| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Testsuite for eBPF verifier | 
 |  * | 
 |  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com | 
 |  * Copyright (c) 2017 Facebook | 
 |  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io | 
 |  */ | 
 |  | 
 | #include <endian.h> | 
 | #include <asm/types.h> | 
 | #include <linux/types.h> | 
 | #include <stdint.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <unistd.h> | 
 | #include <errno.h> | 
 | #include <string.h> | 
 | #include <stddef.h> | 
 | #include <stdbool.h> | 
 | #include <sched.h> | 
 | #include <limits.h> | 
 | #include <assert.h> | 
 |  | 
 | #include <sys/capability.h> | 
 |  | 
 | #include <linux/unistd.h> | 
 | #include <linux/filter.h> | 
 | #include <linux/bpf_perf_event.h> | 
 | #include <linux/bpf.h> | 
 | #include <linux/if_ether.h> | 
 | #include <linux/btf.h> | 
 |  | 
 | #include <bpf/bpf.h> | 
 | #include <bpf/libbpf.h> | 
 |  | 
 | #ifdef HAVE_GENHDR | 
 | # include "autoconf.h" | 
 | #else | 
 | # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) | 
 | #  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 | 
 | # endif | 
 | #endif | 
 | #include "bpf_rlimit.h" | 
 | #include "bpf_rand.h" | 
 | #include "bpf_util.h" | 
 | #include "test_btf.h" | 
 | #include "../../../include/linux/filter.h" | 
 |  | 
 | #define MAX_INSNS	BPF_MAXINSNS | 
 | #define MAX_TEST_INSNS	1000000 | 
 | #define MAX_FIXUPS	8 | 
 | #define MAX_NR_MAPS	18 | 
 | #define MAX_TEST_RUNS	8 | 
 | #define POINTER_VALUE	0xcafe4all | 
 | #define TEST_DATA_LEN	64 | 
 |  | 
 | #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0) | 
 | #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1) | 
 |  | 
 | #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" | 
 | static bool unpriv_disabled = false; | 
 | static int skips; | 
 |  | 
 | struct bpf_test { | 
 | 	const char *descr; | 
 | 	struct bpf_insn	insns[MAX_INSNS]; | 
 | 	struct bpf_insn	*fill_insns; | 
 | 	int fixup_map_hash_8b[MAX_FIXUPS]; | 
 | 	int fixup_map_hash_48b[MAX_FIXUPS]; | 
 | 	int fixup_map_hash_16b[MAX_FIXUPS]; | 
 | 	int fixup_map_array_48b[MAX_FIXUPS]; | 
 | 	int fixup_map_sockmap[MAX_FIXUPS]; | 
 | 	int fixup_map_sockhash[MAX_FIXUPS]; | 
 | 	int fixup_map_xskmap[MAX_FIXUPS]; | 
 | 	int fixup_map_stacktrace[MAX_FIXUPS]; | 
 | 	int fixup_prog1[MAX_FIXUPS]; | 
 | 	int fixup_prog2[MAX_FIXUPS]; | 
 | 	int fixup_map_in_map[MAX_FIXUPS]; | 
 | 	int fixup_cgroup_storage[MAX_FIXUPS]; | 
 | 	int fixup_percpu_cgroup_storage[MAX_FIXUPS]; | 
 | 	int fixup_map_spin_lock[MAX_FIXUPS]; | 
 | 	int fixup_map_array_ro[MAX_FIXUPS]; | 
 | 	int fixup_map_array_wo[MAX_FIXUPS]; | 
 | 	int fixup_map_array_small[MAX_FIXUPS]; | 
 | 	int fixup_sk_storage_map[MAX_FIXUPS]; | 
 | 	const char *errstr; | 
 | 	const char *errstr_unpriv; | 
 | 	uint32_t insn_processed; | 
 | 	int prog_len; | 
 | 	enum { | 
 | 		UNDEF, | 
 | 		ACCEPT, | 
 | 		REJECT | 
 | 	} result, result_unpriv; | 
 | 	enum bpf_prog_type prog_type; | 
 | 	uint8_t flags; | 
 | 	void (*fill_helper)(struct bpf_test *self); | 
 | 	uint8_t runs; | 
 | #define bpf_testdata_struct_t					\ | 
 | 	struct {						\ | 
 | 		uint32_t retval, retval_unpriv;			\ | 
 | 		union {						\ | 
 | 			__u8 data[TEST_DATA_LEN];		\ | 
 | 			__u64 data64[TEST_DATA_LEN / 8];	\ | 
 | 		};						\ | 
 | 	} | 
 | 	union { | 
 | 		bpf_testdata_struct_t; | 
 | 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; | 
 | 	}; | 
 | 	enum bpf_attach_type expected_attach_type; | 
 | }; | 
 |  | 
 | /* Note we want this to be 64 bit aligned so that the end of our array is | 
 |  * actually the end of the structure. | 
 |  */ | 
 | #define MAX_ENTRIES 11 | 
 |  | 
 | struct test_val { | 
 | 	unsigned int index; | 
 | 	int foo[MAX_ENTRIES]; | 
 | }; | 
 |  | 
 | struct other_val { | 
 | 	long long foo; | 
 | 	long long bar; | 
 | }; | 
 |  | 
 | static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) | 
 | { | 
 | 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ | 
 | #define PUSH_CNT 51 | 
 | 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ | 
 | 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; | 
 | 	struct bpf_insn *insn = self->fill_insns; | 
 | 	int i = 0, j, k = 0; | 
 |  | 
 | 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); | 
 | loop: | 
 | 	for (j = 0; j < PUSH_CNT; j++) { | 
 | 		insn[i++] = BPF_LD_ABS(BPF_B, 0); | 
 | 		/* jump to error label */ | 
 | 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); | 
 | 		i++; | 
