|  | if (ret) | 
|  | ret = setup_cluster_bitmap(block_group, cluster, &bitmaps, | 
|  | offset, bytes + empty_size, | 
|  | cont1_bytes, min_bytes); | 
|  |  | 
|  | /* Clear our temporary list */ | 
|  | list_for_each_entry_safe(entry, tmp, &bitmaps, list) | 
|  | list_del_init(&entry->list); | 
|  |  | 
|  | if (!ret) { | 
|  | atomic_inc(&block_group->count); | 
|  | list_add_tail(&cluster->block_group_list, | 
|  | &block_group->cluster_list); | 
|  | cluster->block_group = block_group; | 
|  | } else { | 
|  | trace_btrfs_failed_cluster_setup(block_group); | 
|  | } | 
|  | out: | 
|  | spin_unlock(&cluster->lock); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * simple code to zero out a cluster | 
|  | */ | 
|  | void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) | 
|  | { | 
|  | spin_lock_init(&cluster->lock); | 
|  | spin_lock_init(&cluster->refill_lock); | 
|  | cluster->root = RB_ROOT; | 
|  | cluster->max_size = 0; | 
|  | cluster->fragmented = false; | 
|  | INIT_LIST_HEAD(&cluster->block_group_list); | 
|  | cluster->block_group = NULL; | 
|  | } | 
|  |  | 
|  | static int do_trimming(struct btrfs_block_group_cache *block_group, | 
|  | u64 *total_trimmed, u64 start, u64 bytes, | 
|  | u64 reserved_start, u64 reserved_bytes, | 
|  | struct btrfs_trim_range *trim_entry) | 
|  | { | 
|  | struct btrfs_space_info *space_info = block_group->space_info; | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | int ret; | 
|  | int update = 0; | 
|  | u64 trimmed = 0; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&block_group->lock); | 
|  | if (!block_group->ro) { | 
|  | block_group->reserved += reserved_bytes; | 
|  | space_info->bytes_reserved += reserved_bytes; | 
|  | update = 1; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed); | 
|  | if (!ret) | 
|  | *total_trimmed += trimmed; | 
|  |  | 
|  | mutex_lock(&ctl->cache_writeout_mutex); | 
|  | btrfs_add_free_space(block_group, reserved_start, reserved_bytes); | 
|  | list_del(&trim_entry->list); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  |  | 
|  | if (update) { | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->ro) | 
|  | space_info->bytes_readonly += reserved_bytes; | 
|  | block_group->reserved -= reserved_bytes; | 
|  | space_info->bytes_reserved -= reserved_bytes; | 
|  | spin_unlock(&block_group->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int trim_no_bitmap(struct btrfs_block_group_cache *block_group, | 
|  | u64 *total_trimmed, u64 start, u64 end, u64 minlen) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_space *entry; | 
|  | struct rb_node *node; | 
|  | int ret = 0; | 
|  | u64 extent_start; | 
|  | u64 extent_bytes; | 
|  | u64 bytes; | 
|  |  | 
|  | while (start < end) { | 
|  | struct btrfs_trim_range trim_entry; | 
|  |  | 
|  | mutex_lock(&ctl->cache_writeout_mutex); | 
|  | spin_lock(&ctl->tree_lock); | 
|  |  | 
|  | if (ctl->free_space < minlen) { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | entry = tree_search_offset(ctl, start, 0, 1); | 
|  | if (!entry) { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* skip bitmaps */ | 
|  | while (entry->bitmap) { | 
|  | node = rb_next(&entry->offset_index); | 
|  | if (!node) { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  | goto out; | 
|  | } | 
|  | entry = rb_entry(node, struct btrfs_free_space, | 
|  | offset_index); | 
|  | } | 
|  |  | 
|  | if (entry->offset >= end) { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | extent_start = entry->offset; | 
|  | extent_bytes = entry->bytes; | 
|  | start = max(start, extent_start); | 
|  | bytes = min(extent_start + extent_bytes, end) - start; | 
|  | if (bytes < minlen) { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | unlink_free_space(ctl, entry); | 
|  | kmem_cache_free(btrfs_free_space_cachep, entry); | 
|  |  | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | trim_entry.start = extent_start; | 
|  | trim_entry.bytes = extent_bytes; | 
|  | list_add_tail(&trim_entry.list, &ctl->trimming_ranges); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  |  | 
|  | ret = do_trimming(block_group, total_trimmed, start, bytes, | 
|  | extent_start, extent_bytes, &trim_entry); | 
|  | if (ret) | 
|  | break; | 
