|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * Firmware Assisted dump: A robust mechanism to get reliable kernel crash | 
|  | * dump with assistance from firmware. This approach does not use kexec, | 
|  | * instead firmware assists in booting the kdump kernel while preserving | 
|  | * memory contents. The most of the code implementation has been adapted | 
|  | * from phyp assisted dump implementation written by Linas Vepstas and | 
|  | * Manish Ahuja | 
|  | * | 
|  | * Copyright 2011 IBM Corporation | 
|  | * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> | 
|  | */ | 
|  |  | 
|  | #undef DEBUG | 
|  | #define pr_fmt(fmt) "fadump: " fmt | 
|  |  | 
|  | #include <linux/string.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/crash_dump.h> | 
|  | #include <linux/kobject.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/cma.h> | 
|  | #include <linux/hugetlb.h> | 
|  |  | 
|  | #include <asm/debugfs.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/fadump.h> | 
|  | #include <asm/fadump-internal.h> | 
|  | #include <asm/setup.h> | 
|  |  | 
|  | static struct fw_dump fw_dump; | 
|  |  | 
|  | static void __init fadump_reserve_crash_area(u64 base); | 
|  |  | 
|  | #ifndef CONFIG_PRESERVE_FA_DUMP | 
|  | static DEFINE_MUTEX(fadump_mutex); | 
|  | struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0 }; | 
|  | struct fadump_mrange_info reserved_mrange_info = { "reserved", NULL, 0, 0, 0 }; | 
|  |  | 
|  | #ifdef CONFIG_CMA | 
|  | static struct cma *fadump_cma; | 
|  |  | 
|  | /* | 
|  | * fadump_cma_init() - Initialize CMA area from a fadump reserved memory | 
|  | * | 
|  | * This function initializes CMA area from fadump reserved memory. | 
|  | * The total size of fadump reserved memory covers for boot memory size | 
|  | * + cpu data size + hpte size and metadata. | 
|  | * Initialize only the area equivalent to boot memory size for CMA use. | 
|  | * The reamining portion of fadump reserved memory will be not given | 
|  | * to CMA and pages for thoes will stay reserved. boot memory size is | 
|  | * aligned per CMA requirement to satisy cma_init_reserved_mem() call. | 
|  | * But for some reason even if it fails we still have the memory reservation | 
|  | * with us and we can still continue doing fadump. | 
|  | */ | 
|  | int __init fadump_cma_init(void) | 
|  | { | 
|  | unsigned long long base, size; | 
|  | int rc; | 
|  |  | 
|  | if (!fw_dump.fadump_enabled) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Do not use CMA if user has provided fadump=nocma kernel parameter. | 
|  | * Return 1 to continue with fadump old behaviour. | 
|  | */ | 
|  | if (fw_dump.nocma) | 
|  | return 1; | 
|  |  | 
|  | base = fw_dump.reserve_dump_area_start; | 
|  | size = fw_dump.boot_memory_size; | 
|  |  | 
|  | if (!size) | 
|  | return 0; | 
|  |  | 
|  | rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma); | 
|  | if (rc) { | 
|  | pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc); | 
|  | /* | 
|  | * Though the CMA init has failed we still have memory | 
|  | * reservation with us. The reserved memory will be | 
|  | * blocked from production system usage.  Hence return 1, | 
|  | * so that we can continue with fadump. | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * So we now have successfully initialized cma area for fadump. | 
|  | */ | 
|  | pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx " | 
|  | "bytes of memory reserved for firmware-assisted dump\n", | 
|  | cma_get_size(fadump_cma), | 
|  | (unsigned long)cma_get_base(fadump_cma) >> 20, | 
|  | fw_dump.reserve_dump_area_size); | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | static int __init fadump_cma_init(void) { return 1; } | 
|  | #endif /* CONFIG_CMA */ | 
|  |  | 
|  | /* Scan the Firmware Assisted dump configuration details. */ | 
|  | int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, | 
|  | int depth, void *data) | 
|  | { | 
|  | if (depth != 1) | 
|  | return 0; | 
|  |  | 
|  | if (strcmp(uname, "rtas") == 0) { | 
|  | rtas_fadump_dt_scan(&fw_dump, node); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (strcmp(uname, "ibm,opal") == 0) { | 
|  | opal_fadump_dt_scan(&fw_dump, node); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If fadump is registered, check if the memory provided | 
|  | * falls within boot memory area and reserved memory area. | 
|  | */ | 
|  | int is_fadump_memory_area(u64 addr, unsigned long size) | 
|  | { | 
|  | u64 d_start, d_end; | 
|  |  | 
|  | if (!fw_dump.dump_registered) | 
|  | return 0; | 
|  |  | 
|  | if (!size) | 
|  | return 0; | 
|  |  | 
|  | d_start = fw_dump.reserve_dump_area_start; | 
|  | d_end = d_start + fw_dump.reserve_dump_area_size; | 
|  | if (((addr + size) > d_start) && (addr <= d_end)) | 
|  | return 1; | 
|  |  | 
|  | return (addr <= fw_dump.boot_mem_top); | 
|  | } | 
|  |  | 
|  | int should_fadump_crash(void) | 
|  | { | 
|  | if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int is_fadump_active(void) | 
|  | { | 
|  | return fw_dump.dump_active; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true, if there are no holes in memory area between d_start to d_end, | 
|  | * false otherwise. | 
|  | */ | 
|  | static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end) | 
|  | { | 
|  | struct memblock_region *reg; | 
|  | bool ret = false; | 
|  | u64 start, end; | 
|  |  | 
|  | for_each_memblock(memory, reg) { | 
|  | start = max_t(u64, d_start, reg->base); | 
|  | end = min_t(u64, d_end, (reg->base + reg->size)); | 
|  | if (d_start < end) { | 
|  | /* Memory hole from d_start to start */ | 
|  | if (start > d_start) | 
|  | break; | 
|  |  | 
|  | if (end == d_end) { | 
|  | ret = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | d_start = end + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true, if there are no holes in boot memory area, | 
|  | * false otherwise. | 
|  | */ | 
|  | bool is_fadump_boot_mem_contiguous(void) | 
|  | { | 
|  | unsigned long d_start, d_end; | 
