|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Slab allocator functions that are independent of the allocator strategy | 
|  | * | 
|  | * (C) 2012 Christoph Lameter <cl@linux.com> | 
|  | */ | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/page.h> | 
|  | #include <linux/memcontrol.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/kmem.h> | 
|  |  | 
|  | #include "slab.h" | 
|  |  | 
|  | enum slab_state slab_state; | 
|  | LIST_HEAD(slab_caches); | 
|  | DEFINE_MUTEX(slab_mutex); | 
|  | struct kmem_cache *kmem_cache; | 
|  |  | 
|  | #ifdef CONFIG_HARDENED_USERCOPY | 
|  | bool usercopy_fallback __ro_after_init = | 
|  | IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); | 
|  | module_param(usercopy_fallback, bool, 0400); | 
|  | MODULE_PARM_DESC(usercopy_fallback, | 
|  | "WARN instead of reject usercopy whitelist violations"); | 
|  | #endif | 
|  |  | 
|  | static LIST_HEAD(slab_caches_to_rcu_destroy); | 
|  | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); | 
|  | static DECLARE_WORK(slab_caches_to_rcu_destroy_work, | 
|  | slab_caches_to_rcu_destroy_workfn); | 
|  |  | 
|  | /* | 
|  | * Set of flags that will prevent slab merging | 
|  | */ | 
|  | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
|  | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ | 
|  | SLAB_FAILSLAB | SLAB_KASAN) | 
|  |  | 
|  | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ | 
|  | SLAB_CACHE_DMA32 | SLAB_ACCOUNT) | 
|  |  | 
|  | /* | 
|  | * Merge control. If this is set then no merging of slab caches will occur. | 
|  | */ | 
|  | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); | 
|  |  | 
|  | static int __init setup_slab_nomerge(char *str) | 
|  | { | 
|  | slab_nomerge = true; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB | 
|  | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | 
|  | #endif | 
|  |  | 
|  | __setup("slab_nomerge", setup_slab_nomerge); | 
|  |  | 
|  | /* | 
|  | * Determine the size of a slab object | 
|  | */ | 
|  | unsigned int kmem_cache_size(struct kmem_cache *s) | 
|  | { | 
|  | return s->object_size; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_size); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | static int kmem_cache_sanity_check(const char *name, unsigned int size) | 
|  | { | 
|  | if (!name || in_interrupt() || size < sizeof(void *) || | 
|  | size > KMALLOC_MAX_SIZE) { | 
|  | pr_err("kmem_cache_create(%s) integrity check failed\n", name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | WARN_ON(strchr(name, ' '));	/* It confuses parsers */ | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static inline int kmem_cache_sanity_check(const char *name, unsigned int size) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | if (s) | 
|  | kmem_cache_free(s, p[i]); | 
|  | else | 
|  | kfree(p[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, | 
|  | void **p) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | void *x = p[i] = kmem_cache_alloc(s, flags); | 
|  | if (!x) { | 
|  | __kmem_cache_free_bulk(s, i, p); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  |  | 
|  | LIST_HEAD(slab_root_caches); | 
|  | static DEFINE_SPINLOCK(memcg_kmem_wq_lock); | 
|  |  | 
|  | static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref); | 
|  |  | 
|  | void slab_init_memcg_params(struct kmem_cache *s) | 
|  | { | 
|  | s->memcg_params.root_cache = NULL; | 
|  | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); | 
|  | INIT_LIST_HEAD(&s->memcg_params.children); | 
|  | s->memcg_params.dying = false; | 
|  | } | 
|  |  | 
|  | static int init_memcg_params(struct kmem_cache *s, | 
|  | struct kmem_cache *root_cache) | 
|  | { | 
|  | struct memcg_cache_array *arr; | 
|  |  | 
|  | if (root_cache) { | 
|  | int ret = percpu_ref_init(&s->memcg_params.refcnt, | 
|  | kmemcg_cache_shutdown, | 
|  | 0, GFP_KERNEL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | s->memcg_params.root_cache = root_cache; | 
|  | INIT_LIST_HEAD(&s->memcg_params.children_node); | 
|  | INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | slab_init_memcg_params(s); | 
|  |  | 
|  | if (!memcg_nr_cache_ids) | 
|  | return 0; | 
|  |  | 
|  | arr = kvzalloc(sizeof(struct memcg_cache_array) + | 
|  | memcg_nr_cache_ids * sizeof(void *), | 
|  | GFP_KERNEL); | 
|  | if (!arr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void destroy_memcg_params(struct kmem_cache *s) | 
|  | { | 
|  | if (is_root_cache(s)) { | 
|  | kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); | 
|  | } else { | 
|  | mem_cgroup_put(s->memcg_params.memcg); | 
|  | WRITE_ONCE(s->memcg_params.memcg, NULL); | 
|  | percpu_ref_exit(&s->memcg_params.refcnt); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_memcg_params(struct rcu_head *rcu) | 
|  | { | 
|  | struct memcg_cache_array *old; | 
|  |  | 
|  | old = container_of(rcu, struct memcg_cache_array, rcu); | 
|  | kvfree(old); | 
|  | } | 
|  |  | 
|  | static int update_memcg_params(struct kmem_cache *s, int new_array_size) | 
|  | { | 
|  | struct memcg_cache_array *old, *new; | 
|  |  | 
|  | new = kvzalloc(sizeof(struct memcg_cache_array) + | 
|  | new_array_size * sizeof(void *), GFP_KERNEL); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | old = rcu_dereference_protected(s->memcg_params.memcg_caches, | 
|  | lockdep_is_held(&slab_mutex)); | 
|  | if (old) | 
|  | memcpy(new->entries, old->entries, | 
|  | memcg_nr_cache_ids * sizeof(void *)); | 
|  |  | 
|  | rcu_assign_pointer(s->memcg_params.memcg_caches, new); | 
|  | if (old) | 
|  | call_rcu(&old->rcu, free_memcg_params); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int memcg_update_all_caches(int num_memcgs) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | list_for_each_entry(s, &slab_root_caches, root_caches_node) { | 
|  | ret = update_memcg_params(s, num_memcgs); | 
|  | /* | 
|  | * Instead of freeing the memory, we'll just leave the caches | 
|  | * up to this point in an updated state. | 
|  | */ | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&slab_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg) | 
|  | { | 
|  | if (is_root_cache(s)) { | 
|  | list_add(&s->root_caches_node, &slab_root_caches); | 
|  | } else { | 
|  | css_get(&memcg->css); | 
|  | s->memcg_params.memcg = memcg; | 
|  | list_add(&s->memcg_params.children_node, | 
|  | &s->memcg_params.root_cache->memcg_params.children); | 
|  | list_add(&s->memcg_params.kmem_caches_node, | 
|  | &s->memcg_params.memcg->kmem_caches); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void memcg_unlink_cache(struct kmem_cache *s) | 
|  | { | 
|  | if (is_root_cache(s)) { | 
|  | list_del(&s->root_caches_node); | 
|  | } else { | 
|  | list_del(&s->memcg_params.children_node); | 
