|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2012 - Virtual Open Systems and Columbia University | 
|  | * Author: Christoffer Dall <c.dall@virtualopensystems.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/mman.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <trace/events/kvm.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/kvm_arm.h> | 
|  | #include <asm/kvm_mmu.h> | 
|  | #include <asm/kvm_ras.h> | 
|  | #include <asm/kvm_asm.h> | 
|  | #include <asm/kvm_emulate.h> | 
|  | #include <asm/virt.h> | 
|  |  | 
|  | #include "trace.h" | 
|  |  | 
|  | static pgd_t *boot_hyp_pgd; | 
|  | static pgd_t *hyp_pgd; | 
|  | static pgd_t *merged_hyp_pgd; | 
|  | static DEFINE_MUTEX(kvm_hyp_pgd_mutex); | 
|  |  | 
|  | static unsigned long hyp_idmap_start; | 
|  | static unsigned long hyp_idmap_end; | 
|  | static phys_addr_t hyp_idmap_vector; | 
|  |  | 
|  | static unsigned long io_map_base; | 
|  |  | 
|  | #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t)) | 
|  |  | 
|  | #define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0) | 
|  | #define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1) | 
|  |  | 
|  | static bool is_iomap(unsigned long flags) | 
|  | { | 
|  | return flags & KVM_S2PTE_FLAG_IS_IOMAP; | 
|  | } | 
|  |  | 
|  | static bool memslot_is_logging(struct kvm_memory_slot *memslot) | 
|  | { | 
|  | return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 | 
|  | * @kvm:	pointer to kvm structure. | 
|  | * | 
|  | * Interface to HYP function to flush all VM TLB entries | 
|  | */ | 
|  | void kvm_flush_remote_tlbs(struct kvm *kvm) | 
|  | { | 
|  | kvm_call_hyp(__kvm_tlb_flush_vmid, kvm); | 
|  | } | 
|  |  | 
|  | static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) | 
|  | { | 
|  | kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * D-Cache management functions. They take the page table entries by | 
|  | * value, as they are flushing the cache using the kernel mapping (or | 
|  | * kmap on 32bit). | 
|  | */ | 
|  | static void kvm_flush_dcache_pte(pte_t pte) | 
|  | { | 
|  | __kvm_flush_dcache_pte(pte); | 
|  | } | 
|  |  | 
|  | static void kvm_flush_dcache_pmd(pmd_t pmd) | 
|  | { | 
|  | __kvm_flush_dcache_pmd(pmd); | 
|  | } | 
|  |  | 
|  | static void kvm_flush_dcache_pud(pud_t pud) | 
|  | { | 
|  | __kvm_flush_dcache_pud(pud); | 
|  | } | 
|  |  | 
|  | static bool kvm_is_device_pfn(unsigned long pfn) | 
|  | { | 
|  | return !pfn_valid(pfn); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * stage2_dissolve_pmd() - clear and flush huge PMD entry | 
|  | * @kvm:	pointer to kvm structure. | 
|  | * @addr:	IPA | 
|  | * @pmd:	pmd pointer for IPA | 
|  | * | 
|  | * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. | 
|  | */ | 
|  | static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd) | 
|  | { | 
|  | if (!pmd_thp_or_huge(*pmd)) | 
|  | return; | 
|  |  | 
|  | pmd_clear(pmd); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  | put_page(virt_to_page(pmd)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * stage2_dissolve_pud() - clear and flush huge PUD entry | 
|  | * @kvm:	pointer to kvm structure. | 
|  | * @addr:	IPA | 
|  | * @pud:	pud pointer for IPA | 
|  | * | 
|  | * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs. | 
|  | */ | 
|  | static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp) | 
|  | { | 
|  | if (!stage2_pud_huge(kvm, *pudp)) | 
|  | return; | 
|  |  | 
|  | stage2_pud_clear(kvm, pudp); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  | put_page(virt_to_page(pudp)); | 
|  | } | 
|  |  | 
|  | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, | 
|  | int min, int max) | 
|  | { | 
|  | void *page; | 
|  |  | 
|  | BUG_ON(max > KVM_NR_MEM_OBJS); | 
|  | if (cache->nobjs >= min) | 
|  | return 0; | 
|  | while (cache->nobjs < max) { | 
|  | page = (void *)__get_free_page(GFP_PGTABLE_USER); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | cache->objects[cache->nobjs++] = page; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | while (mc->nobjs) | 
|  | free_page((unsigned long)mc->objects[--mc->nobjs]); | 
|  | } | 
|  |  | 
|  | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | BUG_ON(!mc || !mc->nobjs); | 
|  | p = mc->objects[--mc->nobjs]; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr) | 
|  | { | 
|  | pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL); | 
|  | stage2_pgd_clear(kvm, pgd); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  | stage2_pud_free(kvm, pud_table); | 
|  | put_page(virt_to_page(pgd)); | 
|  | } | 
|  |  | 
|  | static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr) | 
|  | { | 
|  | pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0); | 
|  | VM_BUG_ON(stage2_pud_huge(kvm, *pud)); | 
|  | stage2_pud_clear(kvm, pud); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  | stage2_pmd_free(kvm, pmd_table); | 
|  | put_page(virt_to_page(pud)); | 
|  | } | 
|  |  | 
|  | static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr) | 
|  | { | 
|  | pte_t *pte_table = pte_offset_kernel(pmd, 0); | 
|  | VM_BUG_ON(pmd_thp_or_huge(*pmd)); | 
|  | pmd_clear(pmd); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  | free_page((unsigned long)pte_table); | 
|  | put_page(virt_to_page(pmd)); | 
|  | } | 
|  |  | 
|  | static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte) | 
|  | { | 
|  | WRITE_ONCE(*ptep, new_pte); | 
|  | dsb(ishst); | 
|  | } | 
|  |  | 
|  | static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd) | 
|  | { | 
|  | WRITE_ONCE(*pmdp, new_pmd); | 
|  | dsb(ishst); | 
|  | } | 
|  |  | 
|  | static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep) | 
|  | { | 
|  | kvm_set_pmd(pmdp, kvm_mk_pmd(ptep)); | 
|  | } | 
|  |  | 
|  | static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp) | 
|  | { | 
|  | WRITE_ONCE(*pudp, kvm_mk_pud(pmdp)); | 
|  | dsb(ishst); | 
|  | } | 
|  |  | 
|  | static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp) | 
|  | { | 
|  | WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp)); | 
|  | dsb(ishst); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unmapping vs dcache management: | 
|  | * | 
|  | * If a guest maps certain memory pages as uncached, all writes will | 
|  | * bypass the data cache and go directly to RAM.  However, the CPUs | 
|  | * can still speculate reads (not writes) and fill cache lines with | 
|  | * data. | 
|  | * | 
|  | * Those cache lines will be *clean* cache lines though, so a | 
|  | * clean+invalidate operation is equivalent to an invalidate | 
|  | * operation, because no cache lines are marked dirty. | 
|  | * | 
|  | * Those clean cache lines could be filled prior to an uncached write | 
|  | * by the guest, and the cache coherent IO subsystem would therefore | 
|  | * end up writing old data to disk. | 
|  | * | 
|  | * This is why right after unmapping a page/section and invalidating | 
|  | * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure | 
|  | * the IO subsystem will never hit in the cache. | 
|  | * | 
|  | * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as | 
|  | * we then fully enforce cacheability of RAM, no matter what the guest | 
|  | * does. | 
|  | */ | 
|  | static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd, | 
|  | phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | phys_addr_t start_addr = addr; | 
|  | pte_t *pte, *start_pte; | 
|  |  | 
|  | start_pte = pte = pte_offset_kernel(pmd, addr); | 
|  | do { | 
|  | if (!pte_none(*pte)) { | 
|  | pte_t old_pte = *pte; | 
|  |  | 
|  | kvm_set_pte(pte, __pte(0)); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  |  | 
|  | /* No need to invalidate the cache for device mappings */ | 
|  | if (!kvm_is_device_pfn(pte_pfn(old_pte))) | 
|  | kvm_flush_dcache_pte(old_pte); | 
|  |  | 
|  | put_page(virt_to_page(pte)); | 
|  | } | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | if (stage2_pte_table_empty(kvm, start_pte)) | 
|  | clear_stage2_pmd_entry(kvm, pmd, start_addr); | 
|  | } | 
|  |  | 
|  | static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud, | 
|  | phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | phys_addr_t next, start_addr = addr; | 
|  | pmd_t *pmd, *start_pmd; | 
|  |  | 
|  | start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr); | 
|  | do { | 
|  | next = stage2_pmd_addr_end(kvm, addr, end); | 
|  | if (!pmd_none(*pmd)) { | 
|  | if (pmd_thp_or_huge(*pmd)) { | 
|  | pmd_t old_pmd = *pmd; | 
|  |  | 
|  | pmd_clear(pmd); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  |  | 
|  | kvm_flush_dcache_pmd(old_pmd); | 
|  |  | 
|  | put_page(virt_to_page(pmd)); | 
|  | } else { | 
|  | unmap_stage2_ptes(kvm, pmd, addr, next); | 
|  | } | 
|  | } | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | if (stage2_pmd_table_empty(kvm, start_pmd)) | 
|  | clear_stage2_pud_entry(kvm, pud, start_addr); | 
|  | } | 
|  |  | 
|  | static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd, | 
|  | phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | phys_addr_t next, start_addr = addr; | 
|  | pud_t *pud, *start_pud; | 
|  |  | 
|  | start_pud = pud = stage2_pud_offset(kvm, pgd, addr); | 
|  | do { | 
|  | next = stage2_pud_addr_end(kvm, addr, end); | 
|  | if (!stage2_pud_none(kvm, *pud)) { | 
|  | if (stage2_pud_huge(kvm, *pud)) { | 
|  | pud_t old_pud = *pud; | 
|  |  | 
