|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * | 
|  | * Common boot and setup code. | 
|  | * | 
|  | * Copyright (C) 2001 PPC64 Team, IBM Corp | 
|  | */ | 
|  |  | 
|  | #include <linux/export.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/root_dev.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/serial.h> | 
|  | #include <linux/serial_8250.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/nmi.h> | 
|  |  | 
|  | #include <asm/debugfs.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/kdump.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/elf.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/paca.h> | 
|  | #include <asm/time.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/dt_cpu_ftrs.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/btext.h> | 
|  | #include <asm/nvram.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/rtas.h> | 
|  | #include <asm/iommu.h> | 
|  | #include <asm/serial.h> | 
|  | #include <asm/cache.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/xmon.h> | 
|  | #include <asm/udbg.h> | 
|  | #include <asm/kexec.h> | 
|  | #include <asm/code-patching.h> | 
|  | #include <asm/livepatch.h> | 
|  | #include <asm/opal.h> | 
|  | #include <asm/cputhreads.h> | 
|  | #include <asm/hw_irq.h> | 
|  | #include <asm/feature-fixups.h> | 
|  | #include <asm/kup.h> | 
|  |  | 
|  | #include "setup.h" | 
|  |  | 
|  | #ifdef DEBUG | 
|  | #define DBG(fmt...) udbg_printf(fmt) | 
|  | #else | 
|  | #define DBG(fmt...) | 
|  | #endif | 
|  |  | 
|  | int spinning_secondaries; | 
|  | u64 ppc64_pft_size; | 
|  |  | 
|  | struct ppc64_caches ppc64_caches = { | 
|  | .l1d = { | 
|  | .block_size = 0x40, | 
|  | .log_block_size = 6, | 
|  | }, | 
|  | .l1i = { | 
|  | .block_size = 0x40, | 
|  | .log_block_size = 6 | 
|  | }, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(ppc64_caches); | 
|  |  | 
|  | #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP) | 
|  | void __init setup_tlb_core_data(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | int first = cpu_first_thread_sibling(cpu); | 
|  |  | 
|  | /* | 
|  | * If we boot via kdump on a non-primary thread, | 
|  | * make sure we point at the thread that actually | 
|  | * set up this TLB. | 
|  | */ | 
|  | if (cpu_first_thread_sibling(boot_cpuid) == first) | 
|  | first = boot_cpuid; | 
|  |  | 
|  | paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd; | 
|  |  | 
|  | /* | 
|  | * If we have threads, we need either tlbsrx. | 
|  | * or e6500 tablewalk mode, or else TLB handlers | 
|  | * will be racy and could produce duplicate entries. | 
|  | * Should we panic instead? | 
|  | */ | 
|  | WARN_ONCE(smt_enabled_at_boot >= 2 && | 
|  | !mmu_has_feature(MMU_FTR_USE_TLBRSRV) && | 
|  | book3e_htw_mode != PPC_HTW_E6500, | 
|  | "%s: unsupported MMU configuration\n", __func__); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static char *smt_enabled_cmdline; | 
|  |  | 
|  | /* Look for ibm,smt-enabled OF option */ | 
|  | void __init check_smt_enabled(void) | 
|  | { | 
|  | struct device_node *dn; | 
|  | const char *smt_option; | 
|  |  | 
|  | /* Default to enabling all threads */ | 
|  | smt_enabled_at_boot = threads_per_core; | 
|  |  | 
|  | /* Allow the command line to overrule the OF option */ | 
|  | if (smt_enabled_cmdline) { | 
|  | if (!strcmp(smt_enabled_cmdline, "on")) | 
|  | smt_enabled_at_boot = threads_per_core; | 
|  | else if (!strcmp(smt_enabled_cmdline, "off")) | 
|  | smt_enabled_at_boot = 0; | 
|  | else { | 
|  | int smt; | 
|  | int rc; | 
|  |  | 
|  | rc = kstrtoint(smt_enabled_cmdline, 10, &smt); | 
|  | if (!rc) | 
|  | smt_enabled_at_boot = | 
|  | min(threads_per_core, smt); | 
|  | } | 
|  | } else { | 
|  | dn = of_find_node_by_path("/options"); | 
|  | if (dn) { | 
|  | smt_option = of_get_property(dn, "ibm,smt-enabled", | 
|  | NULL); | 
|  |  | 
|  | if (smt_option) { | 
|  | if (!strcmp(smt_option, "on")) | 
|  | smt_enabled_at_boot = threads_per_core; | 
|  | else if (!strcmp(smt_option, "off")) | 
|  | smt_enabled_at_boot = 0; | 
|  | } | 
|  |  | 
|  | of_node_put(dn); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Look for smt-enabled= cmdline option */ | 
|  | static int __init early_smt_enabled(char *p) | 
|  | { | 
|  | smt_enabled_cmdline = p; | 
|  | return 0; | 
|  | } | 
|  | early_param("smt-enabled", early_smt_enabled); | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /** Fix up paca fields required for the boot cpu */ | 
|  | static void __init fixup_boot_paca(void) | 
|  | { | 
|  | /* The boot cpu is started */ | 
|  | get_paca()->cpu_start = 1; | 
|  | /* Allow percpu accesses to work until we setup percpu data */ | 
|  | get_paca()->data_offset = 0; | 
|  | /* Mark interrupts disabled in PACA */ | 
|  | irq_soft_mask_set(IRQS_DISABLED); | 
|  | } | 
|  |  | 
|  | static void __init configure_exceptions(void) | 
|  | { | 
|  | /* | 
|  | * Setup the trampolines from the lowmem exception vectors | 
|  | * to the kdump kernel when not using a relocatable kernel. | 
|  | */ | 
|  | setup_kdump_trampoline(); | 
|  |  | 
|  | /* Under a PAPR hypervisor, we need hypercalls */ | 
|  | if (firmware_has_feature(FW_FEATURE_SET_MODE)) { | 
|  | /* Enable AIL if possible */ | 
|  | pseries_enable_reloc_on_exc(); | 
|  |  | 
|  | /* | 
|  | * Tell the hypervisor that we want our exceptions to | 
|  | * be taken in little endian mode. | 
|  | * | 
|  | * We don't call this for big endian as our calling convention | 
|  | * makes us always enter in BE, and the call may fail under | 
|  | * some circumstances with kdump. | 
|  | */ | 
|  | #ifdef __LITTLE_ENDIAN__ | 
|  | pseries_little_endian_exceptions(); | 
|  | #endif | 
|  | } else { | 
|  | /* Set endian mode using OPAL */ | 
|  | if (firmware_has_feature(FW_FEATURE_OPAL)) | 
|  | opal_configure_cores(); | 
|  |  | 
|  | /* AIL on native is done in cpu_ready_for_interrupts() */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cpu_ready_for_interrupts(void) | 
|  | { | 
|  | /* | 
|  | * Enable AIL if supported, and we are in hypervisor mode. This | 
|  | * is called once for every processor. | 
|  | * | 
|  | * If we are not in hypervisor mode the job is done once for | 
|  | * the whole partition in configure_exceptions(). | 
|  | */ | 
|  | if (cpu_has_feature(CPU_FTR_HVMODE) && | 
|  | cpu_has_feature(CPU_FTR_ARCH_207S)) { | 
|  | unsigned long lpcr = mfspr(SPRN_LPCR); | 
|  | mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set HFSCR:TM based on CPU features: | 
|  | * In the special case of TM no suspend (P9N DD2.1), Linux is | 
|  | * told TM is off via the dt-ftrs but told to (partially) use | 
|  | * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM] | 
|  | * will be off from dt-ftrs but we need to turn it on for the | 
|  | * no suspend case. | 
|  | */ | 
|  | if (cpu_has_feature(CPU_FTR_HVMODE)) { | 
|  | if (cpu_has_feature(CPU_FTR_TM_COMP)) | 
|  | mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM); | 
|  | else | 
|  | mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM); | 
|  | } | 
|  |  | 
|  | /* Set IR and DR in PACA MSR */ | 
|  | get_paca()->kernel_msr = MSR_KERNEL; | 
|  | } | 
|  |  | 
|  | unsigned long spr_default_dscr = 0; | 
|  |  | 
|  | void __init record_spr_defaults(void) | 
|  | { | 
|  | if (early_cpu_has_feature(CPU_FTR_DSCR)) | 
|  | spr_default_dscr = mfspr(SPRN_DSCR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Early initialization entry point. This is called by head.S | 
|  | * with MMU translation disabled. We rely on the "feature" of | 
|  | * the CPU that ignores the top 2 bits of the address in real | 
|  | * mode so we can access kernel globals normally provided we | 
|  | * only toy with things in the RMO region. From here, we do | 
|  | * some early parsing of the device-tree to setup out MEMBLOCK | 
|  | * data structures, and allocate & initialize the hash table | 
|  | * and segment tables so we can start running with translation | 
|  | * enabled. | 
|  | * | 
|  | * It is this function which will call the probe() callback of | 
|  | * the various platform types and copy the matching one to the | 
|  | * global ppc_md structure. Your platform can eventually do | 
|  | * some very early initializations from the probe() routine, but | 
|  | * this is not recommended, be very careful as, for example, the | 
|  | * device-tree is not accessible via normal means at this point. | 
|  | */ | 
|  |  | 
|  | void __init early_setup(unsigned long dt_ptr) | 
|  | { | 
|  | static __initdata struct paca_struct boot_paca; | 
|  |  | 
|  | /* -------- printk is _NOT_ safe to use here ! ------- */ | 
|  |  | 
|  | /* | 
|  | * Assume we're on cpu 0 for now. | 
|  | * | 
|  | * We need to load a PACA very early for a few reasons. | 
|  | * | 
|  | * The stack protector canary is stored in the paca, so as soon as we | 
|  | * call any stack protected code we need r13 pointing somewhere valid. | 
|  | * | 
|  | * If we are using kcov it will call in_task() in its instrumentation, | 
|  | * which relies on the current task from the PACA. | 
|  | * | 
|  | * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as | 
|  | * printk(), which can trigger both stack protector and kcov. | 
|  | * | 
|  | * percpu variables and spin locks also use the paca. | 
|  | * | 
|  | * So set up a temporary paca. It will be replaced below once we know | 
|  | * what CPU we are on. | 
|  | */ | 
|  | initialise_paca(&boot_paca, 0); | 
|  | setup_paca(&boot_paca); | 
|  | fixup_boot_paca(); | 
|  |  | 
|  | /* -------- printk is now safe to use ------- */ | 
|  |  | 
|  | /* Try new device tree based feature discovery ... */ | 
|  | if (!dt_cpu_ftrs_init(__va(dt_ptr))) | 
|  | /* Otherwise use the old style CPU table */ | 
|  | identify_cpu(0, mfspr(SPRN_PVR)); | 
|  |  | 
|  | /* Enable early debugging if any specified (see udbg.h) */ | 
|  | udbg_early_init(); | 
|  |  | 
|  | DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); | 
|  |  | 
|  | /* | 
|  | * Do early initialization using the flattened device | 
|  | * tree, such as retrieving the physical memory map or | 
|  | * calculating/retrieving the hash table size. | 
|  | */ | 
|  | early_init_devtree(__va(dt_ptr)); | 
|  |  | 
|  | /* Now we know the logical id of our boot cpu, setup the paca. */ | 
|  | if (boot_cpuid != 0) { | 
|  | /* Poison paca_ptrs[0] again if it's not the boot cpu */ | 
|  | memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0])); | 
|  | } | 
|  | setup_paca(paca_ptrs[boot_cpuid]); | 
|  | fixup_boot_paca(); | 
|  |  | 
|  | /* | 
|  | * Configure exception handlers. This include setting up trampolines | 
|  | * if needed, setting exception endian mode, etc... | 
|  | */ | 
|  | configure_exceptions(); | 
|  |  | 
|  | /* | 
|  | * Configure Kernel Userspace Protection. This needs to happen before | 
|  | * feature fixups for platforms that implement this using features. | 
|  | */ | 
|  | setup_kup(); | 
|  |  | 
|  | /* Apply all the dynamic patching */ | 
|  | apply_feature_fixups(); | 
|  | setup_feature_keys(); | 
|  |  | 
|  | /* Initialize the hash table or TLB handling */ | 
|  | early_init_mmu(); | 
|  |  | 
|  | /* | 
|  | * After firmware and early platform setup code has set things up, | 
|  | * we note the SPR values for configurable control/performance | 
|  | * registers, and use those as initial defaults. | 
|  | */ | 
|  | record_spr_defaults(); | 
|  |  | 
|  | /* | 
|  | * At this point, we can let interrupts switch to virtual mode | 
|  | * (the MMU has been setup), so adjust the MSR in the PACA to | 
|  | * have IR and DR set and enable AIL if it exists | 
|  | */ | 
|  | cpu_ready_for_interrupts(); | 
|  |  | 
|  | /* | 
|  | * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it | 
|  | * will only actually get enabled on the boot cpu much later once | 
|  | * ftrace itself has been initialized. | 
|  | */ | 
|  | this_cpu_enable_ftrace(); | 
|  |  | 
|  | DBG(" <- early_setup()\n"); | 
|  |  | 
|  | #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX | 
|  | /* | 
|  | * This needs to be done *last* (after the above DBG() even) | 
|  | * | 
|  | * Right after we return from this function, we turn on the MMU | 
|  | * which means the real-mode access trick that btext does will | 
|  | * no longer work, it needs to switch to using a real MMU | 
|  | * mapping. This call will ensure that it does | 
|  | */ | 
|  | btext_map(); | 
|  | #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | void early_setup_secondary(void) | 
|  | { | 
|  | /* Mark interrupts disabled in PACA */ | 
|  | irq_soft_mask_set(IRQS_DISABLED); | 
|  |  | 
|  | /* Initialize the hash table or TLB handling */ | 
|  | early_init_mmu_secondary(); | 
|  |  | 
|  | /* Perform any KUP setup that is per-cpu */ | 
|  | setup_kup(); | 
|  |  | 
|  | /* | 
|  | * At this point, we can let interrupts switch to virtual mode | 
|  | * (the MMU has been setup), so adjust the MSR in the PACA to | 
|  | * have IR and DR set. | 
|  | */ | 
|  | cpu_ready_for_interrupts(); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | void panic_smp_self_stop(void) | 
|  | { | 
|  | hard_irq_disable(); | 
|  | spin_begin(); | 
|  | while (1) | 
|  | spin_cpu_relax(); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE) | 
|  | static bool use_spinloop(void) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_PPC_BOOK3S)) { | 
|  | /* | 
|  | * See comments in head_64.S -- not all platforms insert | 
|  | * secondaries at __secondary_hold and wait at the spin | 
|  | * loop. | 
|  | */ | 
|  | if (firmware_has_feature(FW_FEATURE_OPAL)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When book3e boots from kexec, the ePAPR spin table does | 
|  | * not get used. | 
|  | */ | 
|  | return of_property_read_bool(of_chosen, "linux,booted-from-kexec"); | 
|  | } | 
|  |  | 
|  | void smp_release_cpus(void) | 
|  | { | 
|  | unsigned long *ptr; | 
|  | int i; | 
|  |  | 
|  | if (!use_spinloop()) | 
|  | return; | 
|  |  | 
|  | DBG(" -> smp_release_cpus()\n"); | 
|  |  | 
|  | /* All secondary cpus are spinning on a common spinloop, release them | 
|  | * all now so they can start to spin on their individual paca | 
|  | * spinloops. For non SMP kernels, the secondary cpus never get out | 
|  | * of the common spinloop. | 
|  | */ | 
|  |  | 
|  | ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop | 
|  | - PHYSICAL_START); | 
|  | *ptr = ppc_function_entry(generic_secondary_smp_init); | 
|  |  | 
|  | /* And wait a bit for them to catch up */ | 
|  | for (i = 0; i < 100000; i++) { | 
|  | mb(); | 
|  | HMT_low(); | 
|  | if (spinning_secondaries == 0) | 
|  | break; | 
|  | udelay(1); | 
|  | } | 
|  | DBG("spinning_secondaries = %d\n", spinning_secondaries); | 
|  |  | 
|  | DBG(" <- smp_release_cpus()\n"); | 
|  | } | 
|  | #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */ | 
|  |  | 
|  | /* | 
|  | * Initialize some remaining members of the ppc64_caches and systemcfg | 
|  | * structures | 
|  | * (at least until we get rid of them completely). This is mostly some | 
|  | * cache informations about the CPU that will be used by cache flush | 
|  | * routines and/or provided to userland | 
|  | */ | 
|  |  | 
|  | static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize, | 
|  | u32 bsize, u32 sets) | 
|  | { | 
|  | info->size = size; | 
|  | info->sets = sets; | 
|  | info->line_size = lsize; | 
|  | info->block_size = bsize; | 
|  | info->log_block_size = __ilog2(bsize); | 
|  | if (bsize) | 
|  | info->blocks_per_page = PAGE_SIZE / bsize; | 
|  | else | 
|  | info->blocks_per_page = 0; | 
|  |  | 
|  | if (sets == 0) | 
|  | info->assoc = 0xffff; | 
|  | else | 
|  | info->assoc = size / (sets * lsize); | 
|  | } | 
|  |  | 
|  | static bool __init parse_cache_info(struct device_node *np, | 
|  | bool icache, | 
|  | struct ppc_cache_info *info) | 
|  | { | 
|  | static const char *ipropnames[] __initdata = { | 
|  | "i-cache-size", | 
|  | "i-cache-sets", | 
|  | "i-cache-block-size", | 
|  | "i-cache-line-size", | 
|  | }; | 
|  | static const char *dpropnames[] __initdata = { | 
|  | "d-cache-size", | 
|  | "d-cache-sets", | 
|  | "d-cache-block-size", | 
|  | "d-cache-line-size", | 
|  | }; | 
|  | const char **propnames = icache ? ipropnames : dpropnames; | 
|  | const __be32 *sizep, *lsizep, *bsizep, *setsp; | 
|  | u32 size, lsize, bsize, sets; | 
|  | bool success = true; | 
|  |  | 
|  | size = 0; | 
|  | sets = -1u; | 
|  | lsize = bsize = cur_cpu_spec->dcache_bsize; | 
|  | sizep = of_get_property(np, propnames[0], NULL); | 
|  | if (sizep != NULL) | 
|  | size = be32_to_cpu(*sizep); | 
|  | setsp = of_get_property(np, propnames[1], NULL); | 
|  | if (setsp != NULL) | 
|  | sets = be32_to_cpu(*setsp); | 
|  | bsizep = of_get_property(np, propnames[2], NULL); | 
|  | lsizep = of_get_property(np, propnames[3], NULL); | 
|  | if (bsizep == NULL) | 
|  | bsizep = lsizep; | 
|  | if (lsizep == NULL) | 
|  | lsizep = bsizep; | 
|  | if (lsizep != NULL) | 
|  | lsize = be32_to_cpu(*lsizep); | 
|  | if (bsizep != NULL) | 
|  | bsize = be32_to_cpu(*bsizep); | 
|  | if (sizep == NULL || bsizep == NULL || lsizep == NULL) | 
|  | success = false; | 
|  |  | 
|  | /* | 
|  | * OF is weird .. it represents fully associative caches | 
|  | * as "1 way" which doesn't make much sense and doesn't | 
|  | * leave room for direct mapped. We'll assume that 0 | 
|  | * in OF means direct mapped for that reason. | 
|  | */ | 
|  | if (sets == 1) | 
|  | sets = 0; | 
|  | else if (sets == 0) | 
|  | sets = 1; | 
|  |  | 
|  | init_cache_info(info, size, lsize, bsize, sets); | 
|  |  | 
|  | return success; | 
|  | } | 
|  |  | 
|  | void __init initialize_cache_info(void) | 
|  | { | 
|  | struct device_node *cpu = NULL, *l2, *l3 = NULL; | 
|  | u32 pvr; | 
|  |  | 
|  | DBG(" -> initialize_cache_info()\n"); | 
|  |  | 
|  | /* | 
|  | * All shipping POWER8 machines have a firmware bug that | 
|  | * puts incorrect information in the device-tree. This will | 
|  | * be (hopefully) fixed for future chips but for now hard | 
|  | * code the values if we are running on one of these | 
|  | */ | 
|  | pvr = PVR_VER(mfspr(SPRN_PVR)); | 
|  | if (pvr == PVR_POWER8 || pvr == PVR_POWER8E || | 
|  | pvr == PVR_POWER8NVL) { | 
|  | /* size    lsize   blk  sets */ | 
|  | init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32); | 
|  | init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64); | 
|  | init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512); | 
|  | init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192); | 
|  | } else | 
|  | cpu = of_find_node_by_type(NULL, "cpu"); | 
|  |  | 
|  | /* | 
|  | * We're assuming *all* of the CPUs have the same | 
|  | * d-cache and i-cache sizes... -Peter | 
|  | */ | 
|  | if (cpu) { | 
|  | if (!parse_cache_info(cpu, false, &ppc64_caches.l1d)) | 
|  | DBG("Argh, can't find dcache properties !\n"); | 
|  |  | 
|  | if (!parse_cache_info(cpu, true, &ppc64_caches.l1i)) | 
|  | DBG("Argh, can't find icache properties !\n"); | 
|  |  | 
|  | /* | 
|  | * Try to find the L2 and L3 if any. Assume they are | 
|  | * unified and use the D-side properties. | 
|  | */ | 
|  | l2 = of_find_next_cache_node(cpu); | 
|  | of_node_put(cpu); | 
|  | if (l2) { | 
|  | parse_cache_info(l2, false, &ppc64_caches.l2); | 
|  | l3 = of_find_next_cache_node(l2); | 
|  | of_node_put(l2); | 
|  | } | 
|  | if (l3) { | 
|  | parse_cache_info(l3, false, &ppc64_caches.l3); | 
|  | of_node_put(l3); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For use by binfmt_elf */ | 
|  | dcache_bsize = ppc64_caches.l1d.block_size; | 
|  | icache_bsize = ppc64_caches.l1i.block_size; | 
|  |  | 
|  | cur_cpu_spec->dcache_bsize = dcache_bsize; | 
|  | cur_cpu_spec->icache_bsize = icache_bsize; | 
|  |  | 
|  | DBG(" <- initialize_cache_info()\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This returns the limit below which memory accesses to the linear | 
|  | * mapping are guarnateed not to cause an architectural exception (e.g., | 
|  | * TLB or SLB miss fault). | 
|  | * | 
|  | * This is used to allocate PACAs and various interrupt stacks that | 
|  | * that are accessed early in interrupt handlers that must not cause | 
|  | * re-entrant interrupts. | 
|  | */ | 
|  | __init u64 ppc64_bolted_size(void) | 
|  | { | 
|  | #ifdef CONFIG_PPC_BOOK3E | 
|  | /* Freescale BookE bolts the entire linear mapping */ | 
|  | /* XXX: BookE ppc64_rma_limit setup seems to disagree? */ | 
|  | if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) | 
|  | return linear_map_top; | 
|  | /* Other BookE, we assume the first GB is bolted */ | 
|  | return 1ul << 30; | 
|  | #else | 
|  | /* BookS radix, does not take faults on linear mapping */ | 
|  | if (early_radix_enabled()) | 
|  | return ULONG_MAX; | 
|  |  | 
|  | /* BookS hash, the first segment is bolted */ | 
|  | if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT)) | 
|  | return 1UL << SID_SHIFT_1T; | 
|  | return 1UL << SID_SHIFT; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void *__init alloc_stack(unsigned long limit, int cpu) | 
|  | { | 
|  | void *ptr; | 
|  |  | 
|  | BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16); | 
|  |  | 
|  | ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_SIZE, | 
|  | MEMBLOCK_LOW_LIMIT, limit, | 
|  | early_cpu_to_node(cpu)); | 
|  | if (!ptr) | 
|  | panic("cannot allocate stacks"); | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | void __init irqstack_early_init(void) | 
|  | { | 
|  | u64 limit = ppc64_bolted_size(); | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Interrupt stacks must be in the first segment since we | 
|  | * cannot afford to take SLB misses on them. They are not | 
|  | * accessed in realmode. | 
|  | */ | 
|  | for_each_possible_cpu(i) { | 
|  | softirq_ctx[i] = alloc_stack(limit, i); | 
|  | hardirq_ctx[i] = alloc_stack(limit, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3E | 
|  | void __init exc_lvl_early_init(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | void *sp; | 
|  |  | 
|  | sp = alloc_stack(ULONG_MAX, i); | 
|  | critirq_ctx[i] = sp; | 
|  | paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE; | 
|  |  | 
|  | sp = alloc_stack(ULONG_MAX, i); | 
|  | dbgirq_ctx[i] = sp; | 
|  | paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE; | 
|  |  | 
|  | sp = alloc_stack(ULONG_MAX, i); | 
|  | mcheckirq_ctx[i] = sp; | 
|  | paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE; | 
|  | } | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) | 
|  | patch_exception(0x040, exc_debug_debug_book3e); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Stack space used when we detect a bad kernel stack pointer, and | 
|  | * early in SMP boots before relocation is enabled. Exclusive emergency | 
|  | * stack for machine checks. | 
|  | */ | 
|  | void __init emergency_stack_init(void) | 
|  | { | 
|  | u64 limit; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Emergency stacks must be under 256MB, we cannot afford to take | 
|  | * SLB misses on them. The ABI also requires them to be 128-byte | 
|  | * aligned. | 
|  | * | 
|  | * Since we use these as temporary stacks during secondary CPU | 
|  | * bringup, machine check, system reset, and HMI, we need to get | 
|  | * at them in real mode. This means they must also be within the RMO | 
|  | * region. | 
|  | * | 
|  | * The IRQ stacks allocated elsewhere in this file are zeroed and | 
|  | * initialized in kernel/irq.c. These are initialized here in order | 
|  | * to have emergency stacks available as early as possible. | 
|  | */ | 
|  | limit = min(ppc64_bolted_size(), ppc64_rma_size); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | /* emergency stack for NMI exception handling. */ | 
|  | paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; | 
|  |  | 
|  | /* emergency stack for machine check exception handling. */ | 
|  | paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define PCPU_DYN_SIZE		() | 
|  |  | 
|  | static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) | 
|  | { | 
|  | return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS), | 
|  | MEMBLOCK_ALLOC_ACCESSIBLE, | 
|  | early_cpu_to_node(cpu)); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void __init pcpu_fc_free(void *ptr, size_t size) | 
|  | { | 
|  | memblock_free(__pa(ptr), size); | 
|  | } | 
|  |  | 
|  | static int pcpu_cpu_distance(unsigned int from, unsigned int to) | 
|  | { | 
|  | if (early_cpu_to_node(from) == early_cpu_to_node(to)) | 
|  | return LOCAL_DISTANCE; | 
|  | else | 
|  | return REMOTE_DISTANCE; | 
|  | } | 
|  |  | 
|  | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; | 
|  | EXPORT_SYMBOL(__per_cpu_offset); | 
|  |  | 
|  | void __init setup_per_cpu_areas(void) | 
|  | { | 
|  | const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; | 
|  | size_t atom_size; | 
|  | unsigned long delta; | 
|  | unsigned int cpu; | 
|  | int rc; | 
|  |  | 
|  | /* | 
|  | * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need | 
|  | * to group units.  For larger mappings, use 1M atom which | 
|  | * should be large enough to contain a number of units. | 
|  | */ | 
|  | if (mmu_linear_psize == MMU_PAGE_4K) | 
|  | atom_size = PAGE_SIZE; | 
|  | else | 
|  | atom_size = 1 << 20; | 
|  |  | 
|  | rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, | 
|  | pcpu_fc_alloc, pcpu_fc_free); | 
|  | if (rc < 0) | 
|  | panic("cannot initialize percpu area (err=%d)", rc); | 
|  |  | 
|  | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | 
|  | for_each_possible_cpu(cpu) { | 
|  | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; | 
|  | paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu]; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE | 
|  | unsigned long memory_block_size_bytes(void) | 
|  | { | 
|  | if (ppc_md.memory_block_size) | 
|  | return ppc_md.memory_block_size(); | 
|  |  | 
|  | return MIN_MEMORY_BLOCK_SIZE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) | 
|  | struct ppc_pci_io ppc_pci_io; | 
|  | EXPORT_SYMBOL(ppc_pci_io); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF | 
|  | u64 hw_nmi_get_sample_period(int watchdog_thresh) | 
|  | { | 
|  | return ppc_proc_freq * watchdog_thresh; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The perf based hardlockup detector breaks PMU event based branches, so | 
|  | * disable it by default. Book3S has a soft-nmi hardlockup detector based | 
|  | * on the decrementer interrupt, so it does not suffer from this problem. | 
|  | * | 
|  | * It is likely to get false positives in VM guests, so disable it there | 
|  | * by default too. | 
|  | */ | 
|  | static int __init disable_hardlockup_detector(void) | 
|  | { | 
|  | #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF | 
|  | hardlockup_detector_disable(); | 
|  | #else | 
|  | if (firmware_has_feature(FW_FEATURE_LPAR)) | 
|  | hardlockup_detector_disable(); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_initcall(disable_hardlockup_detector); | 
|  |  | 
|  | #ifdef CONFIG_PPC_BOOK3S_64 | 
|  | static enum l1d_flush_type enabled_flush_types; | 
|  | static void *l1d_flush_fallback_area; | 
|  | static bool no_rfi_flush; | 
|  | static bool no_entry_flush; | 
|  | static bool no_uaccess_flush; | 
|  | bool rfi_flush; | 
|  | bool entry_flush; | 
|  | bool uaccess_flush; | 
|  | DEFINE_STATIC_KEY_FALSE(uaccess_flush_key); | 
|  | EXPORT_SYMBOL(uaccess_flush_key); | 
|  |  | 
|  | static int __init handle_no_rfi_flush(char *p) | 
|  | { | 
|  | pr_info("rfi-flush: disabled on command line."); | 
|  | no_rfi_flush = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("no_rfi_flush", handle_no_rfi_flush); | 
|  |  | 
|  | static int __init handle_no_entry_flush(char *p) | 
|  | { | 
|  | pr_info("entry-flush: disabled on command line."); | 
|  | no_entry_flush = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("no_entry_flush", handle_no_entry_flush); | 
|  |  | 
|  | static int __init handle_no_uaccess_flush(char *p) | 
|  | { | 
|  | pr_info("uaccess-flush: disabled on command line."); | 
|  | no_uaccess_flush = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("no_uaccess_flush", handle_no_uaccess_flush); | 
|  |  | 
|  | /* | 
|  | * The RFI flush is not KPTI, but because users will see doco that says to use | 
|  | * nopti we hijack that option here to also disable the RFI flush. | 
|  | */ | 
|  | static int __init handle_no_pti(char *p) | 
|  | { | 
|  | pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); | 
|  | handle_no_rfi_flush(NULL); | 
|  | return 0; | 
|  | } | 
|  | early_param("nopti", handle_no_pti); | 
|  |  | 
|  | static void do_nothing(void *unused) | 
|  | { | 
|  | /* | 
|  | * We don't need to do the flush explicitly, just enter+exit kernel is | 
|  | * sufficient, the RFI exit handlers will do the right thing. | 
|  | */ | 
|  | } | 
|  |  | 
|  | void rfi_flush_enable(bool enable) | 
|  | { | 
|  | if (enable) { | 
|  | do_rfi_flush_fixups(enabled_flush_types); | 
|  | on_each_cpu(do_nothing, NULL, 1); | 
|  | } else | 
|  | do_rfi_flush_fixups(L1D_FLUSH_NONE); | 
|  |  | 
|  | rfi_flush = enable; | 
|  | } | 
|  |  | 
|  | void entry_flush_enable(bool enable) | 
|  | { | 
|  | if (enable) { | 
|  | do_entry_flush_fixups(enabled_flush_types); | 
|  | on_each_cpu(do_nothing, NULL, 1); | 
|  | } else { | 
|  | do_entry_flush_fixups(L1D_FLUSH_NONE); | 
|  | } | 
|  |  | 
|  | entry_flush = enable; | 
|  | } | 
|  |  | 
|  | void uaccess_flush_enable(bool enable) | 
|  | { | 
|  | if (enable) { | 
|  | do_uaccess_flush_fixups(enabled_flush_types); | 
|  | static_branch_enable(&uaccess_flush_key); | 
|  | on_each_cpu(do_nothing, NULL, 1); | 
|  | } else { | 
|  | static_branch_disable(&uaccess_flush_key); | 
|  | do_uaccess_flush_fixups(L1D_FLUSH_NONE); | 
|  | } | 
|  |  | 
|  | uaccess_flush = enable; | 
|  | } | 
|  |  | 
|  | static void __ref init_fallback_flush(void) | 
|  | { | 
|  | u64 l1d_size, limit; | 
|  | int cpu; | 
|  |  | 
|  | /* Only allocate the fallback flush area once (at boot time). */ | 
|  | if (l1d_flush_fallback_area) | 
|  | return; | 
|  |  | 
|  | l1d_size = ppc64_caches.l1d.size; | 
|  |  | 
|  | /* | 
|  | * If there is no d-cache-size property in the device tree, l1d_size | 
|  | * could be zero. That leads to the loop in the asm wrapping around to | 
|  | * 2^64-1, and then walking off the end of the fallback area and | 
|  | * eventually causing a page fault which is fatal. Just default to | 
|  | * something vaguely sane. | 
|  | */ | 
|  | if (!l1d_size) | 
|  | l1d_size = (64 * 1024); | 
|  |  | 
|  | limit = min(ppc64_bolted_size(), ppc64_rma_size); | 
|  |  | 
|  | /* | 
|  | * Align to L1d size, and size it at 2x L1d size, to catch possible | 
|  | * hardware prefetch runoff. We don't have a recipe for load patterns to | 
|  | * reliably avoid the prefetcher. | 
|  | */ | 
|  | l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2, | 
|  | l1d_size, MEMBLOCK_LOW_LIMIT, | 
|  | limit, NUMA_NO_NODE); | 
|  | if (!l1d_flush_fallback_area) | 
|  | panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n", | 
|  | __func__, l1d_size * 2, l1d_size, &limit); | 
|  |  | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct paca_struct *paca = paca_ptrs[cpu]; | 
|  | paca->rfi_flush_fallback_area = l1d_flush_fallback_area; | 
|  | paca->l1d_flush_size = l1d_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | void setup_rfi_flush(enum l1d_flush_type types, bool enable) | 
|  | { | 
|  | if (types & L1D_FLUSH_FALLBACK) { | 
|  | pr_info("rfi-flush: fallback displacement flush available\n"); | 
|  | init_fallback_flush(); | 
|  | } | 
|  |  | 
|  | if (types & L1D_FLUSH_ORI) | 
|  | pr_info("rfi-flush: ori type flush available\n"); | 
|  |  | 
|  | if (types & L1D_FLUSH_MTTRIG) | 
|  | pr_info("rfi-flush: mttrig type flush available\n"); | 
|  |  | 
|  | enabled_flush_types = types; | 
|  |  | 
|  | if (!cpu_mitigations_off() && !no_rfi_flush) | 
|  | rfi_flush_enable(enable); | 
|  | } | 
|  |  | 
|  | void setup_entry_flush(bool enable) | 
|  | { | 
|  | if (cpu_mitigations_off()) | 
|  | return; | 
|  |  | 
|  | if (!no_entry_flush) | 
|  | entry_flush_enable(enable); | 
|  | } | 
|  |  | 
|  | void setup_uaccess_flush(bool enable) | 
|  | { | 
|  | if (cpu_mitigations_off()) | 
|  | return; | 
|  |  | 
|  | if (!no_uaccess_flush) | 
|  | uaccess_flush_enable(enable); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static int rfi_flush_set(void *data, u64 val) | 
|  | { | 
|  | bool enable; | 
|  |  | 
|  | if (val == 1) | 
|  | enable = true; | 
|  | else if (val == 0) | 
|  | enable = false; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Only do anything if we're changing state */ | 
|  | if (enable != rfi_flush) | 
|  | rfi_flush_enable(enable); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rfi_flush_get(void *data, u64 *val) | 
|  | { | 
|  | *val = rfi_flush ? 1 : 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); | 
|  |  | 
|  | static int entry_flush_set(void *data, u64 val) | 
|  | { | 
|  | bool enable; | 
|  |  | 
|  | if (val == 1) | 
|  | enable = true; | 
|  | else if (val == 0) | 
|  | enable = false; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Only do anything if we're changing state */ | 
|  | if (enable != entry_flush) | 
|  | entry_flush_enable(enable); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int entry_flush_get(void *data, u64 *val) | 
|  | { | 
|  | *val = entry_flush ? 1 : 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n"); | 
|  |  | 
|  | static int uaccess_flush_set(void *data, u64 val) | 
|  | { | 
|  | bool enable; | 
|  |  | 
|  | if (val == 1) | 
|  | enable = true; | 
|  | else if (val == 0) | 
|  | enable = false; | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Only do anything if we're changing state */ | 
|  | if (enable != uaccess_flush) | 
|  | uaccess_flush_enable(enable); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int uaccess_flush_get(void *data, u64 *val) | 
|  | { | 
|  | *val = uaccess_flush ? 1 : 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n"); | 
|  |  | 
|  | static __init int rfi_flush_debugfs_init(void) | 
|  | { | 
|  | debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush); | 
|  | debugfs_create_file("entry_flush", 0600, powerpc_debugfs_root, NULL, &fops_entry_flush); | 
|  | debugfs_create_file("uaccess_flush", 0600, powerpc_debugfs_root, NULL, &fops_uaccess_flush); | 
|  | return 0; | 
|  | } | 
|  | device_initcall(rfi_flush_debugfs_init); | 
|  | #endif | 
|  | #endif /* CONFIG_PPC_BOOK3S_64 */ |