|  | list_del(&s->memcg_params.kmem_caches_node); | 
|  | } | 
|  | } | 
|  | #else | 
|  | static inline int init_memcg_params(struct kmem_cache *s, | 
|  | struct kmem_cache *root_cache) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void destroy_memcg_params(struct kmem_cache *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void memcg_unlink_cache(struct kmem_cache *s) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_MEMCG_KMEM */ | 
|  |  | 
|  | /* | 
|  | * Figure out what the alignment of the objects will be given a set of | 
|  | * flags, a user specified alignment and the size of the objects. | 
|  | */ | 
|  | static unsigned int calculate_alignment(slab_flags_t flags, | 
|  | unsigned int align, unsigned int size) | 
|  | { | 
|  | /* | 
|  | * If the user wants hardware cache aligned objects then follow that | 
|  | * suggestion if the object is sufficiently large. | 
|  | * | 
|  | * The hardware cache alignment cannot override the specified | 
|  | * alignment though. If that is greater then use it. | 
|  | */ | 
|  | if (flags & SLAB_HWCACHE_ALIGN) { | 
|  | unsigned int ralign; | 
|  |  | 
|  | ralign = cache_line_size(); | 
|  | while (size <= ralign / 2) | 
|  | ralign /= 2; | 
|  | align = max(align, ralign); | 
|  | } | 
|  |  | 
|  | if (align < ARCH_SLAB_MINALIGN) | 
|  | align = ARCH_SLAB_MINALIGN; | 
|  |  | 
|  | return ALIGN(align, sizeof(void *)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a mergeable slab cache | 
|  | */ | 
|  | int slab_unmergeable(struct kmem_cache *s) | 
|  | { | 
|  | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | 
|  | return 1; | 
|  |  | 
|  | if (!is_root_cache(s)) | 
|  | return 1; | 
|  |  | 
|  | if (s->ctor) | 
|  | return 1; | 
|  |  | 
|  | if (s->usersize) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * We may have set a slab to be unmergeable during bootstrap. | 
|  | */ | 
|  | if (s->refcount < 0) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, | 
|  | slab_flags_t flags, const char *name, void (*ctor)(void *)) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | if (slab_nomerge) | 
|  | return NULL; | 
|  |  | 
|  | if (ctor) | 
|  | return NULL; | 
|  |  | 
|  | size = ALIGN(size, sizeof(void *)); | 
|  | align = calculate_alignment(flags, align, size); | 
|  | size = ALIGN(size, align); | 
|  | flags = kmem_cache_flags(size, flags, name, NULL); | 
|  |  | 
|  | if (flags & SLAB_NEVER_MERGE) | 
|  | return NULL; | 
|  |  | 
|  | list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { | 
|  | if (slab_unmergeable(s)) | 
|  | continue; | 
|  |  | 
|  | if (size > s->size) | 
|  | continue; | 
|  |  | 
|  | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | 
|  | continue; | 
|  | /* | 
|  | * Check if alignment is compatible. | 
|  | * Courtesy of Adrian Drzewiecki | 
|  | */ | 
|  | if ((s->size & ~(align - 1)) != s->size) | 
|  | continue; | 
|  |  | 
|  | if (s->size - size >= sizeof(void *)) | 
|  | continue; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_SLAB) && align && | 
|  | (align > s->align || s->align % align)) | 
|  | continue; | 
|  |  | 
|  | return s; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *create_cache(const char *name, | 
|  | unsigned int object_size, unsigned int align, | 
|  | slab_flags_t flags, unsigned int useroffset, | 
|  | unsigned int usersize, void (*ctor)(void *), | 
|  | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | if (WARN_ON(useroffset + usersize > object_size)) | 
|  | useroffset = usersize = 0; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | 
|  | if (!s) | 
|  | goto out; | 
|  |  | 
|  | s->name = name; | 
|  | s->size = s->object_size = object_size; | 
|  | s->align = align; | 
|  | s->ctor = ctor; | 
|  | s->useroffset = useroffset; | 
|  | s->usersize = usersize; | 
|  |  | 
|  | err = init_memcg_params(s, root_cache); | 
|  | if (err) | 
|  | goto out_free_cache; | 
|  |  | 
|  | err = __kmem_cache_create(s, flags); | 
|  | if (err) | 
|  | goto out_free_cache; | 
|  |  | 
|  | s->refcount = 1; | 
|  | list_add(&s->list, &slab_caches); | 
|  | memcg_link_cache(s, memcg); | 
|  | out: | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  | return s; | 
|  |  | 
|  | out_free_cache: | 
|  | destroy_memcg_params(s); | 
|  | kmem_cache_free(kmem_cache, s); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kmem_cache_create_usercopy - Create a cache with a region suitable | 
|  | * for copying to userspace | 
|  | * @name: A string which is used in /proc/slabinfo to identify this cache. | 
|  | * @size: The size of objects to be created in this cache. | 
|  | * @align: The required alignment for the objects. | 
|  | * @flags: SLAB flags | 
|  | * @useroffset: Usercopy region offset | 
|  | * @usersize: Usercopy region size | 
|  | * @ctor: A constructor for the objects. | 
|  | * | 
|  | * Cannot be called within a interrupt, but can be interrupted. | 
|  | * The @ctor is run when new pages are allocated by the cache. | 
|  | * | 
|  | * The flags are | 
|  | * | 
|  | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
|  | * to catch references to uninitialised memory. | 
|  | * | 
|  | * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check | 
|  | * for buffer overruns. | 
|  | * | 
|  | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
|  | * cacheline.  This can be beneficial if you're counting cycles as closely | 
|  | * as davem. | 
|  | * | 
|  | * Return: a pointer to the cache on success, NULL on failure. | 
|  | */ | 
|  | struct kmem_cache * | 
|  | kmem_cache_create_usercopy(const char *name, | 
|  | unsigned int size, unsigned int align, | 
|  | slab_flags_t flags, | 
|  | unsigned int useroffset, unsigned int usersize, | 
|  | void (*ctor)(void *)) | 
|  | { | 
|  | struct kmem_cache *s = NULL; | 
|  | const char *cache_name; | 
|  | int err; | 
|  |  | 
|  | get_online_cpus(); | 
|  | get_online_mems(); | 
|  | memcg_get_cache_ids(); | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | err = kmem_cache_sanity_check(name, size); | 
|  | if (err) { | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Refuse requests with allocator specific flags */ | 
|  | if (flags & ~SLAB_FLAGS_PERMITTED) { | 
|  | err = -EINVAL; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some allocators will constraint the set of valid flags to a subset | 
|  | * of all flags. We expect them to define CACHE_CREATE_MASK in this | 
|  | * case, and we'll just provide them with a sanitized version of the | 
|  | * passed flags. | 
|  | */ | 
|  | flags &= CACHE_CREATE_MASK; | 
|  |  | 
|  | /* Fail closed on bad usersize of useroffset values. */ | 
|  | if (WARN_ON(!usersize && useroffset) || | 
|  | WARN_ON(size < usersize || size - usersize < useroffset)) | 