 | 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); | 
 | 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); | 
 | 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); | 
 | 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, | 
 | 					 BPF_FUNC_skb_vlan_push), | 
 | 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	for (j = 0; j < PUSH_CNT; j++) { | 
 | 		insn[i++] = BPF_LD_ABS(BPF_B, 0); | 
 | 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); | 
 | 		i++; | 
 | 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); | 
 | 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, | 
 | 					 BPF_FUNC_skb_vlan_pop), | 
 | 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); | 
 | 		i++; | 
 | 	} | 
 | 	if (++k < 5) | 
 | 		goto loop; | 
 |  | 
 | 	for (; i < len - 3; i++) | 
 | 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); | 
 | 	insn[len - 3] = BPF_JMP_A(1); | 
 | 	/* error label */ | 
 | 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); | 
 | 	insn[len - 1] = BPF_EXIT_INSN(); | 
 | 	self->prog_len = len; | 
 | } | 
 |  | 
 | static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) | 
 | { | 
 | 	struct bpf_insn *insn = self->fill_insns; | 
 | 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, | 
 | 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted | 
 | 	 * to extend the error value of the inlined ld_abs sequence which then | 
 | 	 * contains 7 insns. so, set the dividend to 7 so the testcase could | 
 | 	 * work on all arches. | 
 | 	 */ | 
 | 	unsigned int len = (1 << 15) / 7; | 
 | 	int i = 0; | 
 |  | 
 | 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); | 
 | 	insn[i++] = BPF_LD_ABS(BPF_B, 0); | 
 | 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); | 
 | 	i++; | 
 | 	while (i < len - 1) | 
 | 		insn[i++] = BPF_LD_ABS(BPF_B, 1); | 
 | 	insn[i] = BPF_EXIT_INSN(); | 
 | 	self->prog_len = i + 1; | 
 | } | 
 |  | 
 | static void bpf_fill_rand_ld_dw(struct bpf_test *self) | 
 | { | 
 | 	struct bpf_insn *insn = self->fill_insns; | 
 | 	uint64_t res = 0; | 
 | 	int i = 0; | 
 |  | 
 | 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); | 
 | 	while (i < self->retval) { | 
 | 		uint64_t val = bpf_semi_rand_get(); | 
 | 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; | 
 |  | 
 | 		res ^= val; | 
 | 		insn[i++] = tmp[0]; | 
 | 		insn[i++] = tmp[1]; | 
 | 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); | 
 | 	} | 
 | 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); | 
 | 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); | 
 | 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); | 
 | 	insn[i] = BPF_EXIT_INSN(); | 
 | 	self->prog_len = i + 1; | 
 | 	res ^= (res >> 32); | 
 | 	self->retval = (uint32_t)res; | 
 | } | 
 |  | 
 | #define MAX_JMP_SEQ 8192 | 
 |  | 
 | /* test the sequence of 8k jumps */ | 
 | static void bpf_fill_scale1(struct bpf_test *self) | 
 | { | 
 | 	struct bpf_insn *insn = self->fill_insns; | 
 | 	int i = 0, k = 0; | 
 |  | 
 | 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); | 
 | 	/* test to check that the long sequence of jumps is acceptable */ | 
 | 	while (k++ < MAX_JMP_SEQ) { | 
 | 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, | 
 | 					 BPF_FUNC_get_prandom_u32); | 
 | 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); | 
 | 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); | 
 | 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, | 
 | 					-8 * (k % 64 + 1)); | 
 | 	} | 
 | 	/* is_state_visited() doesn't allocate state for pruning for every jump. | 
 | 	 * Hence multiply jmps by 4 to accommodate that heuristic | 
 | 	 */ | 
 | 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) | 
 | 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); | 
 | 	insn[i] = BPF_EXIT_INSN(); | 
 | 	self->prog_len = i + 1; | 
 | 	self->retval = 42; | 
 | } | 
 |  | 
 | /* test the sequence of 8k jumps in inner most function (function depth 8)*/ | 
 | static void bpf_fill_scale2(struct bpf_test *self) | 
 | { | 
 | 	struct bpf_insn *insn = self->fill_insns; | 
 | 	int i = 0, k = 0; | 
 |  | 
 | #define FUNC_NEST 7 | 
 | 	for (k = 0; k < FUNC_NEST; k++) { | 
 | 		insn[i++] = BPF_CALL_REL(1); | 
 | 		insn[i++] = BPF_EXIT_INSN(); | 
 | 	} | 
 | 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); | 
 | 	/* test to check that the long sequence of jumps is acceptable */ | 
 | 	k = 0; | 
 | 	while (k++ < MAX_JMP_SEQ) { | 
 | 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, | 