|  | bool ret = false; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { | 
|  | d_start = fw_dump.boot_mem_addr[i]; | 
|  | d_end   = d_start + fw_dump.boot_mem_sz[i]; | 
|  |  | 
|  | ret = is_fadump_mem_area_contiguous(d_start, d_end); | 
|  | if (!ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true, if there are no holes in reserved memory area, | 
|  | * false otherwise. | 
|  | */ | 
|  | bool is_fadump_reserved_mem_contiguous(void) | 
|  | { | 
|  | u64 d_start, d_end; | 
|  |  | 
|  | d_start	= fw_dump.reserve_dump_area_start; | 
|  | d_end	= d_start + fw_dump.reserve_dump_area_size; | 
|  | return is_fadump_mem_area_contiguous(d_start, d_end); | 
|  | } | 
|  |  | 
|  | /* Print firmware assisted dump configurations for debugging purpose. */ | 
|  | static void fadump_show_config(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | pr_debug("Support for firmware-assisted dump (fadump): %s\n", | 
|  | (fw_dump.fadump_supported ? "present" : "no support")); | 
|  |  | 
|  | if (!fw_dump.fadump_supported) | 
|  | return; | 
|  |  | 
|  | pr_debug("Fadump enabled    : %s\n", | 
|  | (fw_dump.fadump_enabled ? "yes" : "no")); | 
|  | pr_debug("Dump Active       : %s\n", | 
|  | (fw_dump.dump_active ? "yes" : "no")); | 
|  | pr_debug("Dump section sizes:\n"); | 
|  | pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size); | 
|  | pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size); | 
|  | pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size); | 
|  | pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top); | 
|  | pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt); | 
|  | for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { | 
|  | pr_debug("[%03d] base = %llx, size = %llx\n", i, | 
|  | fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM | 
|  | * | 
|  | * Function to find the largest memory size we need to reserve during early | 
|  | * boot process. This will be the size of the memory that is required for a | 
|  | * kernel to boot successfully. | 
|  | * | 
|  | * This function has been taken from phyp-assisted dump feature implementation. | 
|  | * | 
|  | * returns larger of 256MB or 5% rounded down to multiples of 256MB. | 
|  | * | 
|  | * TODO: Come up with better approach to find out more accurate memory size | 
|  | * that is required for a kernel to boot successfully. | 
|  | * | 
|  | */ | 
|  | static inline u64 fadump_calculate_reserve_size(void) | 
|  | { | 
|  | u64 base, size, bootmem_min; | 
|  | int ret; | 
|  |  | 
|  | if (fw_dump.reserve_bootvar) | 
|  | pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); | 
|  |  | 
|  | /* | 
|  | * Check if the size is specified through crashkernel= cmdline | 
|  | * option. If yes, then use that but ignore base as fadump reserves | 
|  | * memory at a predefined offset. | 
|  | */ | 
|  | ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), | 
|  | &size, &base); | 
|  | if (ret == 0 && size > 0) { | 
|  | unsigned long max_size; | 
|  |  | 
|  | if (fw_dump.reserve_bootvar) | 
|  | pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); | 
|  |  | 
|  | fw_dump.reserve_bootvar = (unsigned long)size; | 
|  |  | 
|  | /* | 
|  | * Adjust if the boot memory size specified is above | 
|  | * the upper limit. | 
|  | */ | 
|  | max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; | 
|  | if (fw_dump.reserve_bootvar > max_size) { | 
|  | fw_dump.reserve_bootvar = max_size; | 
|  | pr_info("Adjusted boot memory size to %luMB\n", | 
|  | (fw_dump.reserve_bootvar >> 20)); | 
|  | } | 
|  |  | 
|  | return fw_dump.reserve_bootvar; | 
|  | } else if (fw_dump.reserve_bootvar) { | 
|  | /* | 
|  | * 'fadump_reserve_mem=' is being used to reserve memory | 
|  | * for firmware-assisted dump. | 
|  | */ | 
|  | return fw_dump.reserve_bootvar; | 
|  | } | 
|  |  | 
|  | /* divide by 20 to get 5% of value */ | 
|  | size = memblock_phys_mem_size() / 20; | 
|  |  | 
|  | /* round it down in multiples of 256 */ | 
|  | size = size & ~0x0FFFFFFFUL; | 
|  |  | 
|  | /* Truncate to memory_limit. We don't want to over reserve the memory.*/ | 
|  | if (memory_limit && size > memory_limit) | 
|  | size = memory_limit; | 
|  |  | 
|  | bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); | 
|  | return (size > bootmem_min ? size : bootmem_min); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the total memory size required to be reserved for | 
|  | * firmware-assisted dump registration. | 
|  | */ | 
|  | static unsigned long get_fadump_area_size(void) | 
|  | { | 
|  | unsigned long size = 0; | 
|  |  | 
|  | size += fw_dump.cpu_state_data_size; | 
|  | size += fw_dump.hpte_region_size; | 
|  | size += fw_dump.boot_memory_size; | 
|  | size += sizeof(struct fadump_crash_info_header); | 
|  | size += sizeof(struct elfhdr); /* ELF core header.*/ | 
|  | size += sizeof(struct elf_phdr); /* place holder for cpu notes */ | 
|  | /* Program headers for crash memory regions. */ | 
|  | size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2); | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  |  | 
|  | /* This is to hold kernel metadata on platforms that support it */ | 
|  | size += (fw_dump.ops->fadump_get_metadata_size ? | 
|  | fw_dump.ops->fadump_get_metadata_size() : 0); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static int __init add_boot_mem_region(unsigned long rstart, | 
|  | unsigned long rsize) | 
|  | { | 
|  | int i = fw_dump.boot_mem_regs_cnt++; | 
|  |  | 
|  | if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) { | 
|  | fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n", | 
|  | i, rstart, (rstart + rsize)); | 
|  | fw_dump.boot_mem_addr[i] = rstart; | 
|  | fw_dump.boot_mem_sz[i] = rsize; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Firmware usually has a hard limit on the data it can copy per region. | 
|  | * Honour that by splitting a memory range into multiple regions. | 
|  | */ | 
|  | static int __init add_boot_mem_regions(unsigned long mstart, | 
|  | unsigned long msize) | 
|  | { | 
|  | unsigned long rstart, rsize, max_size; | 