|  | usersize = useroffset = 0; | 
|  |  | 
|  | if (!usersize) | 
|  | s = __kmem_cache_alias(name, size, align, flags, ctor); | 
|  | if (s) | 
|  | goto out_unlock; | 
|  |  | 
|  | cache_name = kstrdup_const(name, GFP_KERNEL); | 
|  | if (!cache_name) { | 
|  | err = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | s = create_cache(cache_name, size, | 
|  | calculate_alignment(flags, align, size), | 
|  | flags, useroffset, usersize, ctor, NULL, NULL); | 
|  | if (IS_ERR(s)) { | 
|  | err = PTR_ERR(s); | 
|  | kfree_const(cache_name); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&slab_mutex); | 
|  |  | 
|  | memcg_put_cache_ids(); | 
|  | put_online_mems(); | 
|  | put_online_cpus(); | 
|  |  | 
|  | if (err) { | 
|  | if (flags & SLAB_PANIC) | 
|  | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | 
|  | name, err); | 
|  | else { | 
|  | pr_warn("kmem_cache_create(%s) failed with error %d\n", | 
|  | name, err); | 
|  | dump_stack(); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  | return s; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_create_usercopy); | 
|  |  | 
|  | /** | 
|  | * kmem_cache_create - Create a cache. | 
|  | * @name: A string which is used in /proc/slabinfo to identify this cache. | 
|  | * @size: The size of objects to be created in this cache. | 
|  | * @align: The required alignment for the objects. | 
|  | * @flags: SLAB flags | 
|  | * @ctor: A constructor for the objects. | 
|  | * | 
|  | * Cannot be called within a interrupt, but can be interrupted. | 
|  | * The @ctor is run when new pages are allocated by the cache. | 
|  | * | 
|  | * The flags are | 
|  | * | 
|  | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
|  | * to catch references to uninitialised memory. | 
|  | * | 
|  | * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check | 
|  | * for buffer overruns. | 
|  | * | 
|  | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
|  | * cacheline.  This can be beneficial if you're counting cycles as closely | 
|  | * as davem. | 
|  | * | 
|  | * Return: a pointer to the cache on success, NULL on failure. | 
|  | */ | 
|  | struct kmem_cache * | 
|  | kmem_cache_create(const char *name, unsigned int size, unsigned int align, | 
|  | slab_flags_t flags, void (*ctor)(void *)) | 
|  | { | 
|  | return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, | 
|  | ctor); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_create); | 
|  |  | 
|  | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) | 
|  | { | 
|  | LIST_HEAD(to_destroy); | 
|  | struct kmem_cache *s, *s2; | 
|  |  | 
|  | /* | 
|  | * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the | 
|  | * @slab_caches_to_rcu_destroy list.  The slab pages are freed | 
|  | * through RCU and and the associated kmem_cache are dereferenced | 
|  | * while freeing the pages, so the kmem_caches should be freed only | 
|  | * after the pending RCU operations are finished.  As rcu_barrier() | 
|  | * is a pretty slow operation, we batch all pending destructions | 
|  | * asynchronously. | 
|  | */ | 
|  | mutex_lock(&slab_mutex); | 
|  | list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); | 
|  | mutex_unlock(&slab_mutex); | 
|  |  | 
|  | if (list_empty(&to_destroy)) | 
|  | return; | 
|  |  | 
|  | rcu_barrier(); | 
|  |  | 
|  | list_for_each_entry_safe(s, s2, &to_destroy, list) { | 
|  | #ifdef SLAB_SUPPORTS_SYSFS | 
|  | sysfs_slab_release(s); | 
|  | #else | 
|  | slab_kmem_cache_release(s); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | static int shutdown_cache(struct kmem_cache *s) | 
|  | { | 
|  | /* free asan quarantined objects */ | 
|  | kasan_cache_shutdown(s); | 
|  |  | 
|  | if (__kmem_cache_shutdown(s) != 0) | 
|  | return -EBUSY; | 
|  |  | 
|  | memcg_unlink_cache(s); | 
|  | list_del(&s->list); | 
|  |  | 
|  | if (s->flags & SLAB_TYPESAFE_BY_RCU) { | 
|  | #ifdef SLAB_SUPPORTS_SYSFS | 
|  | sysfs_slab_unlink(s); | 
|  | #endif | 
|  | list_add_tail(&s->list, &slab_caches_to_rcu_destroy); | 
|  | schedule_work(&slab_caches_to_rcu_destroy_work); | 
|  | } else { | 
|  | #ifdef SLAB_SUPPORTS_SYSFS | 
|  | sysfs_slab_unlink(s); | 
|  | sysfs_slab_release(s); | 
|  | #else | 
|  | slab_kmem_cache_release(s); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG_KMEM | 
|  | /* | 
|  | * memcg_create_kmem_cache - Create a cache for a memory cgroup. | 
|  | * @memcg: The memory cgroup the new cache is for. | 
|  | * @root_cache: The parent of the new cache. | 
|  | * | 
|  | * This function attempts to create a kmem cache that will serve allocation | 
|  | * requests going from @memcg to @root_cache. The new cache inherits properties | 
|  | * from its parent. | 
|  | */ | 
|  | void memcg_create_kmem_cache(struct mem_cgroup *memcg, | 
|  | struct kmem_cache *root_cache) | 
|  | { | 
|  | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ | 
|  | struct cgroup_subsys_state *css = &memcg->css; | 
|  | struct memcg_cache_array *arr; | 
|  | struct kmem_cache *s = NULL; | 
|  | char *cache_name; | 
|  | int idx; | 
|  |  | 
|  | get_online_cpus(); | 
|  | get_online_mems(); | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | /* | 
|  | * The memory cgroup could have been offlined while the cache | 
|  | * creation work was pending. | 
|  | */ | 
|  | if (memcg->kmem_state != KMEM_ONLINE) | 
|  | goto out_unlock; | 
|  |  | 
|  | idx = memcg_cache_id(memcg); | 
|  | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, | 
|  | lockdep_is_held(&slab_mutex)); | 
|  |  | 
|  | /* | 
|  | * Since per-memcg caches are created asynchronously on first | 
|  | * allocation (see memcg_kmem_get_cache()), several threads can try to | 
|  | * create the same cache, but only one of them may succeed. | 
|  | */ | 
|  | if (arr->entries[idx]) | 
|  | goto out_unlock; | 
|  |  | 
|  | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); | 
|  | cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, | 
|  | css->serial_nr, memcg_name_buf); | 
|  | if (!cache_name) | 
|  | goto out_unlock; | 
|  |  | 
|  | s = create_cache(cache_name, root_cache->object_size, | 
|  | root_cache->align, | 
|  | root_cache->flags & CACHE_CREATE_MASK, | 
|  | root_cache->useroffset, root_cache->usersize, | 
|  | root_cache->ctor, memcg, root_cache); | 
|  | /* | 
|  | * If we could not create a memcg cache, do not complain, because | 
|  | * that's not critical at all as we can always proceed with the root | 
|  | * cache. | 
|  | */ | 
|  | if (IS_ERR(s)) { | 
|  | kfree(cache_name); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since readers won't lock (see memcg_kmem_get_cache()), we need a | 
|  | * barrier here to ensure nobody will see the kmem_cache partially | 
|  | * initialized. | 
|  | */ | 
|  | smp_wmb(); | 