|  | stage2_pud_clear(kvm, pud); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  | kvm_flush_dcache_pud(old_pud); | 
|  | put_page(virt_to_page(pud)); | 
|  | } else { | 
|  | unmap_stage2_pmds(kvm, pud, addr, next); | 
|  | } | 
|  | } | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | if (stage2_pud_table_empty(kvm, start_pud)) | 
|  | clear_stage2_pgd_entry(kvm, pgd, start_addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_stage2_range -- Clear stage2 page table entries to unmap a range | 
|  | * @kvm:   The VM pointer | 
|  | * @start: The intermediate physical base address of the range to unmap | 
|  | * @size:  The size of the area to unmap | 
|  | * | 
|  | * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must | 
|  | * be called while holding mmu_lock (unless for freeing the stage2 pgd before | 
|  | * destroying the VM), otherwise another faulting VCPU may come in and mess | 
|  | * with things behind our backs. | 
|  | */ | 
|  | static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | phys_addr_t addr = start, end = start + size; | 
|  | phys_addr_t next; | 
|  |  | 
|  | assert_spin_locked(&kvm->mmu_lock); | 
|  | WARN_ON(size & ~PAGE_MASK); | 
|  |  | 
|  | pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); | 
|  | do { | 
|  | /* | 
|  | * Make sure the page table is still active, as another thread | 
|  | * could have possibly freed the page table, while we released | 
|  | * the lock. | 
|  | */ | 
|  | if (!READ_ONCE(kvm->arch.pgd)) | 
|  | break; | 
|  | next = stage2_pgd_addr_end(kvm, addr, end); | 
|  | if (!stage2_pgd_none(kvm, *pgd)) | 
|  | unmap_stage2_puds(kvm, pgd, addr, next); | 
|  | /* | 
|  | * If the range is too large, release the kvm->mmu_lock | 
|  | * to prevent starvation and lockup detector warnings. | 
|  | */ | 
|  | if (next != end) | 
|  | cond_resched_lock(&kvm->mmu_lock); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd, | 
|  | phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, addr); | 
|  | do { | 
|  | if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte))) | 
|  | kvm_flush_dcache_pte(*pte); | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | } | 
|  |  | 
|  | static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud, | 
|  | phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | phys_addr_t next; | 
|  |  | 
|  | pmd = stage2_pmd_offset(kvm, pud, addr); | 
|  | do { | 
|  | next = stage2_pmd_addr_end(kvm, addr, end); | 
|  | if (!pmd_none(*pmd)) { | 
|  | if (pmd_thp_or_huge(*pmd)) | 
|  | kvm_flush_dcache_pmd(*pmd); | 
|  | else | 
|  | stage2_flush_ptes(kvm, pmd, addr, next); | 
|  | } | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd, | 
|  | phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | pud_t *pud; | 
|  | phys_addr_t next; | 
|  |  | 
|  | pud = stage2_pud_offset(kvm, pgd, addr); | 
|  | do { | 
|  | next = stage2_pud_addr_end(kvm, addr, end); | 
|  | if (!stage2_pud_none(kvm, *pud)) { | 
|  | if (stage2_pud_huge(kvm, *pud)) | 
|  | kvm_flush_dcache_pud(*pud); | 
|  | else | 
|  | stage2_flush_pmds(kvm, pud, addr, next); | 
|  | } | 
|  | } while (pud++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static void stage2_flush_memslot(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; | 
|  | phys_addr_t end = addr + PAGE_SIZE * memslot->npages; | 
|  | phys_addr_t next; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); | 
|  | do { | 
|  | next = stage2_pgd_addr_end(kvm, addr, end); | 
|  | if (!stage2_pgd_none(kvm, *pgd)) | 
|  | stage2_flush_puds(kvm, pgd, addr, next); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 | 
|  | * @kvm: The struct kvm pointer | 
|  | * | 
|  | * Go through the stage 2 page tables and invalidate any cache lines | 
|  | * backing memory already mapped to the VM. | 
|  | */ | 
|  | static void stage2_flush_vm(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *memslot; | 
|  | int idx; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | slots = kvm_memslots(kvm); | 
|  | kvm_for_each_memslot(memslot, slots) | 
|  | stage2_flush_memslot(kvm, memslot); | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | } | 
|  |  | 
|  | static void clear_hyp_pgd_entry(pgd_t *pgd) | 
|  | { | 
|  | pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL); | 
|  | pgd_clear(pgd); | 
|  | pud_free(NULL, pud_table); | 
|  | put_page(virt_to_page(pgd)); | 
|  | } | 
|  |  | 
|  | static void clear_hyp_pud_entry(pud_t *pud) | 
|  | { | 
|  | pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0); | 
|  | VM_BUG_ON(pud_huge(*pud)); | 
|  | pud_clear(pud); | 
|  | pmd_free(NULL, pmd_table); | 
|  | put_page(virt_to_page(pud)); | 
|  | } | 
|  |  | 
|  | static void clear_hyp_pmd_entry(pmd_t *pmd) | 
|  | { | 
|  | pte_t *pte_table = pte_offset_kernel(pmd, 0); | 
|  | VM_BUG_ON(pmd_thp_or_huge(*pmd)); | 
|  | pmd_clear(pmd); | 
|  | pte_free_kernel(NULL, pte_table); | 
|  | put_page(virt_to_page(pmd)); | 
|  | } | 
|  |  | 
|  | static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | pte_t *pte, *start_pte; | 
|  |  | 
|  | start_pte = pte = pte_offset_kernel(pmd, addr); | 
|  | do { | 
|  | if (!pte_none(*pte)) { | 
|  | kvm_set_pte(pte, __pte(0)); | 
|  | put_page(virt_to_page(pte)); | 
|  | } | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  |  | 
|  | if (hyp_pte_table_empty(start_pte)) | 
|  | clear_hyp_pmd_entry(pmd); | 
|  | } | 
|  |  | 
|  | static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | phys_addr_t next; | 
|  | pmd_t *pmd, *start_pmd; | 
|  |  | 
|  | start_pmd = pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | /* Hyp doesn't use huge pmds */ | 
|  | if (!pmd_none(*pmd)) | 
|  | unmap_hyp_ptes(pmd, addr, next); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | if (hyp_pmd_table_empty(start_pmd)) | 
|  | clear_hyp_pud_entry(pud); | 
|  | } | 
|  |  | 
|  | static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | phys_addr_t next; | 
|  | pud_t *pud, *start_pud; | 
|  |  | 
|  | start_pud = pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | /* Hyp doesn't use huge puds */ | 
|  | if (!pud_none(*pud)) | 
|  | unmap_hyp_pmds(pud, addr, next); | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | if (hyp_pud_table_empty(start_pud)) | 
|  | clear_hyp_pgd_entry(pgd); | 
|  | } | 
|  |  | 
|  | static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd) | 
|  | { | 
|  | return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1); | 
|  | } | 
|  |  | 
|  | static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd, | 
|  | phys_addr_t start, u64 size) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | phys_addr_t addr = start, end = start + size; | 
|  | phys_addr_t next; | 
|  |  | 
|  | /* | 
|  | * We don't unmap anything from HYP, except at the hyp tear down. | 
|  | * Hence, we don't have to invalidate the TLBs here. | 
|  | */ | 
|  | pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); | 
|  | do { | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (!pgd_none(*pgd)) | 
|  | unmap_hyp_puds(pgd, addr, next); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size) | 
|  | { | 
|  | __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size); | 
|  | } | 
|  |  | 
|  | static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size) | 
|  | { | 
|  | __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_hyp_pgds - free Hyp-mode page tables | 
|  | * | 
|  | * Assumes hyp_pgd is a page table used strictly in Hyp-mode and | 
|  | * therefore contains either mappings in the kernel memory area (above | 
|  | * PAGE_OFFSET), or device mappings in the idmap range. | 
|  | * | 
|  | * boot_hyp_pgd should only map the idmap range, and is only used in | 
|  | * the extended idmap case. | 
|  | */ | 
|  | void free_hyp_pgds(void) | 
|  | { | 
|  | pgd_t *id_pgd; | 
|  |  | 
|  | mutex_lock(&kvm_hyp_pgd_mutex); | 
|  |  | 
|  | id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd; | 
|  |  | 
|  | if (id_pgd) { | 
|  | /* In case we never called hyp_mmu_init() */ | 
|  | if (!io_map_base) | 
|  | io_map_base = hyp_idmap_start; | 
|  | unmap_hyp_idmap_range(id_pgd, io_map_base, | 
|  | hyp_idmap_start + PAGE_SIZE - io_map_base); | 
|  | } | 
|  |  | 
|  | if (boot_hyp_pgd) { | 
|  | free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order); | 
|  | boot_hyp_pgd = NULL; | 
|  | } | 
|  |  | 
|  | if (hyp_pgd) { | 
|  | unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET), | 
|  | (uintptr_t)high_memory - PAGE_OFFSET); | 
|  |  | 
|  | free_pages((unsigned long)hyp_pgd, hyp_pgd_order); | 
|  | hyp_pgd = NULL; | 
|  | } | 
|  | if (merged_hyp_pgd) { | 
|  | clear_page(merged_hyp_pgd); | 
|  | free_page((unsigned long)merged_hyp_pgd); | 
|  | merged_hyp_pgd = NULL; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&kvm_hyp_pgd_mutex); | 
|  | } | 
|  |  | 
|  | static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start, | 
|  | unsigned long end, unsigned long pfn, | 
|  | pgprot_t prot) | 
|  | { | 
|  | pte_t *pte; | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = start; | 
|  | do { | 
|  | pte = pte_offset_kernel(pmd, addr); | 
|  | kvm_set_pte(pte, kvm_pfn_pte(pfn, prot)); | 
|  | get_page(virt_to_page(pte)); | 
|  | pfn++; | 
|  | } while (addr += PAGE_SIZE, addr != end); | 
|  | } | 
|  |  | 
|  | static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start, | 