 | 					 BPF_FUNC_get_prandom_u32); | 
 | 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); | 
 | 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); | 
 | 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, | 
 | 					-8 * (k % (64 - 4 * FUNC_NEST) + 1)); | 
 | 	} | 
 | 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) | 
 | 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); | 
 | 	insn[i] = BPF_EXIT_INSN(); | 
 | 	self->prog_len = i + 1; | 
 | 	self->retval = 42; | 
 | } | 
 |  | 
 | static void bpf_fill_scale(struct bpf_test *self) | 
 | { | 
 | 	switch (self->retval) { | 
 | 	case 1: | 
 | 		return bpf_fill_scale1(self); | 
 | 	case 2: | 
 | 		return bpf_fill_scale2(self); | 
 | 	default: | 
 | 		self->prog_len = 0; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ | 
 | #define BPF_SK_LOOKUP(func)						\ | 
 | 	/* struct bpf_sock_tuple tuple = {} */				\ | 
 | 	BPF_MOV64_IMM(BPF_REG_2, 0),					\ | 
 | 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\ | 
 | 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\ | 
 | 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\ | 
 | 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\ | 
 | 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\ | 
 | 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\ | 
 | 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\ | 
 | 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\ | 
 | 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\ | 
 | 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\ | 
 | 	BPF_MOV64_IMM(BPF_REG_4, 0),					\ | 
 | 	BPF_MOV64_IMM(BPF_REG_5, 0),					\ | 
 | 	BPF_EMIT_CALL(BPF_FUNC_ ## func) | 
 |  | 
 | /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return | 
 |  * value into 0 and does necessary preparation for direct packet access | 
 |  * through r2. The allowed access range is 8 bytes. | 
 |  */ | 
 | #define BPF_DIRECT_PKT_R2						\ | 
 | 	BPF_MOV64_IMM(BPF_REG_0, 0),					\ | 
 | 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\ | 
 | 		    offsetof(struct __sk_buff, data)),			\ | 
 | 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\ | 
 | 		    offsetof(struct __sk_buff, data_end)),		\ | 
 | 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\ | 
 | 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\ | 
 | 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\ | 
 | 	BPF_EXIT_INSN() | 
 |  | 
 | /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random | 
 |  * positive u32, and zero-extend it into 64-bit. | 
 |  */ | 
 | #define BPF_RAND_UEXT_R7						\ | 
 | 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\ | 
 | 		     BPF_FUNC_get_prandom_u32),				\ | 
 | 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\ | 
 | 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\ | 
 | 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) | 
 |  | 
 | /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random | 
 |  * negative u32, and sign-extend it into 64-bit. | 
 |  */ | 
 | #define BPF_RAND_SEXT_R7						\ | 
 | 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\ | 
 | 		     BPF_FUNC_get_prandom_u32),				\ | 
 | 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\ | 
 | 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\ | 
 | 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\ | 
 | 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) | 
 |  | 
 | static struct bpf_test tests[] = { | 
 | #define FILL_ARRAY | 
 | #include <verifier/tests.h> | 
 | #undef FILL_ARRAY | 
 | }; | 
 |  | 
 | static int probe_filter_length(const struct bpf_insn *fp) | 
 | { | 
 | 	int len; | 
 |  | 
 | 	for (len = MAX_INSNS - 1; len > 0; --len) | 
 | 		if (fp[len].code != 0 || fp[len].imm != 0) | 
 | 			break; | 
 | 	return len + 1; | 
 | } | 
 |  | 
 | static bool skip_unsupported_map(enum bpf_map_type map_type) | 
 | { | 
 | 	if (!bpf_probe_map_type(map_type, 0)) { | 
 | 		printf("SKIP (unsupported map type %d)\n", map_type); | 
 | 		skips++; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static int __create_map(uint32_t type, uint32_t size_key, | 
 | 			uint32_t size_value, uint32_t max_elem, | 
 | 			uint32_t extra_flags) | 
 | { | 
 | 	int fd; | 
 |  | 
 | 	fd = bpf_create_map(type, size_key, size_value, max_elem, | 
 | 			    (type == BPF_MAP_TYPE_HASH ? | 
 | 			     BPF_F_NO_PREALLOC : 0) | extra_flags); | 
 | 	if (fd < 0) { | 
 | 		if (skip_unsupported_map(type)) | 