|  | arr->entries[idx] = s; | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&slab_mutex); | 
|  |  | 
|  | put_online_mems(); | 
|  | put_online_cpus(); | 
|  | } | 
|  |  | 
|  | static void kmemcg_workfn(struct work_struct *work) | 
|  | { | 
|  | struct kmem_cache *s = container_of(work, struct kmem_cache, | 
|  | memcg_params.work); | 
|  |  | 
|  | get_online_cpus(); | 
|  | get_online_mems(); | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | s->memcg_params.work_fn(s); | 
|  | mutex_unlock(&slab_mutex); | 
|  |  | 
|  | put_online_mems(); | 
|  | put_online_cpus(); | 
|  | } | 
|  |  | 
|  | static void kmemcg_rcufn(struct rcu_head *head) | 
|  | { | 
|  | struct kmem_cache *s = container_of(head, struct kmem_cache, | 
|  | memcg_params.rcu_head); | 
|  |  | 
|  | /* | 
|  | * We need to grab blocking locks.  Bounce to ->work.  The | 
|  | * work item shares the space with the RCU head and can't be | 
|  | * initialized eariler. | 
|  | */ | 
|  | INIT_WORK(&s->memcg_params.work, kmemcg_workfn); | 
|  | queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); | 
|  | } | 
|  |  | 
|  | static void kmemcg_cache_shutdown_fn(struct kmem_cache *s) | 
|  | { | 
|  | WARN_ON(shutdown_cache(s)); | 
|  | } | 
|  |  | 
|  | static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref) | 
|  | { | 
|  | struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache, | 
|  | memcg_params.refcnt); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&memcg_kmem_wq_lock, flags); | 
|  | if (s->memcg_params.root_cache->memcg_params.dying) | 
|  | goto unlock; | 
|  |  | 
|  | s->memcg_params.work_fn = kmemcg_cache_shutdown_fn; | 
|  | INIT_WORK(&s->memcg_params.work, kmemcg_workfn); | 
|  | queue_work(memcg_kmem_cache_wq, &s->memcg_params.work); | 
|  |  | 
|  | unlock: | 
|  | spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags); | 
|  | } | 
|  |  | 
|  | static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) | 
|  | { | 
|  | __kmemcg_cache_deactivate_after_rcu(s); | 
|  | percpu_ref_kill(&s->memcg_params.refcnt); | 
|  | } | 
|  |  | 
|  | static void kmemcg_cache_deactivate(struct kmem_cache *s) | 
|  | { | 
|  | if (WARN_ON_ONCE(is_root_cache(s))) | 
|  | return; | 
|  |  | 
|  | __kmemcg_cache_deactivate(s); | 
|  | s->flags |= SLAB_DEACTIVATED; | 
|  |  | 
|  | /* | 
|  | * memcg_kmem_wq_lock is used to synchronize memcg_params.dying | 
|  | * flag and make sure that no new kmem_cache deactivation tasks | 
|  | * are queued (see flush_memcg_workqueue() ). | 
|  | */ | 
|  | spin_lock_irq(&memcg_kmem_wq_lock); | 
|  | if (s->memcg_params.root_cache->memcg_params.dying) | 
|  | goto unlock; | 
|  |  | 
|  | s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu; | 
|  | call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn); | 
|  | unlock: | 
|  | spin_unlock_irq(&memcg_kmem_wq_lock); | 
|  | } | 
|  |  | 
|  | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg, | 
|  | struct mem_cgroup *parent) | 
|  | { | 
|  | int idx; | 
|  | struct memcg_cache_array *arr; | 
|  | struct kmem_cache *s, *c; | 
|  | unsigned int nr_reparented; | 
|  |  | 
|  | idx = memcg_cache_id(memcg); | 
|  |  | 
|  | get_online_cpus(); | 
|  | get_online_mems(); | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | list_for_each_entry(s, &slab_root_caches, root_caches_node) { | 
|  | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | 
|  | lockdep_is_held(&slab_mutex)); | 
|  | c = arr->entries[idx]; | 
|  | if (!c) | 
|  | continue; | 
|  |  | 
|  | kmemcg_cache_deactivate(c); | 
|  | arr->entries[idx] = NULL; | 
|  | } | 
|  | nr_reparented = 0; | 
|  | list_for_each_entry(s, &memcg->kmem_caches, | 
|  | memcg_params.kmem_caches_node) { | 
|  | WRITE_ONCE(s->memcg_params.memcg, parent); | 
|  | css_put(&memcg->css); | 
|  | nr_reparented++; | 
|  | } | 
|  | if (nr_reparented) { | 
|  | list_splice_init(&memcg->kmem_caches, | 
|  | &parent->kmem_caches); | 
|  | css_get_many(&parent->css, nr_reparented); | 
|  | } | 
|  | mutex_unlock(&slab_mutex); | 
|  |  | 
|  | put_online_mems(); | 
|  | put_online_cpus(); | 
|  | } | 
|  |  | 
|  | static int shutdown_memcg_caches(struct kmem_cache *s) | 
|  | { | 
|  | struct memcg_cache_array *arr; | 
|  | struct kmem_cache *c, *c2; | 
|  | LIST_HEAD(busy); | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!is_root_cache(s)); | 
|  |  | 
|  | /* | 
|  | * First, shutdown active caches, i.e. caches that belong to online | 
|  | * memory cgroups. | 
|  | */ | 
|  | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | 
|  | lockdep_is_held(&slab_mutex)); | 
|  | for_each_memcg_cache_index(i) { | 
|  | c = arr->entries[i]; | 
|  | if (!c) | 
|  | continue; | 
|  | if (shutdown_cache(c)) | 
|  | /* | 
|  | * The cache still has objects. Move it to a temporary | 
|  | * list so as not to try to destroy it for a second | 
|  | * time while iterating over inactive caches below. | 
|  | */ | 
|  | list_move(&c->memcg_params.children_node, &busy); | 
|  | else | 
|  | /* | 
|  | * The cache is empty and will be destroyed soon. Clear | 
|  | * the pointer to it in the memcg_caches array so that | 
|  | * it will never be accessed even if the root cache | 
|  | * stays alive. | 
|  | */ | 
|  | arr->entries[i] = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Second, shutdown all caches left from memory cgroups that are now | 
|  | * offline. | 
|  | */ | 
|  | list_for_each_entry_safe(c, c2, &s->memcg_params.children, | 
|  | memcg_params.children_node) | 
|  | shutdown_cache(c); | 
|  |  | 
|  | list_splice(&busy, &s->memcg_params.children); | 
|  |  | 
|  | /* | 
|  | * A cache being destroyed must be empty. In particular, this means | 
|  | * that all per memcg caches attached to it must be empty too. | 
|  | */ | 
|  | if (!list_empty(&s->memcg_params.children)) | 
|  | return -EBUSY; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void flush_memcg_workqueue(struct kmem_cache *s) | 
|  | { | 
|  | spin_lock_irq(&memcg_kmem_wq_lock); | 
|  | s->memcg_params.dying = true; | 
|  | spin_unlock_irq(&memcg_kmem_wq_lock); | 
|  |  | 
|  | /* | 
|  | * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make | 
|  | * sure all registered rcu callbacks have been invoked. | 
|  | */ | 
|  | rcu_barrier(); | 
|  |  | 
|  | /* | 
|  | * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB | 
|  | * deactivates the memcg kmem_caches through workqueue. Make sure all | 
|  | * previous workitems on workqueue are processed. | 
|  | */ | 
|  | flush_workqueue(memcg_kmem_cache_wq); | 
|  |  | 
|  | /* | 
|  | * If we're racing with children kmem_cache deactivation, it might | 
|  | * take another rcu grace period to complete their destruction. | 
|  | * At this moment the corresponding percpu_ref_kill() call should be | 
