|  | /* | 
|  | * 8253/8254 interval timer emulation | 
|  | * | 
|  | * Copyright (c) 2003-2004 Fabrice Bellard | 
|  | * Copyright (c) 2006 Intel Corporation | 
|  | * Copyright (c) 2007 Keir Fraser, XenSource Inc | 
|  | * Copyright (c) 2008 Intel Corporation | 
|  | * Copyright 2009 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | * | 
|  | * Authors: | 
|  | *   Sheng Yang <sheng.yang@intel.com> | 
|  | *   Based on QEMU and Xen. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "pit: " fmt | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "ioapic.h" | 
|  | #include "irq.h" | 
|  | #include "i8254.h" | 
|  | #include "x86.h" | 
|  |  | 
|  | #ifndef CONFIG_X86_64 | 
|  | #define mod_64(x, y) ((x) - (y) * div64_u64(x, y)) | 
|  | #else | 
|  | #define mod_64(x, y) ((x) % (y)) | 
|  | #endif | 
|  |  | 
|  | #define RW_STATE_LSB 1 | 
|  | #define RW_STATE_MSB 2 | 
|  | #define RW_STATE_WORD0 3 | 
|  | #define RW_STATE_WORD1 4 | 
|  |  | 
|  | static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val) | 
|  | { | 
|  | struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; | 
|  |  | 
|  | switch (c->mode) { | 
|  | default: | 
|  | case 0: | 
|  | case 4: | 
|  | /* XXX: just disable/enable counting */ | 
|  | break; | 
|  | case 1: | 
|  | case 2: | 
|  | case 3: | 
|  | case 5: | 
|  | /* Restart counting on rising edge. */ | 
|  | if (c->gate < val) | 
|  | c->count_load_time = ktime_get(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | c->gate = val; | 
|  | } | 
|  |  | 
|  | static int pit_get_gate(struct kvm_pit *pit, int channel) | 
|  | { | 
|  | return pit->pit_state.channels[channel].gate; | 
|  | } | 
|  |  | 
|  | static s64 __kpit_elapsed(struct kvm_pit *pit) | 
|  | { | 
|  | s64 elapsed; | 
|  | ktime_t remaining; | 
|  | struct kvm_kpit_state *ps = &pit->pit_state; | 
|  |  | 
|  | if (!ps->period) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The Counter does not stop when it reaches zero. In | 
|  | * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to | 
|  | * the highest count, either FFFF hex for binary counting | 
|  | * or 9999 for BCD counting, and continues counting. | 
|  | * Modes 2 and 3 are periodic; the Counter reloads | 
|  | * itself with the initial count and continues counting | 
|  | * from there. | 
|  | */ | 
|  | remaining = hrtimer_get_remaining(&ps->timer); | 
|  | elapsed = ps->period - ktime_to_ns(remaining); | 
|  |  | 
|  | return elapsed; | 
|  | } | 
|  |  | 
|  | static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c, | 
|  | int channel) | 
|  | { | 
|  | if (channel == 0) | 
|  | return __kpit_elapsed(pit); | 
|  |  | 
|  | return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time)); | 
|  | } | 
|  |  | 
|  | static int pit_get_count(struct kvm_pit *pit, int channel) | 
|  | { | 
|  | struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; | 
|  | s64 d, t; | 
|  | int counter; | 
|  |  | 
|  | t = kpit_elapsed(pit, c, channel); | 
|  | d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC); | 
|  |  | 
|  | switch (c->mode) { | 
|  | case 0: | 
|  | case 1: | 
|  | case 4: | 
|  | case 5: | 
|  | counter = (c->count - d) & 0xffff; | 
|  | break; | 
|  | case 3: | 
|  | /* XXX: may be incorrect for odd counts */ | 
|  | counter = c->count - (mod_64((2 * d), c->count)); | 
|  | break; | 
|  | default: | 
|  | counter = c->count - mod_64(d, c->count); | 
|  | break; | 
|  | } | 
|  | return counter; | 
|  | } | 
|  |  | 
|  | static int pit_get_out(struct kvm_pit *pit, int channel) | 
|  | { | 
|  | struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; | 
|  | s64 d, t; | 
|  | int out; | 
|  |  | 
|  | t = kpit_elapsed(pit, c, channel); | 
|  | d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC); | 
|  |  | 
|  | switch (c->mode) { | 
|  | default: | 
|  | case 0: | 
|  | out = (d >= c->count); | 
|  | break; | 
|  | case 1: | 
|  | out = (d < c->count); | 
|  | break; | 