 | 			return -1; | 
 | 		printf("Failed to create hash map '%s'!\n", strerror(errno)); | 
 | 	} | 
 |  | 
 | 	return fd; | 
 | } | 
 |  | 
 | static int create_map(uint32_t type, uint32_t size_key, | 
 | 		      uint32_t size_value, uint32_t max_elem) | 
 | { | 
 | 	return __create_map(type, size_key, size_value, max_elem, 0); | 
 | } | 
 |  | 
 | static void update_map(int fd, int index) | 
 | { | 
 | 	struct test_val value = { | 
 | 		.index = (6 + 1) * sizeof(int), | 
 | 		.foo[6] = 0xabcdef12, | 
 | 	}; | 
 |  | 
 | 	assert(!bpf_map_update_elem(fd, &index, &value, 0)); | 
 | } | 
 |  | 
 | static int create_prog_dummy1(enum bpf_prog_type prog_type) | 
 | { | 
 | 	struct bpf_insn prog[] = { | 
 | 		BPF_MOV64_IMM(BPF_REG_0, 42), | 
 | 		BPF_EXIT_INSN(), | 
 | 	}; | 
 |  | 
 | 	return bpf_load_program(prog_type, prog, | 
 | 				ARRAY_SIZE(prog), "GPL", 0, NULL, 0); | 
 | } | 
 |  | 
 | static int create_prog_dummy2(enum bpf_prog_type prog_type, int mfd, int idx) | 
 | { | 
 | 	struct bpf_insn prog[] = { | 
 | 		BPF_MOV64_IMM(BPF_REG_3, idx), | 
 | 		BPF_LD_MAP_FD(BPF_REG_2, mfd), | 
 | 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, | 
 | 			     BPF_FUNC_tail_call), | 
 | 		BPF_MOV64_IMM(BPF_REG_0, 41), | 
 | 		BPF_EXIT_INSN(), | 
 | 	}; | 
 |  | 
 | 	return bpf_load_program(prog_type, prog, | 
 | 				ARRAY_SIZE(prog), "GPL", 0, NULL, 0); | 
 | } | 
 |  | 
 | static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, | 
 | 			     int p1key) | 
 | { | 
 | 	int p2key = 1; | 
 | 	int mfd, p1fd, p2fd; | 
 |  | 
 | 	mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), | 
 | 			     sizeof(int), max_elem, 0); | 
 | 	if (mfd < 0) { | 
 | 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) | 
 | 			return -1; | 
 | 		printf("Failed to create prog array '%s'!\n", strerror(errno)); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	p1fd = create_prog_dummy1(prog_type); | 
 | 	p2fd = create_prog_dummy2(prog_type, mfd, p2key); | 
 | 	if (p1fd < 0 || p2fd < 0) | 
 | 		goto out; | 
 | 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) | 
 | 		goto out; | 
 | 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) | 
 | 		goto out; | 
 | 	close(p2fd); | 
 | 	close(p1fd); | 
 |  | 
 | 	return mfd; | 
 | out: | 
 | 	close(p2fd); | 
 | 	close(p1fd); | 
 | 	close(mfd); | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int create_map_in_map(void) | 
 | { | 
 | 	int inner_map_fd, outer_map_fd; | 
 |  | 
 | 	inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), | 
 | 				      sizeof(int), 1, 0); | 
 | 	if (inner_map_fd < 0) { | 
 | 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) | 
 | 			return -1; | 
 | 		printf("Failed to create array '%s'!\n", strerror(errno)); | 
 | 		return inner_map_fd; | 
 | 	} | 
 |  | 
 | 	outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, | 
 | 					     sizeof(int), inner_map_fd, 1, 0); | 
 | 	if (outer_map_fd < 0) { | 
 | 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) | 
 | 			return -1; | 
 | 		printf("Failed to create array of maps '%s'!\n", | 
 | 		       strerror(errno)); | 
 | 	} | 
 |  | 
 | 	close(inner_map_fd); | 
 |  | 
 | 	return outer_map_fd; | 
 | } | 
 |  | 
 | static int create_cgroup_storage(bool percpu) | 
 | { | 
 | 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : | 
 | 		BPF_MAP_TYPE_CGROUP_STORAGE; | 
 | 	int fd; | 
 |  | 
 | 	fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), | 
 | 			    TEST_DATA_LEN, 0, 0); | 
 | 	if (fd < 0) { | 
 | 		if (skip_unsupported_map(type)) | 
 | 			return -1; | 
 | 		printf("Failed to create cgroup storage '%s'!\n", | 
 | 		       strerror(errno)); | 
 | 	} | 
 |  | 
 | 	return fd; | 
 | } | 
 |  | 
 | /* struct bpf_spin_lock { | 
 |  *   int val; | 
 |  * }; | 
 |  * struct val { | 
 |  *   int cnt; | 
 |  *   struct bpf_spin_lock l; | 
 |  * }; | 
 |  */ | 
 | static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l"; | 
 | static __u32 btf_raw_types[] = { | 
 | 	/* int */ | 
 | 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */ | 
 | 	/* struct bpf_spin_lock */                      /* [2] */ | 
 | 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), | 
 | 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */ | 
 | 	/* struct val */                                /* [3] */ | 
 | 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), | 
 | 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ | 
 | 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ | 
 | }; | 