|  | * done, but it might take another rcu grace period to complete | 
|  | * switching to the atomic mode. | 
|  | * Please, note that we check without grabbing the slab_mutex. It's safe | 
|  | * because at this moment the children list can't grow. | 
|  | */ | 
|  | if (!list_empty(&s->memcg_params.children)) | 
|  | rcu_barrier(); | 
|  | } | 
|  | #else | 
|  | static inline int shutdown_memcg_caches(struct kmem_cache *s) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void flush_memcg_workqueue(struct kmem_cache *s) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_MEMCG_KMEM */ | 
|  |  | 
|  | void slab_kmem_cache_release(struct kmem_cache *s) | 
|  | { | 
|  | __kmem_cache_release(s); | 
|  | destroy_memcg_params(s); | 
|  | kfree_const(s->name); | 
|  | kmem_cache_free(kmem_cache, s); | 
|  | } | 
|  |  | 
|  | void kmem_cache_destroy(struct kmem_cache *s) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (unlikely(!s)) | 
|  | return; | 
|  |  | 
|  | flush_memcg_workqueue(s); | 
|  |  | 
|  | get_online_cpus(); | 
|  | get_online_mems(); | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  |  | 
|  | s->refcount--; | 
|  | if (s->refcount) | 
|  | goto out_unlock; | 
|  |  | 
|  | err = shutdown_memcg_caches(s); | 
|  | if (!err) | 
|  | err = shutdown_cache(s); | 
|  |  | 
|  | if (err) { | 
|  | pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", | 
|  | s->name); | 
|  | dump_stack(); | 
|  | } | 
|  | out_unlock: | 
|  | mutex_unlock(&slab_mutex); | 
|  |  | 
|  | put_online_mems(); | 
|  | put_online_cpus(); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_destroy); | 
|  |  | 
|  | /** | 
|  | * kmem_cache_shrink - Shrink a cache. | 
|  | * @cachep: The cache to shrink. | 
|  | * | 
|  | * Releases as many slabs as possible for a cache. | 
|  | * To help debugging, a zero exit status indicates all slabs were released. | 
|  | * | 
|  | * Return: %0 if all slabs were released, non-zero otherwise | 
|  | */ | 
|  | int kmem_cache_shrink(struct kmem_cache *cachep) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | get_online_cpus(); | 
|  | get_online_mems(); | 
|  | kasan_cache_shrink(cachep); | 
|  | ret = __kmem_cache_shrink(cachep); | 
|  | put_online_mems(); | 
|  | put_online_cpus(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_shrink); | 
|  |  | 
|  | bool slab_is_available(void) | 
|  | { | 
|  | return slab_state >= UP; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_SLOB | 
|  | /* Create a cache during boot when no slab services are available yet */ | 
|  | void __init create_boot_cache(struct kmem_cache *s, const char *name, | 
|  | unsigned int size, slab_flags_t flags, | 
|  | unsigned int useroffset, unsigned int usersize) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | s->name = name; | 
|  | s->size = s->object_size = size; | 
|  | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); | 
|  | s->useroffset = useroffset; | 
|  | s->usersize = usersize; | 
|  |  | 
|  | slab_init_memcg_params(s); | 
|  |  | 
|  | err = __kmem_cache_create(s, flags); | 
|  |  | 
|  | if (err) | 
|  | panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", | 
|  | name, size, err); | 
|  |  | 
|  | s->refcount = -1;	/* Exempt from merging for now */ | 
|  | } | 
|  |  | 
|  | struct kmem_cache *__init create_kmalloc_cache(const char *name, | 
|  | unsigned int size, slab_flags_t flags, | 
|  | unsigned int useroffset, unsigned int usersize) | 
|  | { | 
|  | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | 
|  |  | 
|  | if (!s) | 
|  | panic("Out of memory when creating slab %s\n", name); | 
|  |  | 
|  | create_boot_cache(s, name, size, flags, useroffset, usersize); | 
|  | list_add(&s->list, &slab_caches); | 
|  | memcg_link_cache(s, NULL); | 
|  | s->refcount = 1; | 
|  | return s; | 
|  | } | 
|  |  | 
|  | struct kmem_cache * | 
|  | kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = | 
|  | { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; | 
|  | EXPORT_SYMBOL(kmalloc_caches); | 
|  |  | 
|  | /* | 
|  | * Conversion table for small slabs sizes / 8 to the index in the | 
|  | * kmalloc array. This is necessary for slabs < 192 since we have non power | 
|  | * of two cache sizes there. The size of larger slabs can be determined using | 
|  | * fls. | 
|  | */ | 
|  | static u8 size_index[24] __ro_after_init = { | 
|  | 3,	/* 8 */ | 
|  | 4,	/* 16 */ | 
|  | 5,	/* 24 */ | 
|  | 5,	/* 32 */ | 
|  | 6,	/* 40 */ | 
|  | 6,	/* 48 */ | 
|  | 6,	/* 56 */ | 
|  | 6,	/* 64 */ | 
|  | 1,	/* 72 */ | 
|  | 1,	/* 80 */ | 
|  | 1,	/* 88 */ | 
|  | 1,	/* 96 */ | 
|  | 7,	/* 104 */ | 
|  | 7,	/* 112 */ | 
|  | 7,	/* 120 */ | 
|  | 7,	/* 128 */ | 
|  | 2,	/* 136 */ | 
|  | 2,	/* 144 */ | 
|  | 2,	/* 152 */ | 
|  | 2,	/* 160 */ | 
|  | 2,	/* 168 */ | 
|  | 2,	/* 176 */ | 
|  | 2,	/* 184 */ | 
|  | 2	/* 192 */ | 
|  | }; | 
|  |  | 
|  | static inline unsigned int size_index_elem(unsigned int bytes) | 
|  | { | 
|  | return (bytes - 1) / 8; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the kmem_cache structure that serves a given size of | 
|  | * allocation | 
|  | */ | 
|  | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | 
|  | { | 
|  | unsigned int index; | 
|  |  | 
|  | if (size <= 192) { | 
|  | if (!size) | 
|  | return ZERO_SIZE_PTR; | 
|  |  | 
|  | index = size_index[size_index_elem(size)]; | 
|  | } else { | 
|  | if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) | 
|  | return NULL; | 
|  | index = fls(size - 1); | 
|  | } | 
|  |  | 
|  | return kmalloc_caches[kmalloc_type(flags)][index]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | 
|  | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is | 
|  | * kmalloc-67108864. | 
|  | */ | 
|  | const struct kmalloc_info_struct kmalloc_info[] __initconst = { | 
|  | {NULL,                      0},		{"kmalloc-96",             96}, | 
|  | {"kmalloc-192",           192},		{"kmalloc-8",               8}, | 
|  | {"kmalloc-16",             16},		{"kmalloc-32",             32}, | 
|  | {"kmalloc-64",             64},		{"kmalloc-128",           128}, | 
|  | {"kmalloc-256",           256},		{"kmalloc-512",           512}, | 
|  | {"kmalloc-1k",           1024},		{"kmalloc-2k",           2048}, | 
|  | {"kmalloc-4k",           4096},		{"kmalloc-8k",           8192}, | 
|  | {"kmalloc-16k",         16384},		{"kmalloc-32k",         32768}, | 
|  | {"kmalloc-64k",         65536},		{"kmalloc-128k",       131072}, | 
|  | {"kmalloc-256k",       262144},		{"kmalloc-512k",       524288}, | 
|  | {"kmalloc-1M",        1048576},		{"kmalloc-2M",        2097152}, | 
|  | {"kmalloc-4M",        4194304},		{"kmalloc-8M",        8388608}, | 
|  | {"kmalloc-16M",      16777216},		{"kmalloc-32M",      33554432}, | 