|  | int ret = 1; | 
|  |  | 
|  | rstart = mstart; | 
|  | max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize; | 
|  | while (msize) { | 
|  | if (msize > max_size) | 
|  | rsize = max_size; | 
|  | else | 
|  | rsize = msize; | 
|  |  | 
|  | ret = add_boot_mem_region(rstart, rsize); | 
|  | if (!ret) | 
|  | break; | 
|  |  | 
|  | msize -= rsize; | 
|  | rstart += rsize; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __init fadump_get_boot_mem_regions(void) | 
|  | { | 
|  | unsigned long base, size, cur_size, hole_size, last_end; | 
|  | unsigned long mem_size = fw_dump.boot_memory_size; | 
|  | struct memblock_region *reg; | 
|  | int ret = 1; | 
|  |  | 
|  | fw_dump.boot_mem_regs_cnt = 0; | 
|  |  | 
|  | last_end = 0; | 
|  | hole_size = 0; | 
|  | cur_size = 0; | 
|  | for_each_memblock(memory, reg) { | 
|  | base = reg->base; | 
|  | size = reg->size; | 
|  | hole_size += (base - last_end); | 
|  |  | 
|  | if ((cur_size + size) >= mem_size) { | 
|  | size = (mem_size - cur_size); | 
|  | ret = add_boot_mem_regions(base, size); | 
|  | break; | 
|  | } | 
|  |  | 
|  | mem_size -= size; | 
|  | cur_size += size; | 
|  | ret = add_boot_mem_regions(base, size); | 
|  | if (!ret) | 
|  | break; | 
|  |  | 
|  | last_end = base + size; | 
|  | } | 
|  | fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int __init fadump_reserve_mem(void) | 
|  | { | 
|  | u64 base, size, mem_boundary, bootmem_min, align = PAGE_SIZE; | 
|  | bool is_memblock_bottom_up = memblock_bottom_up(); | 
|  | int ret = 1; | 
|  |  | 
|  | if (!fw_dump.fadump_enabled) | 
|  | return 0; | 
|  |  | 
|  | if (!fw_dump.fadump_supported) { | 
|  | pr_info("Firmware-Assisted Dump is not supported on this hardware\n"); | 
|  | goto error_out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize boot memory size | 
|  | * If dump is active then we have already calculated the size during | 
|  | * first kernel. | 
|  | */ | 
|  | if (!fw_dump.dump_active) { | 
|  | fw_dump.boot_memory_size = | 
|  | PAGE_ALIGN(fadump_calculate_reserve_size()); | 
|  | #ifdef CONFIG_CMA | 
|  | if (!fw_dump.nocma) { | 
|  | align = FADUMP_CMA_ALIGNMENT; | 
|  | fw_dump.boot_memory_size = | 
|  | ALIGN(fw_dump.boot_memory_size, align); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); | 
|  | if (fw_dump.boot_memory_size < bootmem_min) { | 
|  | pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n", | 
|  | fw_dump.boot_memory_size, bootmem_min); | 
|  | goto error_out; | 
|  | } | 
|  |  | 
|  | if (!fadump_get_boot_mem_regions()) { | 
|  | pr_err("Too many holes in boot memory area to enable fadump\n"); | 
|  | goto error_out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the memory boundary. | 
|  | * If memory_limit is less than actual memory boundary then reserve | 
|  | * the memory for fadump beyond the memory_limit and adjust the | 
|  | * memory_limit accordingly, so that the running kernel can run with | 
|  | * specified memory_limit. | 
|  | */ | 
|  | if (memory_limit && memory_limit < memblock_end_of_DRAM()) { | 
|  | size = get_fadump_area_size(); | 
|  | if ((memory_limit + size) < memblock_end_of_DRAM()) | 
|  | memory_limit += size; | 
|  | else | 
|  | memory_limit = memblock_end_of_DRAM(); | 
|  | printk(KERN_INFO "Adjusted memory_limit for firmware-assisted" | 
|  | " dump, now %#016llx\n", memory_limit); | 
|  | } | 
|  | if (memory_limit) | 
|  | mem_boundary = memory_limit; | 
|  | else | 
|  | mem_boundary = memblock_end_of_DRAM(); | 
|  |  | 
|  | base = fw_dump.boot_mem_top; | 
|  | size = get_fadump_area_size(); | 
|  | fw_dump.reserve_dump_area_size = size; | 
|  | if (fw_dump.dump_active) { | 
|  | pr_info("Firmware-assisted dump is active.\n"); | 
|  |  | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | /* | 
|  | * FADump capture kernel doesn't care much about hugepages. | 
|  | * In fact, handling hugepages in capture kernel is asking for | 
|  | * trouble. So, disable HugeTLB support when fadump is active. | 
|  | */ | 
|  | hugetlb_disabled = true; | 
|  | #endif | 
|  | /* | 
|  | * If last boot has crashed then reserve all the memory | 
|  | * above boot memory size so that we don't touch it until | 
|  | * dump is written to disk by userspace tool. This memory | 
|  | * can be released for general use by invalidating fadump. | 
|  | */ | 
|  | fadump_reserve_crash_area(base); | 
|  |  | 
|  | pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr); | 
|  | pr_debug("Reserve dump area start address: 0x%lx\n", | 
|  | fw_dump.reserve_dump_area_start); | 
|  | } else { | 
|  | /* | 
|  | * Reserve memory at an offset closer to bottom of the RAM to | 
|  | * minimize the impact of memory hot-remove operation. | 
|  | */ | 
|  | memblock_set_bottom_up(true); | 
|  | base = memblock_find_in_range(base, mem_boundary, size, align); | 
|  |  | 
|  | /* Restore the previous allocation mode */ | 
|  | memblock_set_bottom_up(is_memblock_bottom_up); | 
|  |  | 
|  | if (!base) { | 
|  | pr_err("Failed to find memory chunk for reservation!\n"); | 
|  | goto error_out; | 
|  | } | 
|  | fw_dump.reserve_dump_area_start = base; | 
|  |  | 
|  | /* | 
|  | * Calculate the kernel metadata address and register it with | 
|  | * f/w if the platform supports. | 
|  | */ | 
|  | if (fw_dump.ops->fadump_setup_metadata && | 
|  | (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) | 
|  | goto error_out; | 
|  |  | 
|  | if (memblock_reserve(base, size)) { | 
|  | pr_err("Failed to reserve memory!\n"); | 
|  | goto error_out; | 
|  | } | 
|  |  | 
|  | pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n", | 
|  | (size >> 20), base, (memblock_phys_mem_size() >> 20)); | 
|  |  | 
|  | ret = fadump_cma_init(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | error_out: | 
|  | fw_dump.fadump_enabled = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Look for fadump= cmdline option. */ | 
|  | static int __init early_fadump_param(char *p) | 
|  | { | 
|  | if (!p) | 
|  | return 1; | 
|  |  | 
|  | if (strncmp(p, "on", 2) == 0) | 