|  | unsigned long end, unsigned long pfn, | 
|  | pgprot_t prot) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | unsigned long addr, next; | 
|  |  | 
|  | addr = start; | 
|  | do { | 
|  | pmd = pmd_offset(pud, addr); | 
|  |  | 
|  | BUG_ON(pmd_sect(*pmd)); | 
|  |  | 
|  | if (pmd_none(*pmd)) { | 
|  | pte = pte_alloc_one_kernel(NULL); | 
|  | if (!pte) { | 
|  | kvm_err("Cannot allocate Hyp pte\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | kvm_pmd_populate(pmd, pte); | 
|  | get_page(virt_to_page(pmd)); | 
|  | } | 
|  |  | 
|  | next = pmd_addr_end(addr, end); | 
|  |  | 
|  | create_hyp_pte_mappings(pmd, addr, next, pfn, prot); | 
|  | pfn += (next - addr) >> PAGE_SHIFT; | 
|  | } while (addr = next, addr != end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start, | 
|  | unsigned long end, unsigned long pfn, | 
|  | pgprot_t prot) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | unsigned long addr, next; | 
|  | int ret; | 
|  |  | 
|  | addr = start; | 
|  | do { | 
|  | pud = pud_offset(pgd, addr); | 
|  |  | 
|  | if (pud_none_or_clear_bad(pud)) { | 
|  | pmd = pmd_alloc_one(NULL, addr); | 
|  | if (!pmd) { | 
|  | kvm_err("Cannot allocate Hyp pmd\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | kvm_pud_populate(pud, pmd); | 
|  | get_page(virt_to_page(pud)); | 
|  | } | 
|  |  | 
|  | next = pud_addr_end(addr, end); | 
|  | ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot); | 
|  | if (ret) | 
|  | return ret; | 
|  | pfn += (next - addr) >> PAGE_SHIFT; | 
|  | } while (addr = next, addr != end); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd, | 
|  | unsigned long start, unsigned long end, | 
|  | unsigned long pfn, pgprot_t prot) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | unsigned long addr, next; | 
|  | int err = 0; | 
|  |  | 
|  | mutex_lock(&kvm_hyp_pgd_mutex); | 
|  | addr = start & PAGE_MASK; | 
|  | end = PAGE_ALIGN(end); | 
|  | do { | 
|  | pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); | 
|  |  | 
|  | if (pgd_none(*pgd)) { | 
|  | pud = pud_alloc_one(NULL, addr); | 
|  | if (!pud) { | 
|  | kvm_err("Cannot allocate Hyp pud\n"); | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | kvm_pgd_populate(pgd, pud); | 
|  | get_page(virt_to_page(pgd)); | 
|  | } | 
|  |  | 
|  | next = pgd_addr_end(addr, end); | 
|  | err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot); | 
|  | if (err) | 
|  | goto out; | 
|  | pfn += (next - addr) >> PAGE_SHIFT; | 
|  | } while (addr = next, addr != end); | 
|  | out: | 
|  | mutex_unlock(&kvm_hyp_pgd_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static phys_addr_t kvm_kaddr_to_phys(void *kaddr) | 
|  | { | 
|  | if (!is_vmalloc_addr(kaddr)) { | 
|  | BUG_ON(!virt_addr_valid(kaddr)); | 
|  | return __pa(kaddr); | 
|  | } else { | 
|  | return page_to_phys(vmalloc_to_page(kaddr)) + | 
|  | offset_in_page(kaddr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode | 
|  | * @from:	The virtual kernel start address of the range | 
|  | * @to:		The virtual kernel end address of the range (exclusive) | 
|  | * @prot:	The protection to be applied to this range | 
|  | * | 
|  | * The same virtual address as the kernel virtual address is also used | 
|  | * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying | 
|  | * physical pages. | 
|  | */ | 
|  | int create_hyp_mappings(void *from, void *to, pgprot_t prot) | 
|  | { | 
|  | phys_addr_t phys_addr; | 
|  | unsigned long virt_addr; | 
|  | unsigned long start = kern_hyp_va((unsigned long)from); | 
|  | unsigned long end = kern_hyp_va((unsigned long)to); | 
|  |  | 
|  | if (is_kernel_in_hyp_mode()) | 
|  | return 0; | 
|  |  | 
|  | start = start & PAGE_MASK; | 
|  | end = PAGE_ALIGN(end); | 
|  |  | 
|  | for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { | 
|  | int err; | 
|  |  | 
|  | phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); | 
|  | err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD, | 
|  | virt_addr, virt_addr + PAGE_SIZE, | 
|  | __phys_to_pfn(phys_addr), | 
|  | prot); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, | 
|  | unsigned long *haddr, pgprot_t prot) | 
|  | { | 
|  | pgd_t *pgd = hyp_pgd; | 
|  | unsigned long base; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&kvm_hyp_pgd_mutex); | 
|  |  | 
|  | /* | 
|  | * This assumes that we we have enough space below the idmap | 
|  | * page to allocate our VAs. If not, the check below will | 
|  | * kick. A potential alternative would be to detect that | 
|  | * overflow and switch to an allocation above the idmap. | 
|  | * | 
|  | * The allocated size is always a multiple of PAGE_SIZE. | 
|  | */ | 
|  | size = PAGE_ALIGN(size + offset_in_page(phys_addr)); | 
|  | base = io_map_base - size; | 
|  |  | 
|  | /* | 
|  | * Verify that BIT(VA_BITS - 1) hasn't been flipped by | 
|  | * allocating the new area, as it would indicate we've | 
|  | * overflowed the idmap/IO address range. | 
|  | */ | 
|  | if ((base ^ io_map_base) & BIT(VA_BITS - 1)) | 
|  | ret = -ENOMEM; | 
|  | else | 
|  | io_map_base = base; | 
|  |  | 
|  | mutex_unlock(&kvm_hyp_pgd_mutex); | 
|  |  | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (__kvm_cpu_uses_extended_idmap()) | 
|  | pgd = boot_hyp_pgd; | 
|  |  | 
|  | ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), | 
|  | base, base + size, | 
|  | __phys_to_pfn(phys_addr), prot); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | *haddr = base + offset_in_page(phys_addr); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * create_hyp_io_mappings - Map IO into both kernel and HYP | 
|  | * @phys_addr:	The physical start address which gets mapped | 
|  | * @size:	Size of the region being mapped | 
|  | * @kaddr:	Kernel VA for this mapping | 
|  | * @haddr:	HYP VA for this mapping | 
|  | */ | 
|  | int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, | 
|  | void __iomem **kaddr, | 
|  | void __iomem **haddr) | 
|  | { | 
|  | unsigned long addr; | 
|  | int ret; | 
|  |  | 
|  | *kaddr = ioremap(phys_addr, size); | 
|  | if (!*kaddr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (is_kernel_in_hyp_mode()) { | 
|  | *haddr = *kaddr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = __create_hyp_private_mapping(phys_addr, size, | 
|  | &addr, PAGE_HYP_DEVICE); | 
|  | if (ret) { | 
|  | iounmap(*kaddr); | 
|  | *kaddr = NULL; | 
|  | *haddr = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | *haddr = (void __iomem *)addr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * create_hyp_exec_mappings - Map an executable range into HYP | 
|  | * @phys_addr:	The physical start address which gets mapped | 
|  | * @size:	Size of the region being mapped | 
|  | * @haddr:	HYP VA for this mapping | 
|  | */ | 
|  | int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, | 
|  | void **haddr) | 
|  | { | 
|  | unsigned long addr; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(is_kernel_in_hyp_mode()); | 
|  |  | 
|  | ret = __create_hyp_private_mapping(phys_addr, size, | 
|  | &addr, PAGE_HYP_EXEC); | 
|  | if (ret) { | 
|  | *haddr = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | *haddr = (void *)addr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation. | 
|  | * @kvm:	The KVM struct pointer for the VM. | 
|  | * | 
|  | * Allocates only the stage-2 HW PGD level table(s) of size defined by | 
|  | * stage2_pgd_size(kvm). | 
|  | * | 
|  | * Note we don't need locking here as this is only called when the VM is | 
|  | * created, which can only be done once. | 
|  | */ | 
|  | int kvm_alloc_stage2_pgd(struct kvm *kvm) | 
|  | { | 
|  | phys_addr_t pgd_phys; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | if (kvm->arch.pgd != NULL) { | 
|  | kvm_err("kvm_arch already initialized?\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Allocate the HW PGD, making sure that each page gets its own refcount */ | 
|  | pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO); | 
|  | if (!pgd) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pgd_phys = virt_to_phys(pgd); | 
|  | if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm))) | 
|  | return -EINVAL; | 
|  |  | 
|  | kvm->arch.pgd = pgd; | 
|  | kvm->arch.pgd_phys = pgd_phys; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void stage2_unmap_memslot(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | hva_t hva = memslot->userspace_addr; | 
|  | phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; | 
|  | phys_addr_t size = PAGE_SIZE * memslot->npages; | 
|  | hva_t reg_end = hva + size; | 
|  |  | 
|  | /* | 
|  | * A memory region could potentially cover multiple VMAs, and any holes | 
|  | * between them, so iterate over all of them to find out if we should | 
|  | * unmap any of them. | 
|  | * | 
|  | *     +--------------------------------------------+ | 
|  | * +---------------+----------------+   +----------------+ | 
|  | * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    | | 
|  | * +---------------+----------------+   +----------------+ | 
|  | *     |               memory region                | | 
|  | *     +--------------------------------------------+ | 
|  | */ | 
|  | do { | 
|  | struct vm_area_struct *vma = find_vma(current->mm, hva); | 
|  | hva_t vm_start, vm_end; | 
|  |  | 
|  | if (!vma || vma->vm_start >= reg_end) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Take the intersection of this VMA with the memory region | 