|  | {"kmalloc-64M",      67108864} | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Patch up the size_index table if we have strange large alignment | 
|  | * requirements for the kmalloc array. This is only the case for | 
|  | * MIPS it seems. The standard arches will not generate any code here. | 
|  | * | 
|  | * Largest permitted alignment is 256 bytes due to the way we | 
|  | * handle the index determination for the smaller caches. | 
|  | * | 
|  | * Make sure that nothing crazy happens if someone starts tinkering | 
|  | * around with ARCH_KMALLOC_MINALIGN | 
|  | */ | 
|  | void __init setup_kmalloc_cache_index_table(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | 
|  | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | 
|  |  | 
|  | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | 
|  | unsigned int elem = size_index_elem(i); | 
|  |  | 
|  | if (elem >= ARRAY_SIZE(size_index)) | 
|  | break; | 
|  | size_index[elem] = KMALLOC_SHIFT_LOW; | 
|  | } | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE >= 64) { | 
|  | /* | 
|  | * The 96 byte size cache is not used if the alignment | 
|  | * is 64 byte. | 
|  | */ | 
|  | for (i = 64 + 8; i <= 96; i += 8) | 
|  | size_index[size_index_elem(i)] = 7; | 
|  |  | 
|  | } | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE >= 128) { | 
|  | /* | 
|  | * The 192 byte sized cache is not used if the alignment | 
|  | * is 128 byte. Redirect kmalloc to use the 256 byte cache | 
|  | * instead. | 
|  | */ | 
|  | for (i = 128 + 8; i <= 192; i += 8) | 
|  | size_index[size_index_elem(i)] = 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | kmalloc_cache_name(const char *prefix, unsigned int size) | 
|  | { | 
|  |  | 
|  | static const char units[3] = "\0kM"; | 
|  | int idx = 0; | 
|  |  | 
|  | while (size >= 1024 && (size % 1024 == 0)) { | 
|  | size /= 1024; | 
|  | idx++; | 
|  | } | 
|  |  | 
|  | return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]); | 
|  | } | 
|  |  | 
|  | static void __init | 
|  | new_kmalloc_cache(int idx, int type, slab_flags_t flags) | 
|  | { | 
|  | const char *name; | 
|  |  | 
|  | if (type == KMALLOC_RECLAIM) { | 
|  | flags |= SLAB_RECLAIM_ACCOUNT; | 
|  | name = kmalloc_cache_name("kmalloc-rcl", | 
|  | kmalloc_info[idx].size); | 
|  | BUG_ON(!name); | 
|  | } else { | 
|  | name = kmalloc_info[idx].name; | 
|  | } | 
|  |  | 
|  | kmalloc_caches[type][idx] = create_kmalloc_cache(name, | 
|  | kmalloc_info[idx].size, flags, 0, | 
|  | kmalloc_info[idx].size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the kmalloc array. Some of the regular kmalloc arrays | 
|  | * may already have been created because they were needed to | 
|  | * enable allocations for slab creation. | 
|  | */ | 
|  | void __init create_kmalloc_caches(slab_flags_t flags) | 
|  | { | 
|  | int i, type; | 
|  |  | 
|  | for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { | 
|  | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { | 
|  | if (!kmalloc_caches[type][i]) | 
|  | new_kmalloc_cache(i, type, flags); | 
|  |  | 
|  | /* | 
|  | * Caches that are not of the two-to-the-power-of size. | 
|  | * These have to be created immediately after the | 
|  | * earlier power of two caches | 
|  | */ | 
|  | if (KMALLOC_MIN_SIZE <= 32 && i == 6 && | 
|  | !kmalloc_caches[type][1]) | 
|  | new_kmalloc_cache(1, type, flags); | 
|  | if (KMALLOC_MIN_SIZE <= 64 && i == 7 && | 
|  | !kmalloc_caches[type][2]) | 
|  | new_kmalloc_cache(2, type, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Kmalloc array is now usable */ | 
|  | slab_state = UP; | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | 
|  | struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; | 
|  |  | 
|  | if (s) { | 
|  | unsigned int size = kmalloc_size(i); | 
|  | const char *n = kmalloc_cache_name("dma-kmalloc", size); | 
|  |  | 
|  | BUG_ON(!n); | 
|  | kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( | 
|  | n, size, SLAB_CACHE_DMA | flags, 0, 0); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #endif /* !CONFIG_SLOB */ | 
|  |  | 
|  | /* | 
|  | * To avoid unnecessary overhead, we pass through large allocation requests | 
|  | * directly to the page allocator. We use __GFP_COMP, because we will need to | 
|  | * know the allocation order to free the pages properly in kfree. | 
|  | */ | 
|  | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) | 
|  | { | 
|  | void *ret; | 
|  | struct page *page; | 
|  |  | 
|  | flags |= __GFP_COMP; | 
|  | page = alloc_pages(flags, order); | 
|  | ret = page ? page_address(page) : NULL; | 
|  | ret = kasan_kmalloc_large(ret, size, flags); | 
|  | /* As ret might get tagged, call kmemleak hook after KASAN. */ | 
|  | kmemleak_alloc(ret, size, 1, flags); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmalloc_order); | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | 
|  | { | 
|  | void *ret = kmalloc_order(size, flags, order); | 
|  | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmalloc_order_trace); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SLAB_FREELIST_RANDOM | 
|  | /* Randomize a generic freelist */ | 
|  | static void freelist_randomize(struct rnd_state *state, unsigned int *list, | 
|  | unsigned int count) | 
|  | { | 
|  | unsigned int rand; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < count; i++) | 
|  | list[i] = i; | 
|  |  | 
|  | /* Fisher-Yates shuffle */ | 
|  | for (i = count - 1; i > 0; i--) { | 
|  | rand = prandom_u32_state(state); | 
|  | rand %= (i + 1); | 
|  | swap(list[i], list[rand]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Create a random sequence per cache */ | 
|  | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct rnd_state state; | 
|  |  | 
|  | if (count < 2 || cachep->random_seq) | 
|  | return 0; | 
|  |  | 
|  | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | 
|  | if (!cachep->random_seq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Get best entropy at this stage of boot */ | 
|  | prandom_seed_state(&state, get_random_long()); | 
|  |  | 
|  | freelist_randomize(&state, cachep->random_seq, count); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Destroy the per-cache random freelist sequence */ | 
|  | void cache_random_seq_destroy(struct kmem_cache *cachep) | 
|  | { | 
|  | kfree(cachep->random_seq); | 
|  | cachep->random_seq = NULL; | 
|  | } | 
|  | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | 
|  |  | 
|  | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) | 
|  | #ifdef CONFIG_SLAB | 
|  | #define SLABINFO_RIGHTS (0600) | 
|  | #else | 
|  | #define SLABINFO_RIGHTS (0400) | 
|  | #endif | 
|  |  | 
|  | static void print_slabinfo_header(struct seq_file *m) | 
|  | { | 
|  | /* | 
|  | * Output format version, so at least we can change it | 