|  | fw_dump.fadump_enabled = 1; | 
|  | else if (strncmp(p, "off", 3) == 0) | 
|  | fw_dump.fadump_enabled = 0; | 
|  | else if (strncmp(p, "nocma", 5) == 0) { | 
|  | fw_dump.fadump_enabled = 1; | 
|  | fw_dump.nocma = 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("fadump", early_fadump_param); | 
|  |  | 
|  | /* | 
|  | * Look for fadump_reserve_mem= cmdline option | 
|  | * TODO: Remove references to 'fadump_reserve_mem=' parameter, | 
|  | *       the sooner 'crashkernel=' parameter is accustomed to. | 
|  | */ | 
|  | static int __init early_fadump_reserve_mem(char *p) | 
|  | { | 
|  | if (p) | 
|  | fw_dump.reserve_bootvar = memparse(p, &p); | 
|  | return 0; | 
|  | } | 
|  | early_param("fadump_reserve_mem", early_fadump_reserve_mem); | 
|  |  | 
|  | void crash_fadump(struct pt_regs *regs, const char *str) | 
|  | { | 
|  | struct fadump_crash_info_header *fdh = NULL; | 
|  | int old_cpu, this_cpu; | 
|  |  | 
|  | if (!should_fadump_crash()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * old_cpu == -1 means this is the first CPU which has come here, | 
|  | * go ahead and trigger fadump. | 
|  | * | 
|  | * old_cpu != -1 means some other CPU has already on it's way | 
|  | * to trigger fadump, just keep looping here. | 
|  | */ | 
|  | this_cpu = smp_processor_id(); | 
|  | old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); | 
|  |  | 
|  | if (old_cpu != -1) { | 
|  | /* | 
|  | * We can't loop here indefinitely. Wait as long as fadump | 
|  | * is in force. If we race with fadump un-registration this | 
|  | * loop will break and then we go down to normal panic path | 
|  | * and reboot. If fadump is in force the first crashing | 
|  | * cpu will definitely trigger fadump. | 
|  | */ | 
|  | while (fw_dump.dump_registered) | 
|  | cpu_relax(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | fdh = __va(fw_dump.fadumphdr_addr); | 
|  | fdh->crashing_cpu = crashing_cpu; | 
|  | crash_save_vmcoreinfo(); | 
|  |  | 
|  | if (regs) | 
|  | fdh->regs = *regs; | 
|  | else | 
|  | ppc_save_regs(&fdh->regs); | 
|  |  | 
|  | fdh->online_mask = *cpu_online_mask; | 
|  |  | 
|  | fw_dump.ops->fadump_trigger(fdh, str); | 
|  | } | 
|  |  | 
|  | u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) | 
|  | { | 
|  | struct elf_prstatus prstatus; | 
|  |  | 
|  | memset(&prstatus, 0, sizeof(prstatus)); | 
|  | /* | 
|  | * FIXME: How do i get PID? Do I really need it? | 
|  | * prstatus.pr_pid = ???? | 
|  | */ | 
|  | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); | 
|  | buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, | 
|  | &prstatus, sizeof(prstatus)); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | void fadump_update_elfcore_header(char *bufp) | 
|  | { | 
|  | struct elfhdr *elf; | 
|  | struct elf_phdr *phdr; | 
|  |  | 
|  | elf = (struct elfhdr *)bufp; | 
|  | bufp += sizeof(struct elfhdr); | 
|  |  | 
|  | /* First note is a place holder for cpu notes info. */ | 
|  | phdr = (struct elf_phdr *)bufp; | 
|  |  | 
|  | if (phdr->p_type == PT_NOTE) { | 
|  | phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr); | 
|  | phdr->p_offset	= phdr->p_paddr; | 
|  | phdr->p_filesz	= fw_dump.cpu_notes_buf_size; | 
|  | phdr->p_memsz = fw_dump.cpu_notes_buf_size; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void *fadump_alloc_buffer(unsigned long size) | 
|  | { | 
|  | unsigned long count, i; | 
|  | struct page *page; | 
|  | void *vaddr; | 
|  |  | 
|  | vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); | 
|  | if (!vaddr) | 
|  | return NULL; | 
|  |  | 
|  | count = PAGE_ALIGN(size) / PAGE_SIZE; | 
|  | page = virt_to_page(vaddr); | 
|  | for (i = 0; i < count; i++) | 
|  | mark_page_reserved(page + i); | 
|  | return vaddr; | 
|  | } | 
|  |  | 
|  | static void fadump_free_buffer(unsigned long vaddr, unsigned long size) | 
|  | { | 
|  | free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL); | 
|  | } | 
|  |  | 
|  | s32 fadump_setup_cpu_notes_buf(u32 num_cpus) | 
|  | { | 
|  | /* Allocate buffer to hold cpu crash notes. */ | 
|  | fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); | 
|  | fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); | 
|  | fw_dump.cpu_notes_buf_vaddr = | 
|  | (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size); | 
|  | if (!fw_dump.cpu_notes_buf_vaddr) { | 
|  | pr_err("Failed to allocate %ld bytes for CPU notes buffer\n", | 
|  | fw_dump.cpu_notes_buf_size); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n", | 
|  | fw_dump.cpu_notes_buf_size, | 
|  | fw_dump.cpu_notes_buf_vaddr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void fadump_free_cpu_notes_buf(void) | 
|  | { | 
|  | if (!fw_dump.cpu_notes_buf_vaddr) | 
|  | return; | 
|  |  | 
|  | fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr, | 
|  | fw_dump.cpu_notes_buf_size); | 
|  | fw_dump.cpu_notes_buf_vaddr = 0; | 
|  | fw_dump.cpu_notes_buf_size = 0; | 
|  | } | 
|  |  | 
|  | static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info) | 
|  | { | 
|  | kfree(mrange_info->mem_ranges); | 
|  | mrange_info->mem_ranges = NULL; | 
|  | mrange_info->mem_ranges_sz = 0; | 
|  | mrange_info->max_mem_ranges = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate or reallocate mem_ranges array in incremental units | 
|  | * of PAGE_SIZE. | 
|  | */ | 
|  | static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info) | 
|  | { | 
|  | struct fadump_memory_range *new_array; | 
|  | u64 new_size; | 
|  |  | 
|  | new_size = mrange_info->mem_ranges_sz + PAGE_SIZE; | 
|  | pr_debug("Allocating %llu bytes of memory for %s memory ranges\n", | 
|  | new_size, mrange_info->name); | 
|  |  | 
|  | new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL); | 
|  | if (new_array == NULL) { | 
|  | pr_err("Insufficient memory for setting up %s memory ranges\n", | 
|  | mrange_info->name); | 
|  | fadump_free_mem_ranges(mrange_info); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | mrange_info->mem_ranges = new_array; | 
|  | mrange_info->mem_ranges_sz = new_size; | 