|  | */ | 
|  | vm_start = max(hva, vma->vm_start); | 
|  | vm_end = min(reg_end, vma->vm_end); | 
|  |  | 
|  | if (!(vma->vm_flags & VM_PFNMAP)) { | 
|  | gpa_t gpa = addr + (vm_start - memslot->userspace_addr); | 
|  | unmap_stage2_range(kvm, gpa, vm_end - vm_start); | 
|  | } | 
|  | hva = vm_end; | 
|  | } while (hva < reg_end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * stage2_unmap_vm - Unmap Stage-2 RAM mappings | 
|  | * @kvm: The struct kvm pointer | 
|  | * | 
|  | * Go through the memregions and unmap any reguler RAM | 
|  | * backing memory already mapped to the VM. | 
|  | */ | 
|  | void stage2_unmap_vm(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *memslot; | 
|  | int idx; | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->srcu); | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | spin_lock(&kvm->mmu_lock); | 
|  |  | 
|  | slots = kvm_memslots(kvm); | 
|  | kvm_for_each_memslot(memslot, slots) | 
|  | stage2_unmap_memslot(kvm, memslot); | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | srcu_read_unlock(&kvm->srcu, idx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_free_stage2_pgd - free all stage-2 tables | 
|  | * @kvm:	The KVM struct pointer for the VM. | 
|  | * | 
|  | * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all | 
|  | * underlying level-2 and level-3 tables before freeing the actual level-1 table | 
|  | * and setting the struct pointer to NULL. | 
|  | */ | 
|  | void kvm_free_stage2_pgd(struct kvm *kvm) | 
|  | { | 
|  | void *pgd = NULL; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | if (kvm->arch.pgd) { | 
|  | unmap_stage2_range(kvm, 0, kvm_phys_size(kvm)); | 
|  | pgd = READ_ONCE(kvm->arch.pgd); | 
|  | kvm->arch.pgd = NULL; | 
|  | kvm->arch.pgd_phys = 0; | 
|  | } | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | /* Free the HW pgd, one page at a time */ | 
|  | if (pgd) | 
|  | free_pages_exact(pgd, stage2_pgd_size(kvm)); | 
|  | } | 
|  |  | 
|  | static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, | 
|  | phys_addr_t addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  |  | 
|  | pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); | 
|  | if (stage2_pgd_none(kvm, *pgd)) { | 
|  | if (!cache) | 
|  | return NULL; | 
|  | pud = mmu_memory_cache_alloc(cache); | 
|  | stage2_pgd_populate(kvm, pgd, pud); | 
|  | get_page(virt_to_page(pgd)); | 
|  | } | 
|  |  | 
|  | return stage2_pud_offset(kvm, pgd, addr); | 
|  | } | 
|  |  | 
|  | static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, | 
|  | phys_addr_t addr) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pud = stage2_get_pud(kvm, cache, addr); | 
|  | if (!pud || stage2_pud_huge(kvm, *pud)) | 
|  | return NULL; | 
|  |  | 
|  | if (stage2_pud_none(kvm, *pud)) { | 
|  | if (!cache) | 
|  | return NULL; | 
|  | pmd = mmu_memory_cache_alloc(cache); | 
|  | stage2_pud_populate(kvm, pud, pmd); | 
|  | get_page(virt_to_page(pud)); | 
|  | } | 
|  |  | 
|  | return stage2_pmd_offset(kvm, pud, addr); | 
|  | } | 
|  |  | 
|  | static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache | 
|  | *cache, phys_addr_t addr, const pmd_t *new_pmd) | 
|  | { | 
|  | pmd_t *pmd, old_pmd; | 
|  |  | 
|  | retry: | 
|  | pmd = stage2_get_pmd(kvm, cache, addr); | 
|  | VM_BUG_ON(!pmd); | 
|  |  | 
|  | old_pmd = *pmd; | 
|  | /* | 
|  | * Multiple vcpus faulting on the same PMD entry, can | 
|  | * lead to them sequentially updating the PMD with the | 
|  | * same value. Following the break-before-make | 
|  | * (pmd_clear() followed by tlb_flush()) process can | 
|  | * hinder forward progress due to refaults generated | 
|  | * on missing translations. | 
|  | * | 
|  | * Skip updating the page table if the entry is | 
|  | * unchanged. | 
|  | */ | 
|  | if (pmd_val(old_pmd) == pmd_val(*new_pmd)) | 
|  | return 0; | 
|  |  | 
|  | if (pmd_present(old_pmd)) { | 
|  | /* | 
|  | * If we already have PTE level mapping for this block, | 
|  | * we must unmap it to avoid inconsistent TLB state and | 
|  | * leaking the table page. We could end up in this situation | 
|  | * if the memory slot was marked for dirty logging and was | 
|  | * reverted, leaving PTE level mappings for the pages accessed | 
|  | * during the period. So, unmap the PTE level mapping for this | 
|  | * block and retry, as we could have released the upper level | 
|  | * table in the process. | 
|  | * | 
|  | * Normal THP split/merge follows mmu_notifier callbacks and do | 
|  | * get handled accordingly. | 
|  | */ | 
|  | if (!pmd_thp_or_huge(old_pmd)) { | 
|  | unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE); | 
|  | goto retry; | 
|  | } | 
|  | /* | 
|  | * Mapping in huge pages should only happen through a | 
|  | * fault.  If a page is merged into a transparent huge | 
|  | * page, the individual subpages of that huge page | 
|  | * should be unmapped through MMU notifiers before we | 
|  | * get here. | 
|  | * | 
|  | * Merging of CompoundPages is not supported; they | 
|  | * should become splitting first, unmapped, merged, | 
|  | * and mapped back in on-demand. | 
|  | */ | 
|  | WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd)); | 
|  | pmd_clear(pmd); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  | } else { | 
|  | get_page(virt_to_page(pmd)); | 
|  | } | 
|  |  | 
|  | kvm_set_pmd(pmd, *new_pmd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, | 
|  | phys_addr_t addr, const pud_t *new_pudp) | 
|  | { | 
|  | pud_t *pudp, old_pud; | 
|  |  | 
|  | retry: | 
|  | pudp = stage2_get_pud(kvm, cache, addr); | 
|  | VM_BUG_ON(!pudp); | 
|  |  | 
|  | old_pud = *pudp; | 
|  |  | 
|  | /* | 
|  | * A large number of vcpus faulting on the same stage 2 entry, | 
|  | * can lead to a refault due to the stage2_pud_clear()/tlb_flush(). | 
|  | * Skip updating the page tables if there is no change. | 
|  | */ | 
|  | if (pud_val(old_pud) == pud_val(*new_pudp)) | 
|  | return 0; | 
|  |  | 
|  | if (stage2_pud_present(kvm, old_pud)) { | 
|  | /* | 
|  | * If we already have table level mapping for this block, unmap | 
|  | * the range for this block and retry. | 
|  | */ | 
|  | if (!stage2_pud_huge(kvm, old_pud)) { | 
|  | unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp)); | 
|  | stage2_pud_clear(kvm, pudp); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  | } else { | 
|  | get_page(virt_to_page(pudp)); | 
|  | } | 
|  |  | 
|  | kvm_set_pud(pudp, *new_pudp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * stage2_get_leaf_entry - walk the stage2 VM page tables and return | 
|  | * true if a valid and present leaf-entry is found. A pointer to the | 
|  | * leaf-entry is returned in the appropriate level variable - pudpp, | 
|  | * pmdpp, ptepp. | 
|  | */ | 
|  | static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr, | 
|  | pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp) | 
|  | { | 
|  | pud_t *pudp; | 
|  | pmd_t *pmdp; | 
|  | pte_t *ptep; | 
|  |  | 
|  | *pudpp = NULL; | 
|  | *pmdpp = NULL; | 
|  | *ptepp = NULL; | 
|  |  | 
|  | pudp = stage2_get_pud(kvm, NULL, addr); | 
|  | if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp)) | 
|  | return false; | 
|  |  | 
|  | if (stage2_pud_huge(kvm, *pudp)) { | 
|  | *pudpp = pudp; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | pmdp = stage2_pmd_offset(kvm, pudp, addr); | 
|  | if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp)) | 
|  | return false; | 
|  |  | 
|  | if (pmd_thp_or_huge(*pmdp)) { | 
|  | *pmdpp = pmdp; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ptep = pte_offset_kernel(pmdp, addr); | 
|  | if (!ptep || pte_none(*ptep) || !pte_present(*ptep)) | 
|  | return false; | 
|  |  | 
|  | *ptepp = ptep; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr) | 
|  | { | 
|  | pud_t *pudp; | 
|  | pmd_t *pmdp; | 
|  | pte_t *ptep; | 
|  | bool found; | 
|  |  | 
|  | found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep); | 
|  | if (!found) | 
|  | return false; | 
|  |  | 
|  | if (pudp) | 
|  | return kvm_s2pud_exec(pudp); | 
|  | else if (pmdp) | 
|  | return kvm_s2pmd_exec(pmdp); | 
|  | else | 
|  | return kvm_s2pte_exec(ptep); | 
|  | } | 
|  |  | 
|  | static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, | 
|  | phys_addr_t addr, const pte_t *new_pte, | 
|  | unsigned long flags) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte, old_pte; | 
|  | bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP; | 
|  | bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE; | 
|  |  | 
|  | VM_BUG_ON(logging_active && !cache); | 
|  |  | 
|  | /* Create stage-2 page table mapping - Levels 0 and 1 */ | 
|  | pud = stage2_get_pud(kvm, cache, addr); | 
|  | if (!pud) { | 
|  | /* | 
|  | * Ignore calls from kvm_set_spte_hva for unallocated | 
|  | * address ranges. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While dirty page logging - dissolve huge PUD, then continue | 
|  | * on to allocate page. | 
|  | */ | 
|  | if (logging_active) | 
|  | stage2_dissolve_pud(kvm, addr, pud); | 
|  |  | 
|  | if (stage2_pud_none(kvm, *pud)) { | 
|  | if (!cache) | 
|  | return 0; /* ignore calls from kvm_set_spte_hva */ | 
|  | pmd = mmu_memory_cache_alloc(cache); | 
|  | stage2_pud_populate(kvm, pud, pmd); | 
|  | get_page(virt_to_page(pud)); | 
|  | } | 
|  |  | 