 |  | 
 | static int load_btf(void) | 
 | { | 
 | 	struct btf_header hdr = { | 
 | 		.magic = BTF_MAGIC, | 
 | 		.version = BTF_VERSION, | 
 | 		.hdr_len = sizeof(struct btf_header), | 
 | 		.type_len = sizeof(btf_raw_types), | 
 | 		.str_off = sizeof(btf_raw_types), | 
 | 		.str_len = sizeof(btf_str_sec), | 
 | 	}; | 
 | 	void *ptr, *raw_btf; | 
 | 	int btf_fd; | 
 |  | 
 | 	ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + | 
 | 			       sizeof(btf_str_sec)); | 
 |  | 
 | 	memcpy(ptr, &hdr, sizeof(hdr)); | 
 | 	ptr += sizeof(hdr); | 
 | 	memcpy(ptr, btf_raw_types, hdr.type_len); | 
 | 	ptr += hdr.type_len; | 
 | 	memcpy(ptr, btf_str_sec, hdr.str_len); | 
 | 	ptr += hdr.str_len; | 
 |  | 
 | 	btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0); | 
 | 	free(raw_btf); | 
 | 	if (btf_fd < 0) | 
 | 		return -1; | 
 | 	return btf_fd; | 
 | } | 
 |  | 
 | static int create_map_spin_lock(void) | 
 | { | 
 | 	struct bpf_create_map_attr attr = { | 
 | 		.name = "test_map", | 
 | 		.map_type = BPF_MAP_TYPE_ARRAY, | 
 | 		.key_size = 4, | 
 | 		.value_size = 8, | 
 | 		.max_entries = 1, | 
 | 		.btf_key_type_id = 1, | 
 | 		.btf_value_type_id = 3, | 
 | 	}; | 
 | 	int fd, btf_fd; | 
 |  | 
 | 	btf_fd = load_btf(); | 
 | 	if (btf_fd < 0) | 
 | 		return -1; | 
 | 	attr.btf_fd = btf_fd; | 
 | 	fd = bpf_create_map_xattr(&attr); | 
 | 	if (fd < 0) | 
 | 		printf("Failed to create map with spin_lock\n"); | 
 | 	return fd; | 
 | } | 
 |  | 
 | static int create_sk_storage_map(void) | 
 | { | 
 | 	struct bpf_create_map_attr attr = { | 
 | 		.name = "test_map", | 
 | 		.map_type = BPF_MAP_TYPE_SK_STORAGE, | 
 | 		.key_size = 4, | 
 | 		.value_size = 8, | 
 | 		.max_entries = 0, | 
 | 		.map_flags = BPF_F_NO_PREALLOC, | 
 | 		.btf_key_type_id = 1, | 
 | 		.btf_value_type_id = 3, | 
 | 	}; | 
 | 	int fd, btf_fd; | 
 |  | 
 | 	btf_fd = load_btf(); | 
 | 	if (btf_fd < 0) | 
 | 		return -1; | 
 | 	attr.btf_fd = btf_fd; | 
 | 	fd = bpf_create_map_xattr(&attr); | 
 | 	close(attr.btf_fd); | 
 | 	if (fd < 0) | 
 | 		printf("Failed to create sk_storage_map\n"); | 
 | 	return fd; | 
 | } | 
 |  | 
 | static char bpf_vlog[UINT_MAX >> 8]; | 
 |  | 
 | static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, | 
 | 			  struct bpf_insn *prog, int *map_fds) | 
 | { | 
 | 	int *fixup_map_hash_8b = test->fixup_map_hash_8b; | 
 | 	int *fixup_map_hash_48b = test->fixup_map_hash_48b; | 
 | 	int *fixup_map_hash_16b = test->fixup_map_hash_16b; | 
 | 	int *fixup_map_array_48b = test->fixup_map_array_48b; | 
 | 	int *fixup_map_sockmap = test->fixup_map_sockmap; | 
 | 	int *fixup_map_sockhash = test->fixup_map_sockhash; | 
 | 	int *fixup_map_xskmap = test->fixup_map_xskmap; | 
 | 	int *fixup_map_stacktrace = test->fixup_map_stacktrace; | 
 | 	int *fixup_prog1 = test->fixup_prog1; | 
 | 	int *fixup_prog2 = test->fixup_prog2; | 
 | 	int *fixup_map_in_map = test->fixup_map_in_map; | 
 | 	int *fixup_cgroup_storage = test->fixup_cgroup_storage; | 
 | 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; | 
 | 	int *fixup_map_spin_lock = test->fixup_map_spin_lock; | 
 | 	int *fixup_map_array_ro = test->fixup_map_array_ro; | 
 | 	int *fixup_map_array_wo = test->fixup_map_array_wo; | 
 | 	int *fixup_map_array_small = test->fixup_map_array_small; | 
 | 	int *fixup_sk_storage_map = test->fixup_sk_storage_map; | 
 |  | 
 | 	if (test->fill_helper) { | 
 | 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); | 
 | 		test->fill_helper(test); | 
 | 	} | 
 |  | 
 | 	/* Allocating HTs with 1 elem is fine here, since we only test | 
 | 	 * for verifier and not do a runtime lookup, so the only thing | 
 | 	 * that really matters is value size in this case. | 
 | 	 */ | 
 | 	if (*fixup_map_hash_8b) { | 
 | 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), | 
 | 					sizeof(long long), 1); | 
 | 		do { | 
 | 			prog[*fixup_map_hash_8b].imm = map_fds[0]; | 
 | 			fixup_map_hash_8b++; | 
 | 		} while (*fixup_map_hash_8b); | 
 | 	} | 
 |  | 
 | 	if (*fixup_map_hash_48b) { | 
 | 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), | 
 | 					sizeof(struct test_val), 1); | 
 | 		do { | 
 | 			prog[*fixup_map_hash_48b].imm = map_fds[1]; | 
 | 			fixup_map_hash_48b++; | 
 | 		} while (*fixup_map_hash_48b); | 
 | 	} | 
 |  | 
 | 	if (*fixup_map_hash_16b) { | 
 | 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), | 
 | 					sizeof(struct other_val), 1); | 
 | 		do { | 
 | 			prog[*fixup_map_hash_16b].imm = map_fds[2]; | 
 | 			fixup_map_hash_16b++; | 