|  | case 2: | 
|  | out = ((mod_64(d, c->count) == 0) && (d != 0)); | 
|  | break; | 
|  | case 3: | 
|  | out = (mod_64(d, c->count) < ((c->count + 1) >> 1)); | 
|  | break; | 
|  | case 4: | 
|  | case 5: | 
|  | out = (d == c->count); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return out; | 
|  | } | 
|  |  | 
|  | static void pit_latch_count(struct kvm_pit *pit, int channel) | 
|  | { | 
|  | struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; | 
|  |  | 
|  | if (!c->count_latched) { | 
|  | c->latched_count = pit_get_count(pit, channel); | 
|  | c->count_latched = c->rw_mode; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pit_latch_status(struct kvm_pit *pit, int channel) | 
|  | { | 
|  | struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel]; | 
|  |  | 
|  | if (!c->status_latched) { | 
|  | /* TODO: Return NULL COUNT (bit 6). */ | 
|  | c->status = ((pit_get_out(pit, channel) << 7) | | 
|  | (c->rw_mode << 4) | | 
|  | (c->mode << 1) | | 
|  | c->bcd); | 
|  | c->status_latched = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps) | 
|  | { | 
|  | return container_of(ps, struct kvm_pit, pit_state); | 
|  | } | 
|  |  | 
|  | static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian) | 
|  | { | 
|  | struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state, | 
|  | irq_ack_notifier); | 
|  | struct kvm_pit *pit = pit_state_to_pit(ps); | 
|  |  | 
|  | atomic_set(&ps->irq_ack, 1); | 
|  | /* irq_ack should be set before pending is read.  Order accesses with | 
|  | * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (atomic_dec_if_positive(&ps->pending) > 0) | 
|  | kthread_queue_work(pit->worker, &pit->expired); | 
|  | } | 
|  |  | 
|  | void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pit *pit = vcpu->kvm->arch.vpit; | 
|  | struct hrtimer *timer; | 
|  |  | 
|  | if (!kvm_vcpu_is_bsp(vcpu) || !pit) | 
|  | return; | 
|  |  | 
|  | timer = &pit->pit_state.timer; | 
|  | mutex_lock(&pit->pit_state.lock); | 
|  | if (hrtimer_cancel(timer)) | 
|  | hrtimer_start_expires(timer, HRTIMER_MODE_ABS); | 
|  | mutex_unlock(&pit->pit_state.lock); | 
|  | } | 
|  |  | 
|  | static void destroy_pit_timer(struct kvm_pit *pit) | 
|  | { | 
|  | hrtimer_cancel(&pit->pit_state.timer); | 
|  | kthread_flush_work(&pit->expired); | 
|  | } | 
|  |  | 
|  | static void pit_do_work(struct kthread_work *work) | 
|  | { | 
|  | struct kvm_pit *pit = container_of(work, struct kvm_pit, expired); | 
|  | struct kvm *kvm = pit->kvm; | 
|  | struct kvm_vcpu *vcpu; | 
|  | int i; | 
|  | struct kvm_kpit_state *ps = &pit->pit_state; | 
|  |  | 
|  | if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0)) | 
|  | return; | 
|  |  | 
|  | kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false); | 
|  | kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false); | 
|  |  | 
|  | /* | 
|  | * Provides NMI watchdog support via Virtual Wire mode. | 
|  | * The route is: PIT -> LVT0 in NMI mode. | 
|  | * | 
|  | * Note: Our Virtual Wire implementation does not follow | 
|  | * the MP specification.  We propagate a PIT interrupt to all | 
|  | * VCPUs and only when LVT0 is in NMI mode.  The interrupt can | 
|  | * also be simultaneously delivered through PIC and IOAPIC. | 
|  | */ | 
|  | if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0) | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) | 
|  | kvm_apic_nmi_wd_deliver(vcpu); | 
|  | } | 
|  |  | 
|  | static enum hrtimer_restart pit_timer_fn(struct hrtimer *data) | 
|  | { | 
|  | struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer); | 
|  | struct kvm_pit *pt = pit_state_to_pit(ps); | 
|  |  | 
|  | if (atomic_read(&ps->reinject)) | 
|  | atomic_inc(&ps->pending); | 
|  |  | 
|  | kthread_queue_work(pt->worker, &pt->expired); | 
|  |  | 
|  | if (ps->is_periodic) { | 
|  | hrtimer_add_expires_ns(&ps->timer, ps->period); | 
|  | return HRTIMER_RESTART; | 