|  | next: | 
|  | start += bytes; | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int trim_bitmaps(struct btrfs_block_group_cache *block_group, | 
|  | u64 *total_trimmed, u64 start, u64 end, u64 minlen) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; | 
|  | struct btrfs_free_space *entry; | 
|  | int ret = 0; | 
|  | int ret2; | 
|  | u64 bytes; | 
|  | u64 offset = offset_to_bitmap(ctl, start); | 
|  |  | 
|  | while (offset < end) { | 
|  | bool next_bitmap = false; | 
|  | struct btrfs_trim_range trim_entry; | 
|  |  | 
|  | mutex_lock(&ctl->cache_writeout_mutex); | 
|  | spin_lock(&ctl->tree_lock); | 
|  |  | 
|  | if (ctl->free_space < minlen) { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | entry = tree_search_offset(ctl, offset, 1, 0); | 
|  | if (!entry) { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  | next_bitmap = true; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | bytes = minlen; | 
|  | ret2 = search_bitmap(ctl, entry, &start, &bytes, false); | 
|  | if (ret2 || start >= end) { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  | next_bitmap = true; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | bytes = min(bytes, end - start); | 
|  | if (bytes < minlen) { | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | bitmap_clear_bits(ctl, entry, start, bytes); | 
|  | if (entry->bytes == 0) | 
|  | free_bitmap(ctl, entry); | 
|  |  | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | trim_entry.start = start; | 
|  | trim_entry.bytes = bytes; | 
|  | list_add_tail(&trim_entry.list, &ctl->trimming_ranges); | 
|  | mutex_unlock(&ctl->cache_writeout_mutex); | 
|  |  | 
|  | ret = do_trimming(block_group, total_trimmed, start, bytes, | 
|  | start, bytes, &trim_entry); | 
|  | if (ret) | 
|  | break; | 
|  | next: | 
|  | if (next_bitmap) { | 
|  | offset += BITS_PER_BITMAP * ctl->unit; | 
|  | } else { | 
|  | start += bytes; | 
|  | if (start >= offset + BITS_PER_BITMAP * ctl->unit) | 
|  | offset += BITS_PER_BITMAP * ctl->unit; | 
|  | } | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | atomic_inc(&cache->trimming); | 
|  | } | 
|  |  | 
|  | void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct extent_map_tree *em_tree; | 
|  | struct extent_map *em; | 
|  | bool cleanup; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | cleanup = (atomic_dec_and_test(&block_group->trimming) && | 
|  | block_group->removed); | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | if (cleanup) { | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | em_tree = &fs_info->mapping_tree; | 
|  | write_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, block_group->key.objectid, | 
|  | 1); | 
|  | BUG_ON(!em); /* logic error, can't happen */ | 
|  | remove_extent_mapping(em_tree, em); | 
|  | write_unlock(&em_tree->lock); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | /* once for us and once for the tree */ | 
|  | free_extent_map(em); | 
|  | free_extent_map(em); | 
|  |  | 
|  | /* | 
|  | * We've left one free space entry and other tasks trimming | 
|  | * this block group have left 1 entry each one. Free them. | 
|  | */ | 
|  | __btrfs_remove_free_space_cache(block_group->free_space_ctl); | 
|  | } | 
|  | } | 
|  |  | 
|  | int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group, | 
|  | u64 *trimmed, u64 start, u64 end, u64 minlen) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | *trimmed = 0; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->removed) { | 
|  | spin_unlock(&block_group->lock); | 
|  | return 0; | 
|  | } | 
|  | btrfs_get_block_group_trimming(block_group); | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | ret = trim_no_bitmap(block_group, trimmed, start, end, minlen); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = trim_bitmaps(block_group, trimmed, start, end, minlen); | 
|  | out: | 
|  | btrfs_put_block_group_trimming(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the left-most item in the cache tree, and then return the | 
|  | * smallest inode number in the item. | 
|  | * | 
|  | * Note: the returned inode number may not be the smallest one in | 
|  | * the tree, if the left-most item is a bitmap. | 
|  | */ | 
|  | u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl; | 