|  | pmd = stage2_pmd_offset(kvm, pud, addr); | 
|  | if (!pmd) { | 
|  | /* | 
|  | * Ignore calls from kvm_set_spte_hva for unallocated | 
|  | * address ranges. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While dirty page logging - dissolve huge PMD, then continue on to | 
|  | * allocate page. | 
|  | */ | 
|  | if (logging_active) | 
|  | stage2_dissolve_pmd(kvm, addr, pmd); | 
|  |  | 
|  | /* Create stage-2 page mappings - Level 2 */ | 
|  | if (pmd_none(*pmd)) { | 
|  | if (!cache) | 
|  | return 0; /* ignore calls from kvm_set_spte_hva */ | 
|  | pte = mmu_memory_cache_alloc(cache); | 
|  | kvm_pmd_populate(pmd, pte); | 
|  | get_page(virt_to_page(pmd)); | 
|  | } | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, addr); | 
|  |  | 
|  | if (iomap && pte_present(*pte)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Create 2nd stage page table mapping - Level 3 */ | 
|  | old_pte = *pte; | 
|  | if (pte_present(old_pte)) { | 
|  | /* Skip page table update if there is no change */ | 
|  | if (pte_val(old_pte) == pte_val(*new_pte)) | 
|  | return 0; | 
|  |  | 
|  | kvm_set_pte(pte, __pte(0)); | 
|  | kvm_tlb_flush_vmid_ipa(kvm, addr); | 
|  | } else { | 
|  | get_page(virt_to_page(pte)); | 
|  | } | 
|  |  | 
|  | kvm_set_pte(pte, *new_pte); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
|  | static int stage2_ptep_test_and_clear_young(pte_t *pte) | 
|  | { | 
|  | if (pte_young(*pte)) { | 
|  | *pte = pte_mkold(*pte); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static int stage2_ptep_test_and_clear_young(pte_t *pte) | 
|  | { | 
|  | return __ptep_test_and_clear_young(pte); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int stage2_pmdp_test_and_clear_young(pmd_t *pmd) | 
|  | { | 
|  | return stage2_ptep_test_and_clear_young((pte_t *)pmd); | 
|  | } | 
|  |  | 
|  | static int stage2_pudp_test_and_clear_young(pud_t *pud) | 
|  | { | 
|  | return stage2_ptep_test_and_clear_young((pte_t *)pud); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_phys_addr_ioremap - map a device range to guest IPA | 
|  | * | 
|  | * @kvm:	The KVM pointer | 
|  | * @guest_ipa:	The IPA at which to insert the mapping | 
|  | * @pa:		The physical address of the device | 
|  | * @size:	The size of the mapping | 
|  | */ | 
|  | int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, | 
|  | phys_addr_t pa, unsigned long size, bool writable) | 
|  | { | 
|  | phys_addr_t addr, end; | 
|  | int ret = 0; | 
|  | unsigned long pfn; | 
|  | struct kvm_mmu_memory_cache cache = { 0, }; | 
|  |  | 
|  | end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK; | 
|  | pfn = __phys_to_pfn(pa); | 
|  |  | 
|  | for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) { | 
|  | pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE); | 
|  |  | 
|  | if (writable) | 
|  | pte = kvm_s2pte_mkwrite(pte); | 
|  |  | 
|  | ret = mmu_topup_memory_cache(&cache, | 
|  | kvm_mmu_cache_min_pages(kvm), | 
|  | KVM_NR_MEM_OBJS); | 
|  | if (ret) | 
|  | goto out; | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | ret = stage2_set_pte(kvm, &cache, addr, &pte, | 
|  | KVM_S2PTE_FLAG_IS_IOMAP); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | pfn++; | 
|  | } | 
|  |  | 
|  | out: | 
|  | mmu_free_memory_cache(&cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap) | 
|  | { | 
|  | kvm_pfn_t pfn = *pfnp; | 
|  | gfn_t gfn = *ipap >> PAGE_SHIFT; | 
|  |  | 
|  | if (kvm_is_transparent_hugepage(pfn)) { | 
|  | unsigned long mask; | 
|  | /* | 
|  | * The address we faulted on is backed by a transparent huge | 
|  | * page.  However, because we map the compound huge page and | 
|  | * not the individual tail page, we need to transfer the | 
|  | * refcount to the head page.  We have to be careful that the | 
|  | * THP doesn't start to split while we are adjusting the | 
|  | * refcounts. | 
|  | * | 
|  | * We are sure this doesn't happen, because mmu_notifier_retry | 
|  | * was successful and we are holding the mmu_lock, so if this | 
|  | * THP is trying to split, it will be blocked in the mmu | 
|  | * notifier before touching any of the pages, specifically | 
|  | * before being able to call __split_huge_page_refcount(). | 
|  | * | 
|  | * We can therefore safely transfer the refcount from PG_tail | 
|  | * to PG_head and switch the pfn from a tail page to the head | 
|  | * page accordingly. | 
|  | */ | 
|  | mask = PTRS_PER_PMD - 1; | 
|  | VM_BUG_ON((gfn & mask) != (pfn & mask)); | 
|  | if (pfn & mask) { | 
|  | *ipap &= PMD_MASK; | 
|  | kvm_release_pfn_clean(pfn); | 
|  | pfn &= ~mask; | 
|  | kvm_get_pfn(pfn); | 
|  | *pfnp = pfn; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * stage2_wp_ptes - write protect PMD range | 
|  | * @pmd:	pointer to pmd entry | 
|  | * @addr:	range start address | 
|  | * @end:	range end address | 
|  | */ | 
|  | static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | pte_t *pte; | 
|  |  | 
|  | pte = pte_offset_kernel(pmd, addr); | 
|  | do { | 
|  | if (!pte_none(*pte)) { | 
|  | if (!kvm_s2pte_readonly(pte)) | 
|  | kvm_set_s2pte_readonly(pte); | 
|  | } | 
|  | } while (pte++, addr += PAGE_SIZE, addr != end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * stage2_wp_pmds - write protect PUD range | 
|  | * kvm:		kvm instance for the VM | 
|  | * @pud:	pointer to pud entry | 
|  | * @addr:	range start address | 
|  | * @end:	range end address | 
|  | */ | 
|  | static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud, | 
|  | phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | phys_addr_t next; | 
|  |  | 
|  | pmd = stage2_pmd_offset(kvm, pud, addr); | 
|  |  | 
|  | do { | 
|  | next = stage2_pmd_addr_end(kvm, addr, end); | 
|  | if (!pmd_none(*pmd)) { | 
|  | if (pmd_thp_or_huge(*pmd)) { | 
|  | if (!kvm_s2pmd_readonly(pmd)) | 
|  | kvm_set_s2pmd_readonly(pmd); | 
|  | } else { | 
|  | stage2_wp_ptes(pmd, addr, next); | 
|  | } | 
|  | } | 
|  | } while (pmd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * stage2_wp_puds - write protect PGD range | 
|  | * @pgd:	pointer to pgd entry | 
|  | * @addr:	range start address | 
|  | * @end:	range end address | 
|  | */ | 
|  | static void  stage2_wp_puds(struct kvm *kvm, pgd_t *pgd, | 
|  | phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | pud_t *pud; | 
|  | phys_addr_t next; | 
|  |  | 
|  | pud = stage2_pud_offset(kvm, pgd, addr); | 
|  | do { | 
|  | next = stage2_pud_addr_end(kvm, addr, end); | 
|  | if (!stage2_pud_none(kvm, *pud)) { | 
|  | if (stage2_pud_huge(kvm, *pud)) { | 
|  | if (!kvm_s2pud_readonly(pud)) | 
|  | kvm_set_s2pud_readonly(pud); | 
|  | } else { | 
|  | stage2_wp_pmds(kvm, pud, addr, next); | 
|  | } | 
|  | } | 
|  | } while (pud++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * stage2_wp_range() - write protect stage2 memory region range | 
|  | * @kvm:	The KVM pointer | 
|  | * @addr:	Start address of range | 
|  | * @end:	End address of range | 
|  | */ | 
|  | static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | phys_addr_t next; | 
|  |  | 
|  | pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); | 
|  | do { | 
|  | /* | 
|  | * Release kvm_mmu_lock periodically if the memory region is | 
|  | * large. Otherwise, we may see kernel panics with | 
|  | * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR, | 
|  | * CONFIG_LOCKDEP. Additionally, holding the lock too long | 
|  | * will also starve other vCPUs. We have to also make sure | 
|  | * that the page tables are not freed while we released | 
|  | * the lock. | 
|  | */ | 
|  | cond_resched_lock(&kvm->mmu_lock); | 
|  | if (!READ_ONCE(kvm->arch.pgd)) | 
|  | break; | 
|  | next = stage2_pgd_addr_end(kvm, addr, end); | 
|  | if (stage2_pgd_present(kvm, *pgd)) | 
|  | stage2_wp_puds(kvm, pgd, addr, next); | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot | 
|  | * @kvm:	The KVM pointer | 
|  | * @slot:	The memory slot to write protect | 
|  | * | 
|  | * Called to start logging dirty pages after memory region | 
|  | * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns | 
|  | * all present PUD, PMD and PTEs are write protected in the memory region. | 
|  | * Afterwards read of dirty page log can be called. | 
|  | * | 
|  | * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, | 
|  | * serializing operations for VM memory regions. | 
|  | */ | 
|  | void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) | 
|  | { | 
|  | struct kvm_memslots *slots = kvm_memslots(kvm); | 
|  | struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); | 
|  | phys_addr_t start = memslot->base_gfn << PAGE_SHIFT; | 
|  | phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | stage2_wp_range(kvm, start, end); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | kvm_flush_remote_tlbs(kvm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_mmu_write_protect_pt_masked() - write protect dirty pages | 
|  | * @kvm:	The KVM pointer | 
|  | * @slot:	The memory slot associated with mask | 
|  | * @gfn_offset:	The gfn offset in memory slot | 
|  | * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory | 
|  | *		slot to be write protected | 
|  | * | 
|  | * Walks bits set in mask write protects the associated pte's. Caller must | 
|  | * acquire kvm_mmu_lock. | 
|  | */ | 
|  | static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn_offset, unsigned long mask) | 
|  | { | 