|  | } else | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | static inline void kvm_pit_reset_reinject(struct kvm_pit *pit) | 
|  | { | 
|  | atomic_set(&pit->pit_state.pending, 0); | 
|  | atomic_set(&pit->pit_state.irq_ack, 1); | 
|  | } | 
|  |  | 
|  | void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject) | 
|  | { | 
|  | struct kvm_kpit_state *ps = &pit->pit_state; | 
|  | struct kvm *kvm = pit->kvm; | 
|  |  | 
|  | if (atomic_read(&ps->reinject) == reinject) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * AMD SVM AVIC accelerates EOI write and does not trap. | 
|  | * This cause in-kernel PIT re-inject mode to fail | 
|  | * since it checks ps->irq_ack before kvm_set_irq() | 
|  | * and relies on the ack notifier to timely queue | 
|  | * the pt->worker work iterm and reinject the missed tick. | 
|  | * So, deactivate APICv when PIT is in reinject mode. | 
|  | */ | 
|  | if (reinject) { | 
|  | kvm_request_apicv_update(kvm, false, | 
|  | APICV_INHIBIT_REASON_PIT_REINJ); | 
|  | /* The initial state is preserved while ps->reinject == 0. */ | 
|  | kvm_pit_reset_reinject(pit); | 
|  | kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier); | 
|  | kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier); | 
|  | } else { | 
|  | kvm_request_apicv_update(kvm, true, | 
|  | APICV_INHIBIT_REASON_PIT_REINJ); | 
|  | kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier); | 
|  | kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier); | 
|  | } | 
|  |  | 
|  | atomic_set(&ps->reinject, reinject); | 
|  | } | 
|  |  | 
|  | static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period) | 
|  | { | 
|  | struct kvm_kpit_state *ps = &pit->pit_state; | 
|  | struct kvm *kvm = pit->kvm; | 
|  | s64 interval; | 
|  |  | 
|  | if (!ioapic_in_kernel(kvm) || | 
|  | ps->flags & KVM_PIT_FLAGS_HPET_LEGACY) | 
|  | return; | 
|  |  | 
|  | interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ); | 
|  |  | 
|  | pr_debug("create pit timer, interval is %llu nsec\n", interval); | 
|  |  | 
|  | /* TODO The new value only affected after the retriggered */ | 
|  | hrtimer_cancel(&ps->timer); | 
|  | kthread_flush_work(&pit->expired); | 
|  | ps->period = interval; | 
|  | ps->is_periodic = is_period; | 
|  |  | 
|  | kvm_pit_reset_reinject(pit); | 
|  |  | 
|  | /* | 
|  | * Do not allow the guest to program periodic timers with small | 
|  | * interval, since the hrtimers are not throttled by the host | 
|  | * scheduler. | 
|  | */ | 
|  | if (ps->is_periodic) { | 
|  | s64 min_period = min_timer_period_us * 1000LL; | 
|  |  | 
|  | if (ps->period < min_period) { | 
|  | pr_info_ratelimited( | 
|  | "kvm: requested %lld ns " | 
|  | "i8254 timer period limited to %lld ns\n", | 
|  | ps->period, min_period); | 
|  | ps->period = min_period; | 
|  | } | 
|  | } | 
|  |  | 
|  | hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval), | 
|  | HRTIMER_MODE_ABS); | 
|  | } | 
|  |  | 
|  | static void pit_load_count(struct kvm_pit *pit, int channel, u32 val) | 
|  | { | 
|  | struct kvm_kpit_state *ps = &pit->pit_state; | 
|  |  | 
|  | pr_debug("load_count val is %u, channel is %d\n", val, channel); | 
|  |  | 
|  | /* | 
|  | * The largest possible initial count is 0; this is equivalent | 
|  | * to 216 for binary counting and 104 for BCD counting. | 
|  | */ | 
|  | if (val == 0) | 
|  | val = 0x10000; | 
|  |  | 
|  | ps->channels[channel].count = val; | 
|  |  | 
|  | if (channel != 0) { | 
|  | ps->channels[channel].count_load_time = ktime_get(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Two types of timer | 
|  | * mode 1 is one shot, mode 2 is period, otherwise del timer */ | 
|  | switch (ps->channels[0].mode) { | 
|  | case 0: | 
|  | case 1: | 
|  | /* FIXME: enhance mode 4 precision */ | 
|  | case 4: | 
|  | create_pit_timer(pit, val, 0); | 
|  | break; | 
|  | case 2: | 
|  | case 3: | 
|  | create_pit_timer(pit, val, 1); | 
|  | break; | 
|  | default: | 