|  | * without _too_ many complaints. | 
|  | */ | 
|  | #ifdef CONFIG_DEBUG_SLAB | 
|  | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | 
|  | #else | 
|  | seq_puts(m, "slabinfo - version: 2.1\n"); | 
|  | #endif | 
|  | seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); | 
|  | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
|  | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
|  | #ifdef CONFIG_DEBUG_SLAB | 
|  | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); | 
|  | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | 
|  | #endif | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | void *slab_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | mutex_lock(&slab_mutex); | 
|  | return seq_list_start(&slab_root_caches, *pos); | 
|  | } | 
|  |  | 
|  | void *slab_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | { | 
|  | return seq_list_next(p, &slab_root_caches, pos); | 
|  | } | 
|  |  | 
|  | void slab_stop(struct seq_file *m, void *p) | 
|  | { | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  |  | 
|  | static void | 
|  | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | 
|  | { | 
|  | struct kmem_cache *c; | 
|  | struct slabinfo sinfo; | 
|  |  | 
|  | if (!is_root_cache(s)) | 
|  | return; | 
|  |  | 
|  | for_each_memcg_cache(c, s) { | 
|  | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | get_slabinfo(c, &sinfo); | 
|  |  | 
|  | info->active_slabs += sinfo.active_slabs; | 
|  | info->num_slabs += sinfo.num_slabs; | 
|  | info->shared_avail += sinfo.shared_avail; | 
|  | info->active_objs += sinfo.active_objs; | 
|  | info->num_objs += sinfo.num_objs; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cache_show(struct kmem_cache *s, struct seq_file *m) | 
|  | { | 
|  | struct slabinfo sinfo; | 
|  |  | 
|  | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | get_slabinfo(s, &sinfo); | 
|  |  | 
|  | memcg_accumulate_slabinfo(s, &sinfo); | 
|  |  | 
|  | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | 
|  | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, | 
|  | sinfo.objects_per_slab, (1 << sinfo.cache_order)); | 
|  |  | 
|  | seq_printf(m, " : tunables %4u %4u %4u", | 
|  | sinfo.limit, sinfo.batchcount, sinfo.shared); | 
|  | seq_printf(m, " : slabdata %6lu %6lu %6lu", | 
|  | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | 
|  | slabinfo_show_stats(m, s); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | static int slab_show(struct seq_file *m, void *p) | 
|  | { | 
|  | struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); | 
|  |  | 
|  | if (p == slab_root_caches.next) | 
|  | print_slabinfo_header(m); | 
|  | cache_show(s, m); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void dump_unreclaimable_slab(void) | 
|  | { | 
|  | struct kmem_cache *s, *s2; | 
|  | struct slabinfo sinfo; | 
|  |  | 
|  | /* | 
|  | * Here acquiring slab_mutex is risky since we don't prefer to get | 
|  | * sleep in oom path. But, without mutex hold, it may introduce a | 
|  | * risk of crash. | 
|  | * Use mutex_trylock to protect the list traverse, dump nothing | 
|  | * without acquiring the mutex. | 
|  | */ | 
|  | if (!mutex_trylock(&slab_mutex)) { | 
|  | pr_warn("excessive unreclaimable slab but cannot dump stats\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pr_info("Unreclaimable slab info:\n"); | 
|  | pr_info("Name                      Used          Total\n"); | 
|  |  | 
|  | list_for_each_entry_safe(s, s2, &slab_caches, list) { | 
|  | if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) | 
|  | continue; | 
|  |  | 
|  | get_slabinfo(s, &sinfo); | 
|  |  | 
|  | if (sinfo.num_objs > 0) | 
|  | pr_info("%-17s %10luKB %10luKB\n", cache_name(s), | 
|  | (sinfo.active_objs * s->size) / 1024, | 
|  | (sinfo.num_objs * s->size) / 1024); | 
|  | } | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_MEMCG) | 
|  | void *memcg_slab_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | return seq_list_start(&memcg->kmem_caches, *pos); | 
|  | } | 
|  |  | 
|  | void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | { | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | return seq_list_next(p, &memcg->kmem_caches, pos); | 
|  | } | 
|  |  | 
|  | void memcg_slab_stop(struct seq_file *m, void *p) | 
|  | { | 
|  | mutex_unlock(&slab_mutex); | 
|  | } | 
|  |  | 
|  | int memcg_slab_show(struct seq_file *m, void *p) | 
|  | { | 
|  | struct kmem_cache *s = list_entry(p, struct kmem_cache, | 
|  | memcg_params.kmem_caches_node); | 
|  | struct mem_cgroup *memcg = mem_cgroup_from_seq(m); | 
|  |  | 
|  | if (p == memcg->kmem_caches.next) | 
|  | print_slabinfo_header(m); | 
|  | cache_show(s, m); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * slabinfo_op - iterator that generates /proc/slabinfo | 
|  | * | 
|  | * Output layout: | 
|  | * cache-name | 
|  | * num-active-objs | 
|  | * total-objs | 
|  | * object size | 
|  | * num-active-slabs | 
|  | * total-slabs | 
|  | * num-pages-per-slab | 
|  | * + further values on SMP and with statistics enabled | 
|  | */ | 
|  | static const struct seq_operations slabinfo_op = { | 
|  | .start = slab_start, | 
|  | .next = slab_next, | 
|  | .stop = slab_stop, | 
|  | .show = slab_show, | 
|  | }; | 
|  |  | 
|  | static int slabinfo_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &slabinfo_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_slabinfo_operations = { | 
|  | .open		= slabinfo_open, | 
|  | .read		= seq_read, | 
|  | .write          = slabinfo_write, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | static int __init slab_proc_init(void) | 
|  | { | 
|  | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, | 
|  | &proc_slabinfo_operations); | 
|  | return 0; | 
|  | } | 
|  | module_init(slab_proc_init); | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM) | 
|  | /* | 
|  | * Display information about kmem caches that have child memcg caches. | 
|  | */ | 
|  | static int memcg_slabinfo_show(struct seq_file *m, void *unused) | 
|  | { | 
|  | struct kmem_cache *s, *c; | 
|  | struct slabinfo sinfo; | 
|  |  | 
|  | mutex_lock(&slab_mutex); | 
|  | seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>"); | 
|  | seq_puts(m, " <active_slabs> <num_slabs>\n"); | 
|  | list_for_each_entry(s, &slab_root_caches, root_caches_node) { | 
|  | /* | 
|  | * Skip kmem caches that don't have any memcg children. | 
|  | */ | 
|  | if (list_empty(&s->memcg_params.children)) | 
|  | continue; | 
|  |  | 
|  | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | get_slabinfo(s, &sinfo); | 
|  | seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n", | 
|  | cache_name(s), sinfo.active_objs, sinfo.num_objs, | 
|  | sinfo.active_slabs, sinfo.num_slabs); | 
|  |  | 