|  | mrange_info->max_mem_ranges = (new_size / | 
|  | sizeof(struct fadump_memory_range)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info, | 
|  | u64 base, u64 end) | 
|  | { | 
|  | struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges; | 
|  | bool is_adjacent = false; | 
|  | u64 start, size; | 
|  |  | 
|  | if (base == end) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Fold adjacent memory ranges to bring down the memory ranges/ | 
|  | * PT_LOAD segments count. | 
|  | */ | 
|  | if (mrange_info->mem_range_cnt) { | 
|  | start = mem_ranges[mrange_info->mem_range_cnt - 1].base; | 
|  | size  = mem_ranges[mrange_info->mem_range_cnt - 1].size; | 
|  |  | 
|  | if ((start + size) == base) | 
|  | is_adjacent = true; | 
|  | } | 
|  | if (!is_adjacent) { | 
|  | /* resize the array on reaching the limit */ | 
|  | if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) { | 
|  | int ret; | 
|  |  | 
|  | ret = fadump_alloc_mem_ranges(mrange_info); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Update to the new resized array */ | 
|  | mem_ranges = mrange_info->mem_ranges; | 
|  | } | 
|  |  | 
|  | start = base; | 
|  | mem_ranges[mrange_info->mem_range_cnt].base = start; | 
|  | mrange_info->mem_range_cnt++; | 
|  | } | 
|  |  | 
|  | mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start); | 
|  | pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", | 
|  | mrange_info->name, (mrange_info->mem_range_cnt - 1), | 
|  | start, end - 1, (end - start)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fadump_exclude_reserved_area(u64 start, u64 end) | 
|  | { | 
|  | u64 ra_start, ra_end; | 
|  | int ret = 0; | 
|  |  | 
|  | ra_start = fw_dump.reserve_dump_area_start; | 
|  | ra_end = ra_start + fw_dump.reserve_dump_area_size; | 
|  |  | 
|  | if ((ra_start < end) && (ra_end > start)) { | 
|  | if ((start < ra_start) && (end > ra_end)) { | 
|  | ret = fadump_add_mem_range(&crash_mrange_info, | 
|  | start, ra_start); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = fadump_add_mem_range(&crash_mrange_info, | 
|  | ra_end, end); | 
|  | } else if (start < ra_start) { | 
|  | ret = fadump_add_mem_range(&crash_mrange_info, | 
|  | start, ra_start); | 
|  | } else if (ra_end < end) { | 
|  | ret = fadump_add_mem_range(&crash_mrange_info, | 
|  | ra_end, end); | 
|  | } | 
|  | } else | 
|  | ret = fadump_add_mem_range(&crash_mrange_info, start, end); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int fadump_init_elfcore_header(char *bufp) | 
|  | { | 
|  | struct elfhdr *elf; | 
|  |  | 
|  | elf = (struct elfhdr *) bufp; | 
|  | bufp += sizeof(struct elfhdr); | 
|  | memcpy(elf->e_ident, ELFMAG, SELFMAG); | 
|  | elf->e_ident[EI_CLASS] = ELF_CLASS; | 
|  | elf->e_ident[EI_DATA] = ELF_DATA; | 
|  | elf->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf->e_ident[EI_OSABI] = ELF_OSABI; | 
|  | memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); | 
|  | elf->e_type = ET_CORE; | 
|  | elf->e_machine = ELF_ARCH; | 
|  | elf->e_version = EV_CURRENT; | 
|  | elf->e_entry = 0; | 
|  | elf->e_phoff = sizeof(struct elfhdr); | 
|  | elf->e_shoff = 0; | 
|  | #if defined(_CALL_ELF) | 
|  | elf->e_flags = _CALL_ELF; | 
|  | #else | 
|  | elf->e_flags = 0; | 
|  | #endif | 
|  | elf->e_ehsize = sizeof(struct elfhdr); | 
|  | elf->e_phentsize = sizeof(struct elf_phdr); | 
|  | elf->e_phnum = 0; | 
|  | elf->e_shentsize = 0; | 
|  | elf->e_shnum = 0; | 
|  | elf->e_shstrndx = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Traverse through memblock structure and setup crash memory ranges. These | 
|  | * ranges will be used create PT_LOAD program headers in elfcore header. | 
|  | */ | 
|  | static int fadump_setup_crash_memory_ranges(void) | 
|  | { | 
|  | struct memblock_region *reg; | 
|  | u64 start, end; | 
|  | int i, ret; | 
|  |  | 
|  | pr_debug("Setup crash memory ranges.\n"); | 
|  | crash_mrange_info.mem_range_cnt = 0; | 
|  |  | 
|  | /* | 
|  | * Boot memory region(s) registered with firmware are moved to | 
|  | * different location at the time of crash. Create separate program | 
|  | * header(s) for this memory chunk(s) with the correct offset. | 
|  | */ | 
|  | for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { | 
|  | start = fw_dump.boot_mem_addr[i]; | 
|  | end = start + fw_dump.boot_mem_sz[i]; | 
|  | ret = fadump_add_mem_range(&crash_mrange_info, start, end); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for_each_memblock(memory, reg) { | 
|  | start = (u64)reg->base; | 
|  | end = start + (u64)reg->size; | 
|  |  | 
|  | /* | 
|  | * skip the memory chunk that is already added | 
|  | * (0 through boot_memory_top). | 
|  | */ | 
|  | if (start < fw_dump.boot_mem_top) { | 
|  | if (end > fw_dump.boot_mem_top) | 
|  | start = fw_dump.boot_mem_top; | 
|  | else | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* add this range excluding the reserved dump area. */ | 
|  | ret = fadump_exclude_reserved_area(start, end); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the given physical address falls within the boot memory region then | 
|  | * return the relocated address that points to the dump region reserved | 
|  | * for saving initial boot memory contents. | 
|  | */ | 
|  | static inline unsigned long fadump_relocate(unsigned long paddr) | 
|  | { | 
|  | unsigned long raddr, rstart, rend, rlast, hole_size; | 
|  | int i; | 
|  |  | 
|  | hole_size = 0; | 
|  | rlast = 0; | 
|  | raddr = paddr; | 
|  | for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { | 
|  | rstart = fw_dump.boot_mem_addr[i]; | 
|  | rend = rstart + fw_dump.boot_mem_sz[i]; | 
|  | hole_size += (rstart - rlast); | 
|  |  | 
|  | if (paddr >= rstart && paddr < rend) { | 
|  | raddr += fw_dump.boot_mem_dest_addr - hole_size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rlast = rend; | 
|  | } | 
|  |  | 
|  | pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr); | 
|  | return raddr; | 
|  | } | 
|  |  | 
|  | static int fadump_create_elfcore_headers(char *bufp) | 
|  | { | 