 | 		} while (*fixup_map_hash_16b); | 
 | 	} | 
 |  | 
 | 	if (*fixup_map_array_48b) { | 
 | 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), | 
 | 					sizeof(struct test_val), 1); | 
 | 		update_map(map_fds[3], 0); | 
 | 		do { | 
 | 			prog[*fixup_map_array_48b].imm = map_fds[3]; | 
 | 			fixup_map_array_48b++; | 
 | 		} while (*fixup_map_array_48b); | 
 | 	} | 
 |  | 
 | 	if (*fixup_prog1) { | 
 | 		map_fds[4] = create_prog_array(prog_type, 4, 0); | 
 | 		do { | 
 | 			prog[*fixup_prog1].imm = map_fds[4]; | 
 | 			fixup_prog1++; | 
 | 		} while (*fixup_prog1); | 
 | 	} | 
 |  | 
 | 	if (*fixup_prog2) { | 
 | 		map_fds[5] = create_prog_array(prog_type, 8, 7); | 
 | 		do { | 
 | 			prog[*fixup_prog2].imm = map_fds[5]; | 
 | 			fixup_prog2++; | 
 | 		} while (*fixup_prog2); | 
 | 	} | 
 |  | 
 | 	if (*fixup_map_in_map) { | 
 | 		map_fds[6] = create_map_in_map(); | 
 | 		do { | 
 | 			prog[*fixup_map_in_map].imm = map_fds[6]; | 
 | 			fixup_map_in_map++; | 
 | 		} while (*fixup_map_in_map); | 
 | 	} | 
 |  | 
 | 	if (*fixup_cgroup_storage) { | 
 | 		map_fds[7] = create_cgroup_storage(false); | 
 | 		do { | 
 | 			prog[*fixup_cgroup_storage].imm = map_fds[7]; | 
 | 			fixup_cgroup_storage++; | 
 | 		} while (*fixup_cgroup_storage); | 
 | 	} | 
 |  | 
 | 	if (*fixup_percpu_cgroup_storage) { | 
 | 		map_fds[8] = create_cgroup_storage(true); | 
 | 		do { | 
 | 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; | 
 | 			fixup_percpu_cgroup_storage++; | 
 | 		} while (*fixup_percpu_cgroup_storage); | 
 | 	} | 
 | 	if (*fixup_map_sockmap) { | 
 | 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), | 
 | 					sizeof(int), 1); | 
 | 		do { | 
 | 			prog[*fixup_map_sockmap].imm = map_fds[9]; | 
 | 			fixup_map_sockmap++; | 
 | 		} while (*fixup_map_sockmap); | 
 | 	} | 
 | 	if (*fixup_map_sockhash) { | 
 | 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), | 
 | 					sizeof(int), 1); | 
 | 		do { | 
 | 			prog[*fixup_map_sockhash].imm = map_fds[10]; | 
 | 			fixup_map_sockhash++; | 
 | 		} while (*fixup_map_sockhash); | 
 | 	} | 
 | 	if (*fixup_map_xskmap) { | 
 | 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), | 
 | 					sizeof(int), 1); | 
 | 		do { | 
 | 			prog[*fixup_map_xskmap].imm = map_fds[11]; | 
 | 			fixup_map_xskmap++; | 
 | 		} while (*fixup_map_xskmap); | 
 | 	} | 
 | 	if (*fixup_map_stacktrace) { | 
 | 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), | 
 | 					 sizeof(u64), 1); | 
 | 		do { | 
 | 			prog[*fixup_map_stacktrace].imm = map_fds[12]; | 
 | 			fixup_map_stacktrace++; | 
 | 		} while (*fixup_map_stacktrace); | 
 | 	} | 
 | 	if (*fixup_map_spin_lock) { | 
 | 		map_fds[13] = create_map_spin_lock(); | 
 | 		do { | 
 | 			prog[*fixup_map_spin_lock].imm = map_fds[13]; | 
 | 			fixup_map_spin_lock++; | 
 | 		} while (*fixup_map_spin_lock); | 
 | 	} | 
 | 	if (*fixup_map_array_ro) { | 
 | 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), | 
 | 					   sizeof(struct test_val), 1, | 
 | 					   BPF_F_RDONLY_PROG); | 
 | 		update_map(map_fds[14], 0); | 
 | 		do { | 
 | 			prog[*fixup_map_array_ro].imm = map_fds[14]; | 
 | 			fixup_map_array_ro++; | 
 | 		} while (*fixup_map_array_ro); | 
 | 	} | 
 | 	if (*fixup_map_array_wo) { | 
 | 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), | 
 | 					   sizeof(struct test_val), 1, | 
 | 					   BPF_F_WRONLY_PROG); | 
 | 		update_map(map_fds[15], 0); | 
 | 		do { | 
 | 			prog[*fixup_map_array_wo].imm = map_fds[15]; | 
 | 			fixup_map_array_wo++; | 
 | 		} while (*fixup_map_array_wo); | 
 | 	} | 
 | 	if (*fixup_map_array_small) { | 
 | 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), | 
 | 					   1, 1, 0); | 
 | 		update_map(map_fds[16], 0); | 
 | 		do { | 
 | 			prog[*fixup_map_array_small].imm = map_fds[16]; | 
 | 			fixup_map_array_small++; | 
 | 		} while (*fixup_map_array_small); | 
 | 	} | 
 | 	if (*fixup_sk_storage_map) { | 
 | 		map_fds[17] = create_sk_storage_map(); | 
 | 		do { | 
 | 			prog[*fixup_sk_storage_map].imm = map_fds[17]; | 
 | 			fixup_sk_storage_map++; | 
 | 		} while (*fixup_sk_storage_map); | 
 | 	} | 
 | } | 
 |  | 
 | static int set_admin(bool admin) | 
 | { | 
 | 	cap_t caps; | 
 | 	const cap_value_t cap_val = CAP_SYS_ADMIN; | 
 | 	int ret = -1; | 
 |  | 
 | 	caps = cap_get_proc(); | 
 | 	if (!caps) { | 
 | 		perror("cap_get_proc"); | 
 | 		return -1; | 
 | 	} | 
 | 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val, | 
 | 				admin ? CAP_SET : CAP_CLEAR)) { | 