|  | for_each_memcg_cache(c, s) { | 
|  | struct cgroup_subsys_state *css; | 
|  | char *status = ""; | 
|  |  | 
|  | css = &c->memcg_params.memcg->css; | 
|  | if (!(css->flags & CSS_ONLINE)) | 
|  | status = ":dead"; | 
|  | else if (c->flags & SLAB_DEACTIVATED) | 
|  | status = ":deact"; | 
|  |  | 
|  | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | get_slabinfo(c, &sinfo); | 
|  | seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n", | 
|  | cache_name(c), css->id, status, | 
|  | sinfo.active_objs, sinfo.num_objs, | 
|  | sinfo.active_slabs, sinfo.num_slabs); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&slab_mutex); | 
|  | return 0; | 
|  | } | 
|  | DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo); | 
|  |  | 
|  | static int __init memcg_slabinfo_init(void) | 
|  | { | 
|  | debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO, | 
|  | NULL, NULL, &memcg_slabinfo_fops); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(memcg_slabinfo_init); | 
|  | #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */ | 
|  | #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ | 
|  |  | 
|  | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | 
|  | gfp_t flags) | 
|  | { | 
|  | void *ret; | 
|  | size_t ks = 0; | 
|  |  | 
|  | if (p) | 
|  | ks = ksize(p); | 
|  |  | 
|  | if (ks >= new_size) { | 
|  | p = kasan_krealloc((void *)p, new_size, flags); | 
|  | return (void *)p; | 
|  | } | 
|  |  | 
|  | ret = kmalloc_track_caller(new_size, flags); | 
|  | if (ret && p) | 
|  | memcpy(ret, p, ks); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __krealloc - like krealloc() but don't free @p. | 
|  | * @p: object to reallocate memory for. | 
|  | * @new_size: how many bytes of memory are required. | 
|  | * @flags: the type of memory to allocate. | 
|  | * | 
|  | * This function is like krealloc() except it never frees the originally | 
|  | * allocated buffer. Use this if you don't want to free the buffer immediately | 
|  | * like, for example, with RCU. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL in case of error | 
|  | */ | 
|  | void *__krealloc(const void *p, size_t new_size, gfp_t flags) | 
|  | { | 
|  | if (unlikely(!new_size)) | 
|  | return ZERO_SIZE_PTR; | 
|  |  | 
|  | return __do_krealloc(p, new_size, flags); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(__krealloc); | 
|  |  | 
|  | /** | 
|  | * krealloc - reallocate memory. The contents will remain unchanged. | 
|  | * @p: object to reallocate memory for. | 
|  | * @new_size: how many bytes of memory are required. | 
|  | * @flags: the type of memory to allocate. | 
|  | * | 
|  | * The contents of the object pointed to are preserved up to the | 
|  | * lesser of the new and old sizes.  If @p is %NULL, krealloc() | 
|  | * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a | 
|  | * %NULL pointer, the object pointed to is freed. | 
|  | * | 
|  | * Return: pointer to the allocated memory or %NULL in case of error | 
|  | */ | 
|  | void *krealloc(const void *p, size_t new_size, gfp_t flags) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | if (unlikely(!new_size)) { | 
|  | kfree(p); | 
|  | return ZERO_SIZE_PTR; | 
|  | } | 
|  |  | 
|  | ret = __do_krealloc(p, new_size, flags); | 
|  | if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) | 
|  | kfree(p); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(krealloc); | 
|  |  | 
|  | /** | 
|  | * kzfree - like kfree but zero memory | 
|  | * @p: object to free memory of | 
|  | * | 
|  | * The memory of the object @p points to is zeroed before freed. | 
|  | * If @p is %NULL, kzfree() does nothing. | 
|  | * | 
|  | * Note: this function zeroes the whole allocated buffer which can be a good | 
|  | * deal bigger than the requested buffer size passed to kmalloc(). So be | 
|  | * careful when using this function in performance sensitive code. | 
|  | */ | 
|  | void kzfree(const void *p) | 
|  | { | 
|  | size_t ks; | 
|  | void *mem = (void *)p; | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(mem))) | 
|  | return; | 
|  | ks = ksize(mem); | 
|  | memset(mem, 0, ks); | 
|  | kfree(mem); | 
|  | } | 
|  | EXPORT_SYMBOL(kzfree); | 
|  |  | 
|  | /** | 
|  | * ksize - get the actual amount of memory allocated for a given object | 
|  | * @objp: Pointer to the object | 
|  | * | 
|  | * kmalloc may internally round up allocations and return more memory | 
|  | * than requested. ksize() can be used to determine the actual amount of | 
|  | * memory allocated. The caller may use this additional memory, even though | 
|  | * a smaller amount of memory was initially specified with the kmalloc call. | 
|  | * The caller must guarantee that objp points to a valid object previously | 
|  | * allocated with either kmalloc() or kmem_cache_alloc(). The object | 
|  | * must not be freed during the duration of the call. | 
|  | * | 
|  | * Return: size of the actual memory used by @objp in bytes | 
|  | */ | 
|  | size_t ksize(const void *objp) | 
|  | { | 
|  | size_t size; | 
|  |  | 
|  | if (WARN_ON_ONCE(!objp)) | 
|  | return 0; | 
|  | /* | 
|  | * We need to check that the pointed to object is valid, and only then | 
|  | * unpoison the shadow memory below. We use __kasan_check_read(), to | 
|  | * generate a more useful report at the time ksize() is called (rather | 
|  | * than later where behaviour is undefined due to potential | 
|  | * use-after-free or double-free). | 
|  | * | 
|  | * If the pointed to memory is invalid we return 0, to avoid users of | 
|  | * ksize() writing to and potentially corrupting the memory region. | 
|  | * | 
|  | * We want to perform the check before __ksize(), to avoid potentially | 
|  | * crashing in __ksize() due to accessing invalid metadata. | 
|  | */ | 
|  | if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1)) | 
|  | return 0; | 
|  |  | 
|  | size = __ksize(objp); | 
|  | /* | 
|  | * We assume that ksize callers could use whole allocated area, | 
|  | * so we need to unpoison this area. | 
|  | */ | 
|  | kasan_unpoison_shadow(objp, size); | 
|  | return size; | 
|  | } | 
|  | EXPORT_SYMBOL(ksize); | 
|  |  | 
|  | /* Tracepoints definitions. */ | 
|  | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | 
|  | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | 
|  | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | 
|  | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | 
|  | EXPORT_TRACEPOINT_SYMBOL(kfree); | 
|  | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); | 
|  |  | 
|  | int should_failslab(struct kmem_cache *s, gfp_t gfpflags) | 
|  | { | 
|  | if (__should_failslab(s, gfpflags)) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  | ALLOW_ERROR_INJECTION(should_failslab, ERRNO); |