|  | unsigned long long raddr, offset; | 
|  | struct elf_phdr *phdr; | 
|  | struct elfhdr *elf; | 
|  | int i, j; | 
|  |  | 
|  | fadump_init_elfcore_header(bufp); | 
|  | elf = (struct elfhdr *)bufp; | 
|  | bufp += sizeof(struct elfhdr); | 
|  |  | 
|  | /* | 
|  | * setup ELF PT_NOTE, place holder for cpu notes info. The notes info | 
|  | * will be populated during second kernel boot after crash. Hence | 
|  | * this PT_NOTE will always be the first elf note. | 
|  | * | 
|  | * NOTE: Any new ELF note addition should be placed after this note. | 
|  | */ | 
|  | phdr = (struct elf_phdr *)bufp; | 
|  | bufp += sizeof(struct elf_phdr); | 
|  | phdr->p_type = PT_NOTE; | 
|  | phdr->p_flags = 0; | 
|  | phdr->p_vaddr = 0; | 
|  | phdr->p_align = 0; | 
|  |  | 
|  | phdr->p_offset = 0; | 
|  | phdr->p_paddr = 0; | 
|  | phdr->p_filesz = 0; | 
|  | phdr->p_memsz = 0; | 
|  |  | 
|  | (elf->e_phnum)++; | 
|  |  | 
|  | /* setup ELF PT_NOTE for vmcoreinfo */ | 
|  | phdr = (struct elf_phdr *)bufp; | 
|  | bufp += sizeof(struct elf_phdr); | 
|  | phdr->p_type	= PT_NOTE; | 
|  | phdr->p_flags	= 0; | 
|  | phdr->p_vaddr	= 0; | 
|  | phdr->p_align	= 0; | 
|  |  | 
|  | phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note()); | 
|  | phdr->p_offset	= phdr->p_paddr; | 
|  | phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE; | 
|  |  | 
|  | /* Increment number of program headers. */ | 
|  | (elf->e_phnum)++; | 
|  |  | 
|  | /* setup PT_LOAD sections. */ | 
|  | j = 0; | 
|  | offset = 0; | 
|  | raddr = fw_dump.boot_mem_addr[0]; | 
|  | for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) { | 
|  | u64 mbase, msize; | 
|  |  | 
|  | mbase = crash_mrange_info.mem_ranges[i].base; | 
|  | msize = crash_mrange_info.mem_ranges[i].size; | 
|  | if (!msize) | 
|  | continue; | 
|  |  | 
|  | phdr = (struct elf_phdr *)bufp; | 
|  | bufp += sizeof(struct elf_phdr); | 
|  | phdr->p_type	= PT_LOAD; | 
|  | phdr->p_flags	= PF_R|PF_W|PF_X; | 
|  | phdr->p_offset	= mbase; | 
|  |  | 
|  | if (mbase == raddr) { | 
|  | /* | 
|  | * The entire real memory region will be moved by | 
|  | * firmware to the specified destination_address. | 
|  | * Hence set the correct offset. | 
|  | */ | 
|  | phdr->p_offset = fw_dump.boot_mem_dest_addr + offset; | 
|  | if (j < (fw_dump.boot_mem_regs_cnt - 1)) { | 
|  | offset += fw_dump.boot_mem_sz[j]; | 
|  | raddr = fw_dump.boot_mem_addr[++j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | phdr->p_paddr = mbase; | 
|  | phdr->p_vaddr = (unsigned long)__va(mbase); | 
|  | phdr->p_filesz = msize; | 
|  | phdr->p_memsz = msize; | 
|  | phdr->p_align = 0; | 
|  |  | 
|  | /* Increment number of program headers. */ | 
|  | (elf->e_phnum)++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long init_fadump_header(unsigned long addr) | 
|  | { | 
|  | struct fadump_crash_info_header *fdh; | 
|  |  | 
|  | if (!addr) | 
|  | return 0; | 
|  |  | 
|  | fdh = __va(addr); | 
|  | addr += sizeof(struct fadump_crash_info_header); | 
|  |  | 
|  | memset(fdh, 0, sizeof(struct fadump_crash_info_header)); | 
|  | fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; | 
|  | fdh->elfcorehdr_addr = addr; | 
|  | /* We will set the crashing cpu id in crash_fadump() during crash. */ | 
|  | fdh->crashing_cpu = FADUMP_CPU_UNKNOWN; | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static int register_fadump(void) | 
|  | { | 
|  | unsigned long addr; | 
|  | void *vaddr; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If no memory is reserved then we can not register for firmware- | 
|  | * assisted dump. | 
|  | */ | 
|  | if (!fw_dump.reserve_dump_area_size) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = fadump_setup_crash_memory_ranges(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | addr = fw_dump.fadumphdr_addr; | 
|  |  | 
|  | /* Initialize fadump crash info header. */ | 
|  | addr = init_fadump_header(addr); | 
|  | vaddr = __va(addr); | 
|  |  | 
|  | pr_debug("Creating ELF core headers at %#016lx\n", addr); | 
|  | fadump_create_elfcore_headers(vaddr); | 
|  |  | 
|  | /* register the future kernel dump with firmware. */ | 
|  | pr_debug("Registering for firmware-assisted kernel dump...\n"); | 
|  | return fw_dump.ops->fadump_register(&fw_dump); | 
|  | } | 
|  |  | 
|  | void fadump_cleanup(void) | 
|  | { | 
|  | if (!fw_dump.fadump_supported) | 
|  | return; | 
|  |  | 
|  | /* Invalidate the registration only if dump is active. */ | 
|  | if (fw_dump.dump_active) { | 
|  | pr_debug("Invalidating firmware-assisted dump registration\n"); | 
|  | fw_dump.ops->fadump_invalidate(&fw_dump); | 
|  | } else if (fw_dump.dump_registered) { | 
|  | /* Un-register Firmware-assisted dump if it was registered. */ | 
|  | fw_dump.ops->fadump_unregister(&fw_dump); | 
|  | fadump_free_mem_ranges(&crash_mrange_info); | 
|  | } | 
|  |  | 
|  | if (fw_dump.ops->fadump_cleanup) | 
|  | fw_dump.ops->fadump_cleanup(&fw_dump); | 
|  | } | 
|  |  | 
|  | static void fadump_free_reserved_memory(unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | unsigned long pfn; | 
|  | unsigned long time_limit = jiffies + HZ; | 
|  |  | 
|  | pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", | 
|  | PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); | 
|  |  | 
|  | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | 
|  | free_reserved_page(pfn_to_page(pfn)); | 
|  |  | 
|  | if (time_after(jiffies, time_limit)) { | 
|  | cond_resched(); | 
|  | time_limit = jiffies + HZ; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Skip memory holes and free memory that was actually reserved. | 
|  | */ | 
|  | static void fadump_release_reserved_area(u64 start, u64 end) | 
|  | { | 
|  | u64 tstart, tend, spfn, epfn; | 
|  | struct memblock_region *reg; | 
|  |  | 
|  | spfn = PHYS_PFN(start); | 
|  | epfn = PHYS_PFN(end); | 
|  | for_each_memblock(memory, reg) { | 
|  | tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg)); | 
|  | tend   = min_t(u64, epfn, memblock_region_memory_end_pfn(reg)); | 
|  | if (tstart < tend) { | 