 | 		perror("cap_set_flag"); | 
 | 		goto out; | 
 | 	} | 
 | 	if (cap_set_proc(caps)) { | 
 | 		perror("cap_set_proc"); | 
 | 		goto out; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	if (cap_free(caps)) | 
 | 		perror("cap_free"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, | 
 | 			    void *data, size_t size_data) | 
 | { | 
 | 	__u8 tmp[TEST_DATA_LEN << 2]; | 
 | 	__u32 size_tmp = sizeof(tmp); | 
 | 	uint32_t retval; | 
 | 	int err; | 
 |  | 
 | 	if (unpriv) | 
 | 		set_admin(true); | 
 | 	err = bpf_prog_test_run(fd_prog, 1, data, size_data, | 
 | 				tmp, &size_tmp, &retval, NULL); | 
 | 	if (unpriv) | 
 | 		set_admin(false); | 
 | 	if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) { | 
 | 		printf("Unexpected bpf_prog_test_run error "); | 
 | 		return err; | 
 | 	} | 
 | 	if (!err && retval != expected_val && | 
 | 	    expected_val != POINTER_VALUE) { | 
 | 		printf("FAIL retval %d != %d ", retval, expected_val); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void do_test_single(struct bpf_test *test, bool unpriv, | 
 | 			   int *passes, int *errors) | 
 | { | 
 | 	int fd_prog, expected_ret, alignment_prevented_execution; | 
 | 	int prog_len, prog_type = test->prog_type; | 
 | 	struct bpf_insn *prog = test->insns; | 
 | 	struct bpf_load_program_attr attr; | 
 | 	int run_errs, run_successes; | 
 | 	int map_fds[MAX_NR_MAPS]; | 
 | 	const char *expected_err; | 
 | 	int fixup_skips; | 
 | 	__u32 pflags; | 
 | 	int i, err; | 
 |  | 
 | 	for (i = 0; i < MAX_NR_MAPS; i++) | 
 | 		map_fds[i] = -1; | 
 |  | 
 | 	if (!prog_type) | 
 | 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER; | 
 | 	fixup_skips = skips; | 
 | 	do_test_fixup(test, prog_type, prog, map_fds); | 
 | 	if (test->fill_insns) { | 
 | 		prog = test->fill_insns; | 
 | 		prog_len = test->prog_len; | 
 | 	} else { | 
 | 		prog_len = probe_filter_length(prog); | 
 | 	} | 
 | 	/* If there were some map skips during fixup due to missing bpf | 
 | 	 * features, skip this test. | 
 | 	 */ | 
 | 	if (fixup_skips != skips) | 
 | 		return; | 
 |  | 
 | 	pflags = BPF_F_TEST_RND_HI32; | 
 | 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) | 
 | 		pflags |= BPF_F_STRICT_ALIGNMENT; | 
 | 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) | 
 | 		pflags |= BPF_F_ANY_ALIGNMENT; | 
 |  | 
 | 	memset(&attr, 0, sizeof(attr)); | 
 | 	attr.prog_type = prog_type; | 
 | 	attr.expected_attach_type = test->expected_attach_type; | 
 | 	attr.insns = prog; | 
 | 	attr.insns_cnt = prog_len; | 
 | 	attr.license = "GPL"; | 
 | 	attr.log_level = 4; | 
 | 	attr.prog_flags = pflags; | 
 |  | 
 | 	fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog)); | 
 | 	if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) { | 
 | 		printf("SKIP (unsupported program type %d)\n", prog_type); | 
 | 		skips++; | 
 | 		goto close_fds; | 
 | 	} | 
 |  | 
 | 	expected_ret = unpriv && test->result_unpriv != UNDEF ? | 
 | 		       test->result_unpriv : test->result; | 
 | 	expected_err = unpriv && test->errstr_unpriv ? | 
 | 		       test->errstr_unpriv : test->errstr; | 
 |  | 
 | 	alignment_prevented_execution = 0; | 
 |  | 
 | 	if (expected_ret == ACCEPT) { | 
 | 		if (fd_prog < 0) { | 
 | 			printf("FAIL\nFailed to load prog '%s'!\n", | 
 | 			       strerror(errno)); | 
 | 			goto fail_log; | 
 | 		} | 
 | #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS | 
 | 		if (fd_prog >= 0 && | 
 | 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) | 
 | 			alignment_prevented_execution = 1; | 
 | #endif | 
 | 	} else { | 
 | 		if (fd_prog >= 0) { | 
 | 			printf("FAIL\nUnexpected success to load!\n"); | 
 | 			goto fail_log; | 
 | 		} | 
 | 		if (!expected_err || !strstr(bpf_vlog, expected_err)) { | 
 | 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", | 
 | 			      expected_err, bpf_vlog); | 
 | 			goto fail_log; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (test->insn_processed) { | 
 | 		uint32_t insn_processed; | 
 | 		char *proc; | 
 |  | 
 | 		proc = strstr(bpf_vlog, "processed "); | 
 | 		insn_processed = atoi(proc + 10); | 
 | 		if (test->insn_processed != insn_processed) { | 
 | 			printf("FAIL\nUnexpected insn_processed %u vs %u\n", | 
 | 			       insn_processed, test->insn_processed); | 
 | 			goto fail_log; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	run_errs = 0; | 
 | 	run_successes = 0; | 
 | 	if (!alignment_prevented_execution && fd_prog >= 0) { | 
 | 		uint32_t expected_val; | 