|  | struct btrfs_free_space *entry = NULL; | 
|  | u64 ino = 0; | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  |  | 
|  | if (RB_EMPTY_ROOT(&ctl->free_space_offset)) | 
|  | goto out; | 
|  |  | 
|  | entry = rb_entry(rb_first(&ctl->free_space_offset), | 
|  | struct btrfs_free_space, offset_index); | 
|  |  | 
|  | if (!entry->bitmap) { | 
|  | ino = entry->offset; | 
|  |  | 
|  | unlink_free_space(ctl, entry); | 
|  | entry->offset++; | 
|  | entry->bytes--; | 
|  | if (!entry->bytes) | 
|  | kmem_cache_free(btrfs_free_space_cachep, entry); | 
|  | else | 
|  | link_free_space(ctl, entry); | 
|  | } else { | 
|  | u64 offset = 0; | 
|  | u64 count = 1; | 
|  | int ret; | 
|  |  | 
|  | ret = search_bitmap(ctl, entry, &offset, &count, true); | 
|  | /* Logic error; Should be empty if it can't find anything */ | 
|  | ASSERT(!ret); | 
|  |  | 
|  | ino = offset; | 
|  | bitmap_clear_bits(ctl, entry, offset, 1); | 
|  | if (entry->bytes == 0) | 
|  | free_bitmap(ctl, entry); | 
|  | } | 
|  | out: | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | return ino; | 
|  | } | 
|  |  | 
|  | struct inode *lookup_free_ino_inode(struct btrfs_root *root, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct inode *inode = NULL; | 
|  |  | 
|  | spin_lock(&root->ino_cache_lock); | 
|  | if (root->ino_cache_inode) | 
|  | inode = igrab(root->ino_cache_inode); | 
|  | spin_unlock(&root->ino_cache_lock); | 
|  | if (inode) | 
|  | return inode; | 
|  |  | 
|  | inode = __lookup_free_space_inode(root, path, 0); | 
|  | if (IS_ERR(inode)) | 
|  | return inode; | 
|  |  | 
|  | spin_lock(&root->ino_cache_lock); | 
|  | if (!btrfs_fs_closing(root->fs_info)) | 
|  | root->ino_cache_inode = igrab(inode); | 
|  | spin_unlock(&root->ino_cache_lock); | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | int create_free_ino_inode(struct btrfs_root *root, | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | return __create_free_space_inode(root, trans, path, | 
|  | BTRFS_FREE_INO_OBJECTID, 0); | 
|  | } | 
|  |  | 
|  | int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; | 
|  | struct btrfs_path *path; | 
|  | struct inode *inode; | 
|  | int ret = 0; | 
|  | u64 root_gen = btrfs_root_generation(&root->root_item); | 
|  |  | 
|  | if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we're unmounting then just return, since this does a search on the | 
|  | * normal root and not the commit root and we could deadlock. | 
|  | */ | 
|  | if (btrfs_fs_closing(fs_info)) | 
|  | return 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return 0; | 
|  |  | 
|  | inode = lookup_free_ino_inode(root, path); | 
|  | if (IS_ERR(inode)) | 
|  | goto out; | 
|  |  | 
|  | if (root_gen != BTRFS_I(inode)->generation) | 
|  | goto out_put; | 
|  |  | 
|  | ret = __load_free_space_cache(root, inode, ctl, path, 0); | 
|  |  | 
|  | if (ret < 0) | 
|  | btrfs_err(fs_info, | 
|  | "failed to load free ino cache for root %llu", | 
|  | root->root_key.objectid); | 
|  | out_put: | 
|  | iput(inode); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_write_out_ino_cache(struct btrfs_root *root, | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_free_space_ctl *ctl = root->free_ino_ctl; | 
|  | int ret; | 
|  | struct btrfs_io_ctl io_ctl; | 
|  | bool release_metadata = true; | 
|  |  | 
|  | if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE)) | 
|  | return 0; | 
|  |  | 
|  | memset(&io_ctl, 0, sizeof(io_ctl)); | 
|  | ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans); | 
|  | if (!ret) { | 
|  | /* | 
|  | * At this point writepages() didn't error out, so our metadata | 
|  | * reservation is released when the writeback finishes, at | 
|  | * inode.c:btrfs_finish_ordered_io(), regardless of it finishing | 
|  | * with or without an error. | 
|  | */ | 
|  | release_metadata = false; | 
|  | ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | if (release_metadata) | 
|  | btrfs_delalloc_release_metadata(BTRFS_I(inode), | 
|  | inode->i_size, true); | 
|  | #ifdef DEBUG | 
|  | btrfs_err(fs_info, | 
|  | "failed to write free ino cache for root %llu", | 
|  | root->root_key.objectid); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | /* | 