|  | phys_addr_t base_gfn = slot->base_gfn + gfn_offset; | 
|  | phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT; | 
|  | phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; | 
|  |  | 
|  | stage2_wp_range(kvm, start, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected | 
|  | * dirty pages. | 
|  | * | 
|  | * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to | 
|  | * enable dirty logging for them. | 
|  | */ | 
|  | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot, | 
|  | gfn_t gfn_offset, unsigned long mask) | 
|  | { | 
|  | kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); | 
|  | } | 
|  |  | 
|  | static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) | 
|  | { | 
|  | __clean_dcache_guest_page(pfn, size); | 
|  | } | 
|  |  | 
|  | static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) | 
|  | { | 
|  | __invalidate_icache_guest_page(pfn, size); | 
|  | } | 
|  |  | 
|  | static void kvm_send_hwpoison_signal(unsigned long address, short lsb) | 
|  | { | 
|  | send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); | 
|  | } | 
|  |  | 
|  | static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, | 
|  | unsigned long hva, | 
|  | unsigned long map_size) | 
|  | { | 
|  | gpa_t gpa_start; | 
|  | hva_t uaddr_start, uaddr_end; | 
|  | size_t size; | 
|  |  | 
|  | size = memslot->npages * PAGE_SIZE; | 
|  |  | 
|  | gpa_start = memslot->base_gfn << PAGE_SHIFT; | 
|  |  | 
|  | uaddr_start = memslot->userspace_addr; | 
|  | uaddr_end = uaddr_start + size; | 
|  |  | 
|  | /* | 
|  | * Pages belonging to memslots that don't have the same alignment | 
|  | * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 | 
|  | * PMD/PUD entries, because we'll end up mapping the wrong pages. | 
|  | * | 
|  | * Consider a layout like the following: | 
|  | * | 
|  | *    memslot->userspace_addr: | 
|  | *    +-----+--------------------+--------------------+---+ | 
|  | *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz| | 
|  | *    +-----+--------------------+--------------------+---+ | 
|  | * | 
|  | *    memslot->base_gfn << PAGE_SIZE: | 
|  | *      +---+--------------------+--------------------+-----+ | 
|  | *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz| | 
|  | *      +---+--------------------+--------------------+-----+ | 
|  | * | 
|  | * If we create those stage-2 blocks, we'll end up with this incorrect | 
|  | * mapping: | 
|  | *   d -> f | 
|  | *   e -> g | 
|  | *   f -> h | 
|  | */ | 
|  | if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Next, let's make sure we're not trying to map anything not covered | 
|  | * by the memslot. This means we have to prohibit block size mappings | 
|  | * for the beginning and end of a non-block aligned and non-block sized | 
|  | * memory slot (illustrated by the head and tail parts of the | 
|  | * userspace view above containing pages 'abcde' and 'xyz', | 
|  | * respectively). | 
|  | * | 
|  | * Note that it doesn't matter if we do the check using the | 
|  | * userspace_addr or the base_gfn, as both are equally aligned (per | 
|  | * the check above) and equally sized. | 
|  | */ | 
|  | return (hva & ~(map_size - 1)) >= uaddr_start && | 
|  | (hva & ~(map_size - 1)) + map_size <= uaddr_end; | 
|  | } | 
|  |  | 
|  | static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, | 
|  | struct kvm_memory_slot *memslot, unsigned long hva, | 
|  | unsigned long fault_status) | 
|  | { | 
|  | int ret; | 
|  | bool write_fault, writable, force_pte = false; | 
|  | bool exec_fault, needs_exec; | 
|  | unsigned long mmu_seq; | 
|  | gfn_t gfn = fault_ipa >> PAGE_SHIFT; | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; | 
|  | struct vm_area_struct *vma; | 
|  | short vma_shift; | 
|  | kvm_pfn_t pfn; | 
|  | pgprot_t mem_type = PAGE_S2; | 
|  | bool logging_active = memslot_is_logging(memslot); | 
|  | unsigned long vma_pagesize, flags = 0; | 
|  |  | 
|  | write_fault = kvm_is_write_fault(vcpu); | 
|  | exec_fault = kvm_vcpu_trap_is_iabt(vcpu); | 
|  | VM_BUG_ON(write_fault && exec_fault); | 
|  |  | 
|  | if (fault_status == FSC_PERM && !write_fault && !exec_fault) { | 
|  | kvm_err("Unexpected L2 read permission error\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* Let's check if we will get back a huge page backed by hugetlbfs */ | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | vma = find_vma_intersection(current->mm, hva, hva + 1); | 
|  | if (unlikely(!vma)) { | 
|  | kvm_err("Failed to find VMA for hva 0x%lx\n", hva); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma)) | 
|  | vma_shift = huge_page_shift(hstate_vma(vma)); | 
|  | else | 
|  | vma_shift = PAGE_SHIFT; | 
|  |  | 
|  | vma_pagesize = 1ULL << vma_shift; | 
|  | if (logging_active || | 
|  | (vma->vm_flags & VM_PFNMAP) || | 
|  | !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) { | 
|  | force_pte = true; | 
|  | vma_pagesize = PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The stage2 has a minimum of 2 level table (For arm64 see | 
|  | * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can | 
|  | * use PMD_SIZE huge mappings (even when the PMD is folded into PGD). | 
|  | * As for PUD huge maps, we must make sure that we have at least | 
|  | * 3 levels, i.e, PMD is not folded. | 
|  | */ | 
|  | if (vma_pagesize == PMD_SIZE || | 
|  | (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm))) | 
|  | gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT; | 
|  | up_read(¤t->mm->mmap_sem); | 
|  |  | 
|  | /* We need minimum second+third level pages */ | 
|  | ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm), | 
|  | KVM_NR_MEM_OBJS); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mmu_seq = vcpu->kvm->mmu_notifier_seq; | 
|  | /* | 
|  | * Ensure the read of mmu_notifier_seq happens before we call | 
|  | * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk | 
|  | * the page we just got a reference to gets unmapped before we have a | 
|  | * chance to grab the mmu_lock, which ensure that if the page gets | 
|  | * unmapped afterwards, the call to kvm_unmap_hva will take it away | 
|  | * from us again properly. This smp_rmb() interacts with the smp_wmb() | 
|  | * in kvm_mmu_notifier_invalidate_<page|range_end>. | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); | 
|  | if (pfn == KVM_PFN_ERR_HWPOISON) { | 
|  | kvm_send_hwpoison_signal(hva, vma_shift); | 
|  | return 0; | 
|  | } | 
|  | if (is_error_noslot_pfn(pfn)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (kvm_is_device_pfn(pfn)) { | 
|  | mem_type = PAGE_S2_DEVICE; | 
|  | flags |= KVM_S2PTE_FLAG_IS_IOMAP; | 
|  | } else if (logging_active) { | 
|  | /* | 
|  | * Faults on pages in a memslot with logging enabled | 
|  | * should not be mapped with huge pages (it introduces churn | 
|  | * and performance degradation), so force a pte mapping. | 
|  | */ | 
|  | flags |= KVM_S2_FLAG_LOGGING_ACTIVE; | 
|  |  | 
|  | /* | 
|  | * Only actually map the page as writable if this was a write | 
|  | * fault. | 
|  | */ | 
|  | if (!write_fault) | 
|  | writable = false; | 
|  | } | 
|  |  | 
|  | if (exec_fault && is_iomap(flags)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | if (mmu_notifier_retry(kvm, mmu_seq)) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (vma_pagesize == PAGE_SIZE && !force_pte) { | 
|  | /* | 
|  | * Only PMD_SIZE transparent hugepages(THP) are | 
|  | * currently supported. This code will need to be | 
|  | * updated to support other THP sizes. | 
|  | * | 
|  | * Make sure the host VA and the guest IPA are sufficiently | 
|  | * aligned and that the block is contained within the memslot. | 
|  | */ | 
|  | if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) && | 
|  | transparent_hugepage_adjust(&pfn, &fault_ipa)) | 
|  | vma_pagesize = PMD_SIZE; | 
|  | } | 
|  |  | 
|  | if (writable) | 
|  | kvm_set_pfn_dirty(pfn); | 
|  |  | 
|  | if (fault_status != FSC_PERM && !is_iomap(flags)) | 
|  | clean_dcache_guest_page(pfn, vma_pagesize); | 
|  |  | 
|  | if (exec_fault) | 
|  | invalidate_icache_guest_page(pfn, vma_pagesize); | 
|  |  | 
|  | /* | 
|  | * If we took an execution fault we have made the | 
|  | * icache/dcache coherent above and should now let the s2 | 
|  | * mapping be executable. | 
|  | * | 
|  | * Write faults (!exec_fault && FSC_PERM) are orthogonal to | 
|  | * execute permissions, and we preserve whatever we have. | 
|  | */ | 
|  | needs_exec = exec_fault || | 
|  | (fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa)); | 
|  |  | 
|  | if (vma_pagesize == PUD_SIZE) { | 
|  | pud_t new_pud = kvm_pfn_pud(pfn, mem_type); | 
|  |  | 
|  | new_pud = kvm_pud_mkhuge(new_pud); | 
|  | if (writable) | 
|  | new_pud = kvm_s2pud_mkwrite(new_pud); | 
|  |  | 
|  | if (needs_exec) | 
|  | new_pud = kvm_s2pud_mkexec(new_pud); | 
|  |  | 
|  | ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud); | 
|  | } else if (vma_pagesize == PMD_SIZE) { | 
|  | pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type); | 
|  |  | 
|  | new_pmd = kvm_pmd_mkhuge(new_pmd); | 
|  |  | 
|  | if (writable) | 
|  | new_pmd = kvm_s2pmd_mkwrite(new_pmd); | 
|  |  | 
|  | if (needs_exec) | 
|  | new_pmd = kvm_s2pmd_mkexec(new_pmd); | 
|  |  | 
|  | ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd); | 
|  | } else { | 
|  | pte_t new_pte = kvm_pfn_pte(pfn, mem_type); | 