|  | destroy_pit_timer(pit); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val, | 
|  | int hpet_legacy_start) | 
|  | { | 
|  | u8 saved_mode; | 
|  |  | 
|  | WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock)); | 
|  |  | 
|  | if (hpet_legacy_start) { | 
|  | /* save existing mode for later reenablement */ | 
|  | WARN_ON(channel != 0); | 
|  | saved_mode = pit->pit_state.channels[0].mode; | 
|  | pit->pit_state.channels[0].mode = 0xff; /* disable timer */ | 
|  | pit_load_count(pit, channel, val); | 
|  | pit->pit_state.channels[0].mode = saved_mode; | 
|  | } else { | 
|  | pit_load_count(pit, channel, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev) | 
|  | { | 
|  | return container_of(dev, struct kvm_pit, dev); | 
|  | } | 
|  |  | 
|  | static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev) | 
|  | { | 
|  | return container_of(dev, struct kvm_pit, speaker_dev); | 
|  | } | 
|  |  | 
|  | static inline int pit_in_range(gpa_t addr) | 
|  | { | 
|  | return ((addr >= KVM_PIT_BASE_ADDRESS) && | 
|  | (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH)); | 
|  | } | 
|  |  | 
|  | static int pit_ioport_write(struct kvm_vcpu *vcpu, | 
|  | struct kvm_io_device *this, | 
|  | gpa_t addr, int len, const void *data) | 
|  | { | 
|  | struct kvm_pit *pit = dev_to_pit(this); | 
|  | struct kvm_kpit_state *pit_state = &pit->pit_state; | 
|  | int channel, access; | 
|  | struct kvm_kpit_channel_state *s; | 
|  | u32 val = *(u32 *) data; | 
|  | if (!pit_in_range(addr)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | val  &= 0xff; | 
|  | addr &= KVM_PIT_CHANNEL_MASK; | 
|  |  | 
|  | mutex_lock(&pit_state->lock); | 
|  |  | 
|  | if (val != 0) | 
|  | pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n", | 
|  | (unsigned int)addr, len, val); | 
|  |  | 
|  | if (addr == 3) { | 
|  | channel = val >> 6; | 
|  | if (channel == 3) { | 
|  | /* Read-Back Command. */ | 
|  | for (channel = 0; channel < 3; channel++) { | 
|  | if (val & (2 << channel)) { | 
|  | if (!(val & 0x20)) | 
|  | pit_latch_count(pit, channel); | 
|  | if (!(val & 0x10)) | 
|  | pit_latch_status(pit, channel); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Select Counter <channel>. */ | 
|  | s = &pit_state->channels[channel]; | 
|  | access = (val >> 4) & KVM_PIT_CHANNEL_MASK; | 
|  | if (access == 0) { | 
|  | pit_latch_count(pit, channel); | 
|  | } else { | 
|  | s->rw_mode = access; | 
|  | s->read_state = access; | 
|  | s->write_state = access; | 
|  | s->mode = (val >> 1) & 7; | 
|  | if (s->mode > 5) | 
|  | s->mode -= 4; | 
|  | s->bcd = val & 1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Write Count. */ | 
|  | s = &pit_state->channels[addr]; | 
|  | switch (s->write_state) { | 
|  | default: | 
|  | case RW_STATE_LSB: | 
|  | pit_load_count(pit, addr, val); | 
|  | break; | 
|  | case RW_STATE_MSB: | 
|  | pit_load_count(pit, addr, val << 8); | 
|  | break; | 
|  | case RW_STATE_WORD0: | 
|  | s->write_latch = val; | 
|  | s->write_state = RW_STATE_WORD1; | 
|  | break; | 
|  | case RW_STATE_WORD1: | 
|  | pit_load_count(pit, addr, s->write_latch | (val << 8)); | 
|  | s->write_state = RW_STATE_WORD0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&pit_state->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pit_ioport_read(struct kvm_vcpu *vcpu, | 
|  | struct kvm_io_device *this, | 
|  | gpa_t addr, int len, void *data) | 
|  | { | 
|  | struct kvm_pit *pit = dev_to_pit(this); | 
|  | struct kvm_kpit_state *pit_state = &pit->pit_state; | 
|  | int ret, count; | 
|  | struct kvm_kpit_channel_state *s; | 
|  | if (!pit_in_range(addr)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | addr &= KVM_PIT_CHANNEL_MASK; | 
|  | if (addr == 3) | 
|  | return 0; | 
|  |  | 
|  | s = &pit_state->channels[addr]; | 
|  |  | 
|  | mutex_lock(&pit_state->lock); | 
|  |  | 
|  | if (s->status_latched) { | 
|  | s->status_latched = 0; | 
|  | ret = s->status; | 