|  | fadump_free_reserved_memory(tstart, tend); | 
|  |  | 
|  | if (tend == epfn) | 
|  | break; | 
|  |  | 
|  | spfn = tend; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sort the mem ranges in-place and merge adjacent ranges | 
|  | * to minimize the memory ranges count. | 
|  | */ | 
|  | static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info) | 
|  | { | 
|  | struct fadump_memory_range *mem_ranges; | 
|  | struct fadump_memory_range tmp_range; | 
|  | u64 base, size; | 
|  | int i, j, idx; | 
|  |  | 
|  | if (!reserved_mrange_info.mem_range_cnt) | 
|  | return; | 
|  |  | 
|  | /* Sort the memory ranges */ | 
|  | mem_ranges = mrange_info->mem_ranges; | 
|  | for (i = 0; i < mrange_info->mem_range_cnt; i++) { | 
|  | idx = i; | 
|  | for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) { | 
|  | if (mem_ranges[idx].base > mem_ranges[j].base) | 
|  | idx = j; | 
|  | } | 
|  | if (idx != i) { | 
|  | tmp_range = mem_ranges[idx]; | 
|  | mem_ranges[idx] = mem_ranges[i]; | 
|  | mem_ranges[i] = tmp_range; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Merge adjacent reserved ranges */ | 
|  | idx = 0; | 
|  | for (i = 1; i < mrange_info->mem_range_cnt; i++) { | 
|  | base = mem_ranges[i-1].base; | 
|  | size = mem_ranges[i-1].size; | 
|  | if (mem_ranges[i].base == (base + size)) | 
|  | mem_ranges[idx].size += mem_ranges[i].size; | 
|  | else { | 
|  | idx++; | 
|  | if (i == idx) | 
|  | continue; | 
|  |  | 
|  | mem_ranges[idx] = mem_ranges[i]; | 
|  | } | 
|  | } | 
|  | mrange_info->mem_range_cnt = idx + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan reserved-ranges to consider them while reserving/releasing | 
|  | * memory for FADump. | 
|  | */ | 
|  | static inline int fadump_scan_reserved_mem_ranges(void) | 
|  | { | 
|  | struct device_node *root; | 
|  | const __be32 *prop; | 
|  | int len, ret = -1; | 
|  | unsigned long i; | 
|  |  | 
|  | root = of_find_node_by_path("/"); | 
|  | if (!root) | 
|  | return ret; | 
|  |  | 
|  | prop = of_get_property(root, "reserved-ranges", &len); | 
|  | if (!prop) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Each reserved range is an (address,size) pair, 2 cells each, | 
|  | * totalling 4 cells per range. | 
|  | */ | 
|  | for (i = 0; i < len / (sizeof(*prop) * 4); i++) { | 
|  | u64 base, size; | 
|  |  | 
|  | base = of_read_number(prop + (i * 4) + 0, 2); | 
|  | size = of_read_number(prop + (i * 4) + 2, 2); | 
|  |  | 
|  | if (size) { | 
|  | ret = fadump_add_mem_range(&reserved_mrange_info, | 
|  | base, base + size); | 
|  | if (ret < 0) { | 
|  | pr_warn("some reserved ranges are ignored!\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the memory that was reserved during early boot to preserve the | 
|  | * crash'ed kernel's memory contents except reserved dump area (permanent | 
|  | * reservation) and reserved ranges used by F/W. The released memory will | 
|  | * be available for general use. | 
|  | */ | 
|  | static void fadump_release_memory(u64 begin, u64 end) | 
|  | { | 
|  | u64 ra_start, ra_end, tstart; | 
|  | int i, ret; | 
|  |  | 
|  | fadump_scan_reserved_mem_ranges(); | 
|  |  | 
|  | ra_start = fw_dump.reserve_dump_area_start; | 
|  | ra_end = ra_start + fw_dump.reserve_dump_area_size; | 
|  |  | 
|  | /* | 
|  | * Add reserved dump area to reserved ranges list | 
|  | * and exclude all these ranges while releasing memory. | 
|  | */ | 
|  | ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end); | 
|  | if (ret != 0) { | 
|  | /* | 
|  | * Not enough memory to setup reserved ranges but the system is | 
|  | * running shortage of memory. So, release all the memory except | 
|  | * Reserved dump area (reused for next fadump registration). | 
|  | */ | 
|  | if (begin < ra_end && end > ra_start) { | 
|  | if (begin < ra_start) | 
|  | fadump_release_reserved_area(begin, ra_start); | 
|  | if (end > ra_end) | 
|  | fadump_release_reserved_area(ra_end, end); | 
|  | } else | 
|  | fadump_release_reserved_area(begin, end); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Get the reserved ranges list in order first. */ | 
|  | sort_and_merge_mem_ranges(&reserved_mrange_info); | 
|  |  | 
|  | /* Exclude reserved ranges and release remaining memory */ | 
|  | tstart = begin; | 
|  | for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) { | 
|  | ra_start = reserved_mrange_info.mem_ranges[i].base; | 
|  | ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size; | 
|  |  | 
|  | if (tstart >= ra_end) | 
|  | continue; | 
|  |  | 
|  | if (tstart < ra_start) | 
|  | fadump_release_reserved_area(tstart, ra_start); | 
|  | tstart = ra_end; | 
|  | } | 
|  |  | 
|  | if (tstart < end) | 
|  | fadump_release_reserved_area(tstart, end); | 
|  | } | 
|  |  | 
|  | static void fadump_invalidate_release_mem(void) | 
|  | { | 
|  | mutex_lock(&fadump_mutex); | 
|  | if (!fw_dump.dump_active) { | 
|  | mutex_unlock(&fadump_mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | fadump_cleanup(); | 
|  | mutex_unlock(&fadump_mutex); | 
|  |  | 
|  | fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM()); | 
|  | fadump_free_cpu_notes_buf(); | 
|  |  | 
|  | /* | 
|  | * Setup kernel metadata and initialize the kernel dump | 
|  | * memory structure for FADump re-registration. | 
|  | */ | 
|  | if (fw_dump.ops->fadump_setup_metadata && | 
|  | (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) | 
|  | pr_warn("Failed to setup kernel metadata!\n"); | 
|  | fw_dump.ops->fadump_init_mem_struct(&fw_dump); | 
|  | } | 
|  |  | 
|  | static ssize_t fadump_release_memory_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int input = -1; | 
|  |  | 
|  | if (!fw_dump.dump_active) | 
|  | return -EPERM; | 
|  |  | 
|  | if (kstrtoint(buf, 0, &input)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (input == 1) { | 
|  | /* | 
|  | * Take away the '/proc/vmcore'. We are releasing the dump | 
|  | * memory, hence it will not be valid anymore. | 
|  | */ | 
|  | #ifdef CONFIG_PROC_VMCORE | 
|  | vmcore_cleanup(); | 
|  | #endif | 