|  |  | 
|  | if (writable) { | 
|  | new_pte = kvm_s2pte_mkwrite(new_pte); | 
|  | mark_page_dirty(kvm, gfn); | 
|  | } | 
|  |  | 
|  | if (needs_exec) | 
|  | new_pte = kvm_s2pte_mkexec(new_pte); | 
|  |  | 
|  | ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | kvm_set_pfn_accessed(pfn); | 
|  | kvm_release_pfn_clean(pfn); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Resolve the access fault by making the page young again. | 
|  | * Note that because the faulting entry is guaranteed not to be | 
|  | * cached in the TLB, we don't need to invalidate anything. | 
|  | * Only the HW Access Flag updates are supported for Stage 2 (no DBM), | 
|  | * so there is no need for atomic (pte|pmd)_mkyoung operations. | 
|  | */ | 
|  | static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | kvm_pfn_t pfn; | 
|  | bool pfn_valid = false; | 
|  |  | 
|  | trace_kvm_access_fault(fault_ipa); | 
|  |  | 
|  | spin_lock(&vcpu->kvm->mmu_lock); | 
|  |  | 
|  | if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte)) | 
|  | goto out; | 
|  |  | 
|  | if (pud) {		/* HugeTLB */ | 
|  | *pud = kvm_s2pud_mkyoung(*pud); | 
|  | pfn = kvm_pud_pfn(*pud); | 
|  | pfn_valid = true; | 
|  | } else	if (pmd) {	/* THP, HugeTLB */ | 
|  | *pmd = pmd_mkyoung(*pmd); | 
|  | pfn = pmd_pfn(*pmd); | 
|  | pfn_valid = true; | 
|  | } else { | 
|  | *pte = pte_mkyoung(*pte);	/* Just a page... */ | 
|  | pfn = pte_pfn(*pte); | 
|  | pfn_valid = true; | 
|  | } | 
|  |  | 
|  | out: | 
|  | spin_unlock(&vcpu->kvm->mmu_lock); | 
|  | if (pfn_valid) | 
|  | kvm_set_pfn_accessed(pfn); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_handle_guest_abort - handles all 2nd stage aborts | 
|  | * @vcpu:	the VCPU pointer | 
|  | * @run:	the kvm_run structure | 
|  | * | 
|  | * Any abort that gets to the host is almost guaranteed to be caused by a | 
|  | * missing second stage translation table entry, which can mean that either the | 
|  | * guest simply needs more memory and we must allocate an appropriate page or it | 
|  | * can mean that the guest tried to access I/O memory, which is emulated by user | 
|  | * space. The distinction is based on the IPA causing the fault and whether this | 
|  | * memory region has been registered as standard RAM by user space. | 
|  | */ | 
|  | int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run) | 
|  | { | 
|  | unsigned long fault_status; | 
|  | phys_addr_t fault_ipa; | 
|  | struct kvm_memory_slot *memslot; | 
|  | unsigned long hva; | 
|  | bool is_iabt, write_fault, writable; | 
|  | gfn_t gfn; | 
|  | int ret, idx; | 
|  |  | 
|  | fault_status = kvm_vcpu_trap_get_fault_type(vcpu); | 
|  |  | 
|  | fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); | 
|  | is_iabt = kvm_vcpu_trap_is_iabt(vcpu); | 
|  |  | 
|  | /* Synchronous External Abort? */ | 
|  | if (kvm_vcpu_dabt_isextabt(vcpu)) { | 
|  | /* | 
|  | * For RAS the host kernel may handle this abort. | 
|  | * There is no need to pass the error into the guest. | 
|  | */ | 
|  | if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu))) | 
|  | return 1; | 
|  |  | 
|  | if (unlikely(!is_iabt)) { | 
|  | kvm_inject_vabt(vcpu); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu), | 
|  | kvm_vcpu_get_hfar(vcpu), fault_ipa); | 
|  |  | 
|  | /* Check the stage-2 fault is trans. fault or write fault */ | 
|  | if (fault_status != FSC_FAULT && fault_status != FSC_PERM && | 
|  | fault_status != FSC_ACCESS) { | 
|  | kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", | 
|  | kvm_vcpu_trap_get_class(vcpu), | 
|  | (unsigned long)kvm_vcpu_trap_get_fault(vcpu), | 
|  | (unsigned long)kvm_vcpu_get_hsr(vcpu)); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | idx = srcu_read_lock(&vcpu->kvm->srcu); | 
|  |  | 
|  | gfn = fault_ipa >> PAGE_SHIFT; | 
|  | memslot = gfn_to_memslot(vcpu->kvm, gfn); | 
|  | hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); | 
|  | write_fault = kvm_is_write_fault(vcpu); | 
|  | if (kvm_is_error_hva(hva) || (write_fault && !writable)) { | 
|  | if (is_iabt) { | 
|  | /* Prefetch Abort on I/O address */ | 
|  | ret = -ENOEXEC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for a cache maintenance operation. Since we | 
|  | * ended-up here, we know it is outside of any memory | 
|  | * slot. But we can't find out if that is for a device, | 
|  | * or if the guest is just being stupid. The only thing | 
|  | * we know for sure is that this range cannot be cached. | 
|  | * | 
|  | * So let's assume that the guest is just being | 
|  | * cautious, and skip the instruction. | 
|  | */ | 
|  | if (kvm_vcpu_dabt_is_cm(vcpu)) { | 
|  | kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); | 
|  | ret = 1; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The IPA is reported as [MAX:12], so we need to | 
|  | * complement it with the bottom 12 bits from the | 
|  | * faulting VA. This is always 12 bits, irrespective | 
|  | * of the page size. | 
|  | */ | 
|  | fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); | 
|  | ret = io_mem_abort(vcpu, run, fault_ipa); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Userspace should not be able to register out-of-bounds IPAs */ | 
|  | VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); | 
|  |  | 
|  | if (fault_status == FSC_ACCESS) { | 
|  | handle_access_fault(vcpu, fault_ipa); | 
|  | ret = 1; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); | 
|  | if (ret == 0) | 
|  | ret = 1; | 
|  | out: | 
|  | if (ret == -ENOEXEC) { | 
|  | kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); | 
|  | ret = 1; | 
|  | } | 
|  | out_unlock: | 
|  | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int handle_hva_to_gpa(struct kvm *kvm, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | int (*handler)(struct kvm *kvm, | 
|  | gpa_t gpa, u64 size, | 
|  | void *data), | 
|  | void *data) | 
|  | { | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *memslot; | 
|  | int ret = 0; | 
|  |  | 
|  | slots = kvm_memslots(kvm); | 
|  |  | 
|  | /* we only care about the pages that the guest sees */ | 
|  | kvm_for_each_memslot(memslot, slots) { | 
|  | unsigned long hva_start, hva_end; | 
|  | gfn_t gpa; | 
|  |  | 
|  | hva_start = max(start, memslot->userspace_addr); | 
|  | hva_end = min(end, memslot->userspace_addr + | 
|  | (memslot->npages << PAGE_SHIFT)); | 
|  | if (hva_start >= hva_end) | 
|  | continue; | 
|  |  | 
|  | gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT; | 
|  | ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) | 
|  | { | 
|  | unmap_stage2_range(kvm, gpa, size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_unmap_hva_range(struct kvm *kvm, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | if (!kvm->arch.pgd) | 
|  | return 0; | 
|  |  | 
|  | trace_kvm_unmap_hva_range(start, end); | 
|  | handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) | 
|  | { | 
|  | pte_t *pte = (pte_t *)data; | 
|  |  | 
|  | WARN_ON(size != PAGE_SIZE); | 
|  | /* | 
|  | * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE | 
|  | * flag clear because MMU notifiers will have unmapped a huge PMD before | 
|  | * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and | 
|  | * therefore stage2_set_pte() never needs to clear out a huge PMD | 
|  | * through this calling path. | 
|  | */ | 
|  | stage2_set_pte(kvm, NULL, gpa, pte, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) | 
|  | { | 
|  | unsigned long end = hva + PAGE_SIZE; | 
|  | kvm_pfn_t pfn = pte_pfn(pte); | 
|  | pte_t stage2_pte; | 
|  |  | 
|  | if (!kvm->arch.pgd) | 
|  | return 0; | 
|  |  | 
|  | trace_kvm_set_spte_hva(hva); | 
|  |  | 
|  | /* | 
|  | * We've moved a page around, probably through CoW, so let's treat it | 
|  | * just like a translation fault and clean the cache to the PoC. | 
|  | */ | 
|  | clean_dcache_guest_page(pfn, PAGE_SIZE); | 
|  | stage2_pte = kvm_pfn_pte(pfn, PAGE_S2); | 
|  | handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); | 
|  | if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte)) | 
|  | return 0; | 
|  |  | 
|  | if (pud) | 
|  | return stage2_pudp_test_and_clear_young(pud); | 
|  | else if (pmd) | 
|  | return stage2_pmdp_test_and_clear_young(pmd); | 
|  | else | 
|  | return stage2_ptep_test_and_clear_young(pte); | 
|  | } | 
|  |  | 
|  | static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); | 
|  | if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte)) | 
|  | return 0; | 
|  |  | 
|  | if (pud) | 
|  | return kvm_s2pud_young(*pud); | 
|  | else if (pmd) | 
|  | return pmd_young(*pmd); | 
|  | else | 
|  | return pte_young(*pte); | 
|  | } | 
|  |  | 
|  | int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) | 
|  | { | 
|  | if (!kvm->arch.pgd) | 
|  | return 0; | 
|  | trace_kvm_age_hva(start, end); | 
|  | return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); | 
|  | } | 
|  |  | 
|  | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) | 
|  | { | 
|  | if (!kvm->arch.pgd) | 
|  | return 0; | 
|  | trace_kvm_test_age_hva(hva); | 
|  | return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE, | 
|  | kvm_test_age_hva_handler, NULL); | 
|  | } | 
|  |  | 
|  | void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); | 
|  | } | 
|  |  | 
|  | phys_addr_t kvm_mmu_get_httbr(void) | 
|  | { | 
|  | if (__kvm_cpu_uses_extended_idmap()) | 
|  | return virt_to_phys(merged_hyp_pgd); | 
|  | else | 
|  | return virt_to_phys(hyp_pgd); | 
|  | } | 
|  |  | 
|  | phys_addr_t kvm_get_idmap_vector(void) | 
|  | { | 
|  | return hyp_idmap_vector; | 
|  | } | 
|  |  | 
|  | static int kvm_map_idmap_text(pgd_t *pgd) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | /* Create the idmap in the boot page tables */ | 
|  | err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), | 
|  | hyp_idmap_start, hyp_idmap_end, | 
|  | __phys_to_pfn(hyp_idmap_start), | 
|  | PAGE_HYP_EXEC); | 
|  | if (err) | 
|  | kvm_err("Failed to idmap %lx-%lx\n", | 
|  | hyp_idmap_start, hyp_idmap_end); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int kvm_mmu_init(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start); | 
|  | hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); | 
|  | hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end); | 
|  | hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); | 
|  | hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init); | 
|  |  | 
|  | /* | 
|  | * We rely on the linker script to ensure at build time that the HYP | 
|  | * init code does not cross a page boundary. | 
|  | */ | 
|  | BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); | 
|  |  | 
|  | kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); | 
|  | kvm_debug("HYP VA range: %lx:%lx\n", | 
|  | kern_hyp_va(PAGE_OFFSET), | 
|  | kern_hyp_va((unsigned long)high_memory - 1)); | 
|  |  | 
|  | if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && | 
|  | hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) && | 
|  | hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { | 
|  | /* | 
|  | * The idmap page is intersecting with the VA space, | 
|  | * it is not safe to continue further. | 
|  | */ | 
|  | kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); | 
|  | if (!hyp_pgd) { | 
|  | kvm_err("Hyp mode PGD not allocated\n"); | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (__kvm_cpu_uses_extended_idmap()) { | 
|  | boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, | 
|  | hyp_pgd_order); | 
|  | if (!boot_hyp_pgd) { | 
|  | kvm_err("Hyp boot PGD not allocated\n"); | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = kvm_map_idmap_text(boot_hyp_pgd); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | 
|  | if (!merged_hyp_pgd) { | 
|  | kvm_err("Failed to allocate extra HYP pgd\n"); | 
|  | goto out; | 
|  | } | 
|  | __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd, | 
|  | hyp_idmap_start); | 
|  | } else { | 
|  | err = kvm_map_idmap_text(hyp_pgd); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | io_map_base = hyp_idmap_start; | 
|  | return 0; | 
|  | out: | 
|  | free_hyp_pgds(); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void kvm_arch_commit_memory_region(struct kvm *kvm, | 
|  | const struct kvm_userspace_memory_region *mem, | 
|  | const struct kvm_memory_slot *old, | 
|  | const struct kvm_memory_slot *new, | 
|  | enum kvm_mr_change change) | 
|  | { | 
|  | /* | 
|  | * At this point memslot has been committed and there is an | 
|  | * allocated dirty_bitmap[], dirty pages will be be tracked while the | 
|  | * memory slot is write protected. | 
|  | */ | 
|  | if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) | 
|  | kvm_mmu_wp_memory_region(kvm, mem->slot); | 
|  | } | 
|  |  | 
|  | int kvm_arch_prepare_memory_region(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot, | 
|  | const struct kvm_userspace_memory_region *mem, | 
|  | enum kvm_mr_change change) | 
|  | { | 
|  | hva_t hva = mem->userspace_addr; | 
|  | hva_t reg_end = hva + mem->memory_size; | 
|  | bool writable = !(mem->flags & KVM_MEM_READONLY); | 
|  | int ret = 0; | 
|  |  | 
|  | if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && | 
|  | change != KVM_MR_FLAGS_ONLY) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Prevent userspace from creating a memory region outside of the IPA | 
|  | * space addressable by the KVM guest IPA space. | 
|  | */ | 
|  | if (memslot->base_gfn + memslot->npages >= | 
|  | (kvm_phys_size(kvm) >> PAGE_SHIFT)) | 
|  | return -EFAULT; | 
|  |  | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | /* | 
|  | * A memory region could potentially cover multiple VMAs, and any holes | 
|  | * between them, so iterate over all of them to find out if we can map | 
|  | * any of them right now. | 
|  | * | 
|  | *     +--------------------------------------------+ | 
|  | * +---------------+----------------+   +----------------+ | 
|  | * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    | | 
|  | * +---------------+----------------+   +----------------+ | 
|  | *     |               memory region                | | 
|  | *     +--------------------------------------------+ | 
|  | */ | 
|  | do { | 
|  | struct vm_area_struct *vma = find_vma(current->mm, hva); | 
|  | hva_t vm_start, vm_end; | 
|  |  | 
|  | if (!vma || vma->vm_start >= reg_end) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Take the intersection of this VMA with the memory region | 
|  | */ | 
|  | vm_start = max(hva, vma->vm_start); | 
|  | vm_end = min(reg_end, vma->vm_end); | 
|  |  | 
|  | if (vma->vm_flags & VM_PFNMAP) { | 
|  | gpa_t gpa = mem->guest_phys_addr + | 
|  | (vm_start - mem->userspace_addr); | 
|  | phys_addr_t pa; | 
|  |  | 
|  | pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; | 
|  | pa += vm_start - vma->vm_start; | 
|  |  | 
|  | /* IO region dirty page logging not allowed */ | 
|  | if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = kvm_phys_addr_ioremap(kvm, gpa, pa, | 
|  | vm_end - vm_start, | 
|  | writable); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | hva = vm_end; | 
|  | } while (hva < reg_end); | 
|  |  | 
|  | if (change == KVM_MR_FLAGS_ONLY) | 
|  | goto out; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | if (ret) | 
|  | unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size); | 
|  | else | 
|  | stage2_flush_memslot(kvm, memslot); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | out: | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, | 
|  | struct kvm_memory_slot *dont) | 
|  | { | 
|  | } | 
|  |  | 
|  | int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, | 
|  | unsigned long npages) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) | 
|  | { | 
|  | } | 
|  |  | 
|  | void kvm_arch_flush_shadow_all(struct kvm *kvm) | 
|  | { | 
|  | kvm_free_stage2_pgd(kvm); | 
|  | } | 
|  |  | 
|  | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, | 
|  | struct kvm_memory_slot *slot) | 
|  | { | 
|  | gpa_t gpa = slot->base_gfn << PAGE_SHIFT; | 
|  | phys_addr_t size = slot->npages << PAGE_SHIFT; | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | unmap_stage2_range(kvm, gpa, size); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). | 
|  | * | 
|  | * Main problems: | 
|  | * - S/W ops are local to a CPU (not broadcast) | 
|  | * - We have line migration behind our back (speculation) | 
|  | * - System caches don't support S/W at all (damn!) | 
|  | * | 
|  | * In the face of the above, the best we can do is to try and convert | 
|  | * S/W ops to VA ops. Because the guest is not allowed to infer the | 
|  | * S/W to PA mapping, it can only use S/W to nuke the whole cache, | 
|  | * which is a rather good thing for us. | 
|  | * | 
|  | * Also, it is only used when turning caches on/off ("The expected | 
|  | * usage of the cache maintenance instructions that operate by set/way | 
|  | * is associated with the cache maintenance instructions associated | 
|  | * with the powerdown and powerup of caches, if this is required by | 
|  | * the implementation."). | 
|  | * | 
|  | * We use the following policy: | 
|  | * | 
|  | * - If we trap a S/W operation, we enable VM trapping to detect | 
|  | *   caches being turned on/off, and do a full clean. | 
|  | * | 
|  | * - We flush the caches on both caches being turned on and off. | 
|  | * | 
|  | * - Once the caches are enabled, we stop trapping VM ops. | 
|  | */ | 
|  | void kvm_set_way_flush(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long hcr = *vcpu_hcr(vcpu); | 
|  |  | 
|  | /* | 
|  | * If this is the first time we do a S/W operation | 
|  | * (i.e. HCR_TVM not set) flush the whole memory, and set the | 
|  | * VM trapping. | 
|  | * | 
|  | * Otherwise, rely on the VM trapping to wait for the MMU + | 
|  | * Caches to be turned off. At that point, we'll be able to | 
|  | * clean the caches again. | 
|  | */ | 
|  | if (!(hcr & HCR_TVM)) { | 
|  | trace_kvm_set_way_flush(*vcpu_pc(vcpu), | 
|  | vcpu_has_cache_enabled(vcpu)); | 
|  | stage2_flush_vm(vcpu->kvm); | 
|  | *vcpu_hcr(vcpu) = hcr | HCR_TVM; | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) | 
|  | { | 
|  | bool now_enabled = vcpu_has_cache_enabled(vcpu); | 
|  |  | 
|  | /* | 
|  | * If switching the MMU+caches on, need to invalidate the caches. | 
|  | * If switching it off, need to clean the caches. | 
|  | * Clean + invalidate does the trick always. | 
|  | */ | 
|  | if (now_enabled != was_enabled) | 
|  | stage2_flush_vm(vcpu->kvm); | 
|  |  | 
|  | /* Caches are now on, stop trapping VM ops (until a S/W op) */ | 
|  | if (now_enabled) | 
|  | *vcpu_hcr(vcpu) &= ~HCR_TVM; | 
|  |  | 
|  | trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); | 
|  | } |