 | 		int i; | 
 |  | 
 | 		if (!test->runs) | 
 | 			test->runs = 1; | 
 |  | 
 | 		for (i = 0; i < test->runs; i++) { | 
 | 			if (unpriv && test->retvals[i].retval_unpriv) | 
 | 				expected_val = test->retvals[i].retval_unpriv; | 
 | 			else | 
 | 				expected_val = test->retvals[i].retval; | 
 |  | 
 | 			err = do_prog_test_run(fd_prog, unpriv, expected_val, | 
 | 					       test->retvals[i].data, | 
 | 					       sizeof(test->retvals[i].data)); | 
 | 			if (err) { | 
 | 				printf("(run %d/%d) ", i + 1, test->runs); | 
 | 				run_errs++; | 
 | 			} else { | 
 | 				run_successes++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!run_errs) { | 
 | 		(*passes)++; | 
 | 		if (run_successes > 1) | 
 | 			printf("%d cases ", run_successes); | 
 | 		printf("OK"); | 
 | 		if (alignment_prevented_execution) | 
 | 			printf(" (NOTE: not executed due to unknown alignment)"); | 
 | 		printf("\n"); | 
 | 	} else { | 
 | 		printf("\n"); | 
 | 		goto fail_log; | 
 | 	} | 
 | close_fds: | 
 | 	if (test->fill_insns) | 
 | 		free(test->fill_insns); | 
 | 	close(fd_prog); | 
 | 	for (i = 0; i < MAX_NR_MAPS; i++) | 
 | 		close(map_fds[i]); | 
 | 	sched_yield(); | 
 | 	return; | 
 | fail_log: | 
 | 	(*errors)++; | 
 | 	printf("%s", bpf_vlog); | 
 | 	goto close_fds; | 
 | } | 
 |  | 
 | static bool is_admin(void) | 
 | { | 
 | 	cap_t caps; | 
 | 	cap_flag_value_t sysadmin = CAP_CLEAR; | 
 | 	const cap_value_t cap_val = CAP_SYS_ADMIN; | 
 |  | 
 | #ifdef CAP_IS_SUPPORTED | 
 | 	if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { | 
 | 		perror("cap_get_flag"); | 
 | 		return false; | 
 | 	} | 
 | #endif | 
 | 	caps = cap_get_proc(); | 
 | 	if (!caps) { | 
 | 		perror("cap_get_proc"); | 
 | 		return false; | 
 | 	} | 
 | 	if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin)) | 
 | 		perror("cap_get_flag"); | 
 | 	if (cap_free(caps)) | 
 | 		perror("cap_free"); | 
 | 	return (sysadmin == CAP_SET); | 
 | } | 
 |  | 
 | static void get_unpriv_disabled() | 
 | { | 
 | 	char buf[2]; | 
 | 	FILE *fd; | 
 |  | 
 | 	fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); | 
 | 	if (!fd) { | 
 | 		perror("fopen /proc/sys/"UNPRIV_SYSCTL); | 
 | 		unpriv_disabled = true; | 
 | 		return; | 
 | 	} | 
 | 	if (fgets(buf, 2, fd) == buf && atoi(buf)) | 
 | 		unpriv_disabled = true; | 
 | 	fclose(fd); | 
 | } | 
 |  | 
 | static bool test_as_unpriv(struct bpf_test *test) | 
 | { | 
 | 	return !test->prog_type || | 
 | 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || | 
 | 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; | 
 | } | 
 |  | 
 | static int do_test(bool unpriv, unsigned int from, unsigned int to) | 
 | { | 
 | 	int i, passes = 0, errors = 0; | 
 |  | 
 | 	for (i = from; i < to; i++) { | 
 | 		struct bpf_test *test = &tests[i]; | 
 |  | 
 | 		/* Program types that are not supported by non-root we | 
 | 		 * skip right away. | 
 | 		 */ | 
 | 		if (test_as_unpriv(test) && unpriv_disabled) { | 
 | 			printf("#%d/u %s SKIP\n", i, test->descr); | 
 | 			skips++; | 
 | 		} else if (test_as_unpriv(test)) { | 
 | 			if (!unpriv) | 
 | 				set_admin(false); | 
 | 			printf("#%d/u %s ", i, test->descr); | 
 | 			do_test_single(test, true, &passes, &errors); | 
 | 			if (!unpriv) | 
 | 				set_admin(true); | 
 | 		} | 
 |  | 
 | 		if (unpriv) { | 
 | 			printf("#%d/p %s SKIP\n", i, test->descr); | 
 | 			skips++; | 
 | 		} else { | 
 | 			printf("#%d/p %s ", i, test->descr); | 
 | 			do_test_single(test, false, &passes, &errors); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, | 
 | 	       skips, errors); | 
 | 	return errors ? EXIT_FAILURE : EXIT_SUCCESS; | 
 | } | 
 |  | 
 | int main(int argc, char **argv) | 
 | { | 
 | 	unsigned int from = 0, to = ARRAY_SIZE(tests); | 
 | 	bool unpriv = !is_admin(); | 
 |  | 
 | 	if (argc == 3) { | 
 | 		unsigned int l = atoi(argv[argc - 2]); | 
 | 		unsigned int u = atoi(argv[argc - 1]); | 
 |  | 
 | 		if (l < to && u < to) { | 
 | 			from = l; | 
 | 			to   = u + 1; | 
 | 		} | 
 | 	} else if (argc == 2) { | 
 | 		unsigned int t = atoi(argv[argc - 1]); | 
 |  | 
 | 		if (t < to) { | 
 | 			from = t; | 
 | 			to   = t + 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	get_unpriv_disabled(); | 
 | 	if (unpriv && unpriv_disabled) { | 
 | 		printf("Cannot run as unprivileged user with sysctl %s.\n", | 
 | 		       UNPRIV_SYSCTL); | 
 | 		return EXIT_FAILURE; | 
 | 	} | 
 |  | 
 | 	bpf_semi_rand_init(); | 
 | 	return do_test(unpriv, from, to); | 
 | } |