|  | * Use this if you need to make a bitmap or extent entry specifically, it | 
|  | * doesn't do any of the merging that add_free_space does, this acts a lot like | 
|  | * how the free space cache loading stuff works, so you can get really weird | 
|  | * configurations. | 
|  | */ | 
|  | int test_add_free_space_entry(struct btrfs_block_group_cache *cache, | 
|  | u64 offset, u64 bytes, bool bitmap) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; | 
|  | struct btrfs_free_space *info = NULL, *bitmap_info; | 
|  | void *map = NULL; | 
|  | u64 bytes_added; | 
|  | int ret; | 
|  |  | 
|  | again: | 
|  | if (!info) { | 
|  | info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (!bitmap) { | 
|  | spin_lock(&ctl->tree_lock); | 
|  | info->offset = offset; | 
|  | info->bytes = bytes; | 
|  | info->max_extent_size = 0; | 
|  | ret = link_free_space(ctl, info); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | if (ret) | 
|  | kmem_cache_free(btrfs_free_space_cachep, info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!map) { | 
|  | map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS); | 
|  | if (!map) { | 
|  | kmem_cache_free(btrfs_free_space_cachep, info); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  | bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), | 
|  | 1, 0); | 
|  | if (!bitmap_info) { | 
|  | info->bitmap = map; | 
|  | map = NULL; | 
|  | add_new_bitmap(ctl, info, offset); | 
|  | bitmap_info = info; | 
|  | info = NULL; | 
|  | } | 
|  |  | 
|  | bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes); | 
|  |  | 
|  | bytes -= bytes_added; | 
|  | offset += bytes_added; | 
|  | spin_unlock(&ctl->tree_lock); | 
|  |  | 
|  | if (bytes) | 
|  | goto again; | 
|  |  | 
|  | if (info) | 
|  | kmem_cache_free(btrfs_free_space_cachep, info); | 
|  | if (map) | 
|  | kmem_cache_free(btrfs_free_space_bitmap_cachep, map); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks to see if the given range is in the free space cache.  This is really | 
|  | * just used to check the absence of space, so if there is free space in the | 
|  | * range at all we will return 1. | 
|  | */ | 
|  | int test_check_exists(struct btrfs_block_group_cache *cache, | 
|  | u64 offset, u64 bytes) | 
|  | { | 
|  | struct btrfs_free_space_ctl *ctl = cache->free_space_ctl; | 
|  | struct btrfs_free_space *info; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  | info = tree_search_offset(ctl, offset, 0, 0); | 
|  | if (!info) { | 
|  | info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), | 
|  | 1, 0); | 
|  | if (!info) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | have_info: | 
|  | if (info->bitmap) { | 
|  | u64 bit_off, bit_bytes; | 
|  | struct rb_node *n; | 
|  | struct btrfs_free_space *tmp; | 
|  |  | 
|  | bit_off = offset; | 
|  | bit_bytes = ctl->unit; | 
|  | ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false); | 
|  | if (!ret) { | 
|  | if (bit_off == offset) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } else if (bit_off > offset && | 
|  | offset + bytes > bit_off) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | n = rb_prev(&info->offset_index); | 
|  | while (n) { | 
|  | tmp = rb_entry(n, struct btrfs_free_space, | 
|  | offset_index); | 
|  | if (tmp->offset + tmp->bytes < offset) | 
|  | break; | 
|  | if (offset + bytes < tmp->offset) { | 
|  | n = rb_prev(&tmp->offset_index); | 
|  | continue; | 
|  | } | 
|  | info = tmp; | 
|  | goto have_info; | 
|  | } | 
|  |  | 
|  | n = rb_next(&info->offset_index); | 
|  | while (n) { | 
|  | tmp = rb_entry(n, struct btrfs_free_space, | 
|  | offset_index); | 
|  | if (offset + bytes < tmp->offset) | 
|  | break; | 
|  | if (tmp->offset + tmp->bytes < offset) { | 
|  | n = rb_next(&tmp->offset_index); | 
|  | continue; | 
|  | } | 
|  | info = tmp; | 
|  | goto have_info; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (info->offset == offset) { | 
|  | ret = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (offset > info->offset && offset < info->offset + info->bytes) | 
|  | ret = 1; | 
|  | out: | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | return ret; | 
|  | } | 
|  | #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */ |