|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Special handling for DW core on Intel MID platform | 
|  | * | 
|  | * Copyright (c) 2009, 2014 Intel Corporation. | 
|  | */ | 
|  |  | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/types.h> | 
|  |  | 
|  | #include "spi-dw.h" | 
|  |  | 
|  | #ifdef CONFIG_SPI_DW_MID_DMA | 
|  | #include <linux/pci.h> | 
|  | #include <linux/platform_data/dma-dw.h> | 
|  |  | 
|  | #define RX_BUSY		0 | 
|  | #define TX_BUSY		1 | 
|  |  | 
|  | static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 }; | 
|  | static struct dw_dma_slave mid_dma_rx = { .src_id = 0 }; | 
|  |  | 
|  | static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param) | 
|  | { | 
|  | struct dw_dma_slave *s = param; | 
|  |  | 
|  | if (s->dma_dev != chan->device->dev) | 
|  | return false; | 
|  |  | 
|  | chan->private = s; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int mid_spi_dma_init(struct dw_spi *dws) | 
|  | { | 
|  | struct pci_dev *dma_dev; | 
|  | struct dw_dma_slave *tx = dws->dma_tx; | 
|  | struct dw_dma_slave *rx = dws->dma_rx; | 
|  | dma_cap_mask_t mask; | 
|  |  | 
|  | /* | 
|  | * Get pci device for DMA controller, currently it could only | 
|  | * be the DMA controller of Medfield | 
|  | */ | 
|  | dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL); | 
|  | if (!dma_dev) | 
|  | return -ENODEV; | 
|  |  | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  |  | 
|  | /* 1. Init rx channel */ | 
|  | rx->dma_dev = &dma_dev->dev; | 
|  | dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx); | 
|  | if (!dws->rxchan) | 
|  | goto err_exit; | 
|  | dws->master->dma_rx = dws->rxchan; | 
|  |  | 
|  | /* 2. Init tx channel */ | 
|  | tx->dma_dev = &dma_dev->dev; | 
|  | dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx); | 
|  | if (!dws->txchan) | 
|  | goto free_rxchan; | 
|  | dws->master->dma_tx = dws->txchan; | 
|  |  | 
|  | dws->dma_inited = 1; | 
|  | return 0; | 
|  |  | 
|  | free_rxchan: | 
|  | dma_release_channel(dws->rxchan); | 
|  | err_exit: | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static void mid_spi_dma_exit(struct dw_spi *dws) | 
|  | { | 
|  | if (!dws->dma_inited) | 
|  | return; | 
|  |  | 
|  | dmaengine_terminate_sync(dws->txchan); | 
|  | dma_release_channel(dws->txchan); | 
|  |  | 
|  | dmaengine_terminate_sync(dws->rxchan); | 
|  | dma_release_channel(dws->rxchan); | 
|  | } | 
|  |  | 
|  | static irqreturn_t dma_transfer(struct dw_spi *dws) | 
|  | { | 
|  | u16 irq_status = dw_readl(dws, DW_SPI_ISR); | 
|  |  | 
|  | if (!irq_status) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | dw_readl(dws, DW_SPI_ICR); | 
|  | spi_reset_chip(dws); | 
|  |  | 
|  | dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__); | 
|  | dws->master->cur_msg->status = -EIO; | 
|  | spi_finalize_current_transfer(dws->master); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static bool mid_spi_can_dma(struct spi_controller *master, | 
|  | struct spi_device *spi, struct spi_transfer *xfer) | 
|  | { | 
|  | struct dw_spi *dws = spi_controller_get_devdata(master); | 
|  |  | 
|  | if (!dws->dma_inited) | 
|  | return false; | 
|  |  | 
|  | return xfer->len > dws->fifo_len; | 
|  | } | 
|  |  | 
|  | static enum dma_slave_buswidth convert_dma_width(u32 dma_width) { | 
|  | if (dma_width == 1) | 
|  | return DMA_SLAVE_BUSWIDTH_1_BYTE; | 
|  | else if (dma_width == 2) | 
|  | return DMA_SLAVE_BUSWIDTH_2_BYTES; | 
|  |  | 
|  | return DMA_SLAVE_BUSWIDTH_UNDEFINED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dws->dma_chan_busy is set before the dma transfer starts, callback for tx | 
|  | * channel will clear a corresponding bit. | 
|  | */ | 
|  | static void dw_spi_dma_tx_done(void *arg) | 
|  | { | 
|  | struct dw_spi *dws = arg; | 
|  |  | 
|  | clear_bit(TX_BUSY, &dws->dma_chan_busy); | 
|  | if (test_bit(RX_BUSY, &dws->dma_chan_busy)) | 
|  | return; | 
|  | spi_finalize_current_transfer(dws->master); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct dma_slave_config txconf; | 
|  | struct dma_async_tx_descriptor *txdesc; | 
|  |  | 
|  | if (!xfer->tx_buf) | 
|  | return NULL; | 
|  |  | 
|  | memset(&txconf, 0, sizeof(txconf)); | 
|  | txconf.direction = DMA_MEM_TO_DEV; | 
|  | txconf.dst_addr = dws->dma_addr; | 
|  | txconf.dst_maxburst = 16; | 
|  | txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | txconf.dst_addr_width = convert_dma_width(dws->dma_width); | 
|  | txconf.device_fc = false; | 
|  |  | 
|  | dmaengine_slave_config(dws->txchan, &txconf); | 
|  |  | 
|  | txdesc = dmaengine_prep_slave_sg(dws->txchan, | 
|  | xfer->tx_sg.sgl, | 
|  | xfer->tx_sg.nents, | 
|  | DMA_MEM_TO_DEV, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  | if (!txdesc) | 
|  | return NULL; | 
|  |  | 
|  | txdesc->callback = dw_spi_dma_tx_done; | 
|  | txdesc->callback_param = dws; | 
|  |  | 
|  | return txdesc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dws->dma_chan_busy is set before the dma transfer starts, callback for rx | 
|  | * channel will clear a corresponding bit. | 
|  | */ | 
|  | static void dw_spi_dma_rx_done(void *arg) | 
|  | { | 
|  | struct dw_spi *dws = arg; | 
|  |  | 
|  | clear_bit(RX_BUSY, &dws->dma_chan_busy); | 
|  | if (test_bit(TX_BUSY, &dws->dma_chan_busy)) | 
|  | return; | 
|  | spi_finalize_current_transfer(dws->master); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws, | 
|  | struct spi_transfer *xfer) | 
|  | { | 
|  | struct dma_slave_config rxconf; | 
|  | struct dma_async_tx_descriptor *rxdesc; | 
|  |  | 
|  | if (!xfer->rx_buf) | 
|  | return NULL; | 
|  |  | 
|  | memset(&rxconf, 0, sizeof(rxconf)); | 
|  | rxconf.direction = DMA_DEV_TO_MEM; | 
|  | rxconf.src_addr = dws->dma_addr; | 
|  | rxconf.src_maxburst = 16; | 
|  | rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | rxconf.src_addr_width = convert_dma_width(dws->dma_width); | 
|  | rxconf.device_fc = false; | 
|  |  | 
|  | dmaengine_slave_config(dws->rxchan, &rxconf); | 
|  |  | 
|  | rxdesc = dmaengine_prep_slave_sg(dws->rxchan, | 
|  | xfer->rx_sg.sgl, | 
|  | xfer->rx_sg.nents, | 
|  | DMA_DEV_TO_MEM, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  | if (!rxdesc) | 
|  | return NULL; | 
|  |  | 
|  | rxdesc->callback = dw_spi_dma_rx_done; | 
|  | rxdesc->callback_param = dws; | 
|  |  | 
|  | return rxdesc; | 
|  | } | 
|  |  | 
|  | static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer) | 
|  | { | 
|  | u16 imr = 0, dma_ctrl = 0; | 
|  |  | 
|  | dw_writel(dws, DW_SPI_DMARDLR, 0xf); | 
|  | dw_writel(dws, DW_SPI_DMATDLR, 0x10); | 
|  |  | 
|  | if (xfer->tx_buf) { | 
|  | dma_ctrl |= SPI_DMA_TDMAE; | 
|  | imr |= SPI_INT_TXOI; | 
|  | } | 
|  | if (xfer->rx_buf) { | 
|  | dma_ctrl |= SPI_DMA_RDMAE; | 
|  | imr |= SPI_INT_RXUI | SPI_INT_RXOI; | 
|  | } | 
|  | dw_writel(dws, DW_SPI_DMACR, dma_ctrl); | 
|  |  | 
|  | /* Set the interrupt mask */ | 
|  | spi_umask_intr(dws, imr); | 
|  |  | 
|  | dws->transfer_handler = dma_transfer; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer) | 
|  | { | 
|  | struct dma_async_tx_descriptor *txdesc, *rxdesc; | 
|  |  | 
|  | /* Prepare the TX dma transfer */ | 
|  | txdesc = dw_spi_dma_prepare_tx(dws, xfer); | 
|  |  | 
|  | /* Prepare the RX dma transfer */ | 
|  | rxdesc = dw_spi_dma_prepare_rx(dws, xfer); | 
|  |  | 
|  | /* rx must be started before tx due to spi instinct */ | 
|  | if (rxdesc) { | 
|  | set_bit(RX_BUSY, &dws->dma_chan_busy); | 
|  | dmaengine_submit(rxdesc); | 
|  | dma_async_issue_pending(dws->rxchan); | 
|  | } | 
|  |  | 
|  | if (txdesc) { | 
|  | set_bit(TX_BUSY, &dws->dma_chan_busy); | 
|  | dmaengine_submit(txdesc); | 
|  | dma_async_issue_pending(dws->txchan); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void mid_spi_dma_stop(struct dw_spi *dws) | 
|  | { | 
|  | if (test_bit(TX_BUSY, &dws->dma_chan_busy)) { | 
|  | dmaengine_terminate_sync(dws->txchan); | 
|  | clear_bit(TX_BUSY, &dws->dma_chan_busy); | 
|  | } | 
|  | if (test_bit(RX_BUSY, &dws->dma_chan_busy)) { | 
|  | dmaengine_terminate_sync(dws->rxchan); | 
|  | clear_bit(RX_BUSY, &dws->dma_chan_busy); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct dw_spi_dma_ops mid_dma_ops = { | 
|  | .dma_init	= mid_spi_dma_init, | 
|  | .dma_exit	= mid_spi_dma_exit, | 
|  | .dma_setup	= mid_spi_dma_setup, | 
|  | .can_dma	= mid_spi_can_dma, | 
|  | .dma_transfer	= mid_spi_dma_transfer, | 
|  | .dma_stop	= mid_spi_dma_stop, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | /* Some specific info for SPI0 controller on Intel MID */ | 
|  |  | 
|  | /* HW info for MRST Clk Control Unit, 32b reg per controller */ | 
|  | #define MRST_SPI_CLK_BASE	100000000	/* 100m */ | 
|  | #define MRST_CLK_SPI_REG	0xff11d86c | 
|  | #define CLK_SPI_BDIV_OFFSET	0 | 
|  | #define CLK_SPI_BDIV_MASK	0x00000007 | 
|  | #define CLK_SPI_CDIV_OFFSET	9 | 
|  | #define CLK_SPI_CDIV_MASK	0x00000e00 | 
|  | #define CLK_SPI_DISABLE_OFFSET	8 | 
|  |  | 
|  | int dw_spi_mid_init(struct dw_spi *dws) | 
|  | { | 
|  | void __iomem *clk_reg; | 
|  | u32 clk_cdiv; | 
|  |  | 
|  | clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16); | 
|  | if (!clk_reg) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Get SPI controller operating freq info */ | 
|  | clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32)); | 
|  | clk_cdiv &= CLK_SPI_CDIV_MASK; | 
|  | clk_cdiv >>= CLK_SPI_CDIV_OFFSET; | 
|  | dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1); | 
|  |  | 
|  | iounmap(clk_reg); | 
|  |  | 
|  | #ifdef CONFIG_SPI_DW_MID_DMA | 
|  | dws->dma_tx = &mid_dma_tx; | 
|  | dws->dma_rx = &mid_dma_rx; | 
|  | dws->dma_ops = &mid_dma_ops; | 
|  | #endif | 
|  | return 0; | 
|  | } |