|  | fadump_invalidate_release_mem(); | 
|  |  | 
|  | } else | 
|  | return -EINVAL; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t fadump_enabled_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", fw_dump.fadump_enabled); | 
|  | } | 
|  |  | 
|  | static ssize_t fadump_register_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", fw_dump.dump_registered); | 
|  | } | 
|  |  | 
|  | static ssize_t fadump_register_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int ret = 0; | 
|  | int input = -1; | 
|  |  | 
|  | if (!fw_dump.fadump_enabled || fw_dump.dump_active) | 
|  | return -EPERM; | 
|  |  | 
|  | if (kstrtoint(buf, 0, &input)) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&fadump_mutex); | 
|  |  | 
|  | switch (input) { | 
|  | case 0: | 
|  | if (fw_dump.dump_registered == 0) { | 
|  | goto unlock_out; | 
|  | } | 
|  |  | 
|  | /* Un-register Firmware-assisted dump */ | 
|  | pr_debug("Un-register firmware-assisted dump\n"); | 
|  | fw_dump.ops->fadump_unregister(&fw_dump); | 
|  | break; | 
|  | case 1: | 
|  | if (fw_dump.dump_registered == 1) { | 
|  | /* Un-register Firmware-assisted dump */ | 
|  | fw_dump.ops->fadump_unregister(&fw_dump); | 
|  | } | 
|  | /* Register Firmware-assisted dump */ | 
|  | ret = register_fadump(); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | unlock_out: | 
|  | mutex_unlock(&fadump_mutex); | 
|  | return ret < 0 ? ret : count; | 
|  | } | 
|  |  | 
|  | static int fadump_region_show(struct seq_file *m, void *private) | 
|  | { | 
|  | if (!fw_dump.fadump_enabled) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&fadump_mutex); | 
|  | fw_dump.ops->fadump_region_show(&fw_dump, m); | 
|  | mutex_unlock(&fadump_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem, | 
|  | 0200, NULL, | 
|  | fadump_release_memory_store); | 
|  | static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled, | 
|  | 0444, fadump_enabled_show, | 
|  | NULL); | 
|  | static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered, | 
|  | 0644, fadump_register_show, | 
|  | fadump_register_store); | 
|  |  | 
|  | DEFINE_SHOW_ATTRIBUTE(fadump_region); | 
|  |  | 
|  | static void fadump_init_files(void) | 
|  | { | 
|  | struct dentry *debugfs_file; | 
|  | int rc = 0; | 
|  |  | 
|  | rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr); | 
|  | if (rc) | 
|  | printk(KERN_ERR "fadump: unable to create sysfs file" | 
|  | " fadump_enabled (%d)\n", rc); | 
|  |  | 
|  | rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr); | 
|  | if (rc) | 
|  | printk(KERN_ERR "fadump: unable to create sysfs file" | 
|  | " fadump_registered (%d)\n", rc); | 
|  |  | 
|  | debugfs_file = debugfs_create_file("fadump_region", 0444, | 
|  | powerpc_debugfs_root, NULL, | 
|  | &fadump_region_fops); | 
|  | if (!debugfs_file) | 
|  | printk(KERN_ERR "fadump: unable to create debugfs file" | 
|  | " fadump_region\n"); | 
|  |  | 
|  | if (fw_dump.dump_active) { | 
|  | rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr); | 
|  | if (rc) | 
|  | printk(KERN_ERR "fadump: unable to create sysfs file" | 
|  | " fadump_release_mem (%d)\n", rc); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare for firmware-assisted dump. | 
|  | */ | 
|  | int __init setup_fadump(void) | 
|  | { | 
|  | if (!fw_dump.fadump_supported) | 
|  | return 0; | 
|  |  | 
|  | fadump_init_files(); | 
|  | fadump_show_config(); | 
|  |  | 
|  | if (!fw_dump.fadump_enabled) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * If dump data is available then see if it is valid and prepare for | 
|  | * saving it to the disk. | 
|  | */ | 
|  | if (fw_dump.dump_active) { | 
|  | /* | 
|  | * if dump process fails then invalidate the registration | 
|  | * and release memory before proceeding for re-registration. | 
|  | */ | 
|  | if (fw_dump.ops->fadump_process(&fw_dump) < 0) | 
|  | fadump_invalidate_release_mem(); | 
|  | } | 
|  | /* Initialize the kernel dump memory structure for FAD registration. */ | 
|  | else if (fw_dump.reserve_dump_area_size) | 
|  | fw_dump.ops->fadump_init_mem_struct(&fw_dump); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | subsys_initcall(setup_fadump); | 
|  | #else /* !CONFIG_PRESERVE_FA_DUMP */ | 
|  |  | 
|  | /* Scan the Firmware Assisted dump configuration details. */ | 
|  | int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, | 
|  | int depth, void *data) | 
|  | { | 
|  | if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0)) | 
|  | return 0; | 
|  |  | 
|  | opal_fadump_dt_scan(&fw_dump, node); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel, | 
|  | * preserve crash data. The subsequent memory preserving kernel boot | 
|  | * is likely to process this crash data. | 
|  | */ | 
|  | int __init fadump_reserve_mem(void) | 
|  | { | 
|  | if (fw_dump.dump_active) { | 
|  | /* | 
|  | * If last boot has crashed then reserve all the memory | 
|  | * above boot memory to preserve crash data. | 
|  | */ | 
|  | pr_info("Preserving crash data for processing in next boot.\n"); | 
|  | fadump_reserve_crash_area(fw_dump.boot_mem_top); | 
|  | } else | 
|  | pr_debug("FADump-aware kernel..\n"); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | #endif /* CONFIG_PRESERVE_FA_DUMP */ | 
|  |  | 
|  | /* Preserve everything above the base address */ | 
|  | static void __init fadump_reserve_crash_area(u64 base) | 
|  | { | 
|  | struct memblock_region *reg; | 
|  | u64 mstart, msize; | 
|  |  | 
|  | for_each_memblock(memory, reg) { | 
|  | mstart = reg->base; | 
|  | msize  = reg->size; | 
|  |  | 
|  | if ((mstart + msize) < base) | 
|  | continue; | 
|  |  | 
|  | if (mstart < base) { | 
|  | msize -= (base - mstart); | 
|  | mstart = base; | 
|  | } | 
|  |  | 
|  | pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data", | 
|  | (msize >> 20), mstart); | 
|  | memblock_reserve(mstart, msize); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned long __init arch_reserved_kernel_pages(void) | 
|  | { | 
|  | return memblock_reserved_size() / PAGE_SIZE; | 
|  | } |