|  | } else if (s->count_latched) { | 
|  | switch (s->count_latched) { | 
|  | default: | 
|  | case RW_STATE_LSB: | 
|  | ret = s->latched_count & 0xff; | 
|  | s->count_latched = 0; | 
|  | break; | 
|  | case RW_STATE_MSB: | 
|  | ret = s->latched_count >> 8; | 
|  | s->count_latched = 0; | 
|  | break; | 
|  | case RW_STATE_WORD0: | 
|  | ret = s->latched_count & 0xff; | 
|  | s->count_latched = RW_STATE_MSB; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (s->read_state) { | 
|  | default: | 
|  | case RW_STATE_LSB: | 
|  | count = pit_get_count(pit, addr); | 
|  | ret = count & 0xff; | 
|  | break; | 
|  | case RW_STATE_MSB: | 
|  | count = pit_get_count(pit, addr); | 
|  | ret = (count >> 8) & 0xff; | 
|  | break; | 
|  | case RW_STATE_WORD0: | 
|  | count = pit_get_count(pit, addr); | 
|  | ret = count & 0xff; | 
|  | s->read_state = RW_STATE_WORD1; | 
|  | break; | 
|  | case RW_STATE_WORD1: | 
|  | count = pit_get_count(pit, addr); | 
|  | ret = (count >> 8) & 0xff; | 
|  | s->read_state = RW_STATE_WORD0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (len > sizeof(ret)) | 
|  | len = sizeof(ret); | 
|  | memcpy(data, (char *)&ret, len); | 
|  |  | 
|  | mutex_unlock(&pit_state->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int speaker_ioport_write(struct kvm_vcpu *vcpu, | 
|  | struct kvm_io_device *this, | 
|  | gpa_t addr, int len, const void *data) | 
|  | { | 
|  | struct kvm_pit *pit = speaker_to_pit(this); | 
|  | struct kvm_kpit_state *pit_state = &pit->pit_state; | 
|  | u32 val = *(u32 *) data; | 
|  | if (addr != KVM_SPEAKER_BASE_ADDRESS) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | mutex_lock(&pit_state->lock); | 
|  | pit_state->speaker_data_on = (val >> 1) & 1; | 
|  | pit_set_gate(pit, 2, val & 1); | 
|  | mutex_unlock(&pit_state->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int speaker_ioport_read(struct kvm_vcpu *vcpu, | 
|  | struct kvm_io_device *this, | 
|  | gpa_t addr, int len, void *data) | 
|  | { | 
|  | struct kvm_pit *pit = speaker_to_pit(this); | 
|  | struct kvm_kpit_state *pit_state = &pit->pit_state; | 
|  | unsigned int refresh_clock; | 
|  | int ret; | 
|  | if (addr != KVM_SPEAKER_BASE_ADDRESS) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */ | 
|  | refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1; | 
|  |  | 
|  | mutex_lock(&pit_state->lock); | 
|  | ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) | | 
|  | (pit_get_out(pit, 2) << 5) | (refresh_clock << 4)); | 
|  | if (len > sizeof(ret)) | 
|  | len = sizeof(ret); | 
|  | memcpy(data, (char *)&ret, len); | 
|  | mutex_unlock(&pit_state->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_pit_reset(struct kvm_pit *pit) | 
|  | { | 
|  | int i; | 
|  | struct kvm_kpit_channel_state *c; | 
|  |  | 
|  | pit->pit_state.flags = 0; | 
|  | for (i = 0; i < 3; i++) { | 
|  | c = &pit->pit_state.channels[i]; | 
|  | c->mode = 0xff; | 
|  | c->gate = (i != 2); | 
|  | pit_load_count(pit, i, 0); | 
|  | } | 
|  |  | 
|  | kvm_pit_reset_reinject(pit); | 
|  | } | 
|  |  | 
|  | static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask) | 
|  | { | 
|  | struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier); | 
|  |  | 
|  | if (!mask) | 
|  | kvm_pit_reset_reinject(pit); | 
|  | } | 
|  |  | 
|  | static const struct kvm_io_device_ops pit_dev_ops = { | 
|  | .read     = pit_ioport_read, | 
|  | .write    = pit_ioport_write, | 
|  | }; | 
|  |  | 
|  | static const struct kvm_io_device_ops speaker_dev_ops = { | 
|  | .read     = speaker_ioport_read, | 
|  | .write    = speaker_ioport_write, | 
|  | }; | 
|  |  | 
|  | struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags) | 
|  | { | 
|  | struct kvm_pit *pit; | 
|  | struct kvm_kpit_state *pit_state; | 
|  | struct pid *pid; | 
|  | pid_t pid_nr; | 
|  | int ret; | 
|  |  | 
|  | pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT); | 
|  | if (!pit) | 
|  | return NULL; | 
|  |  | 
|  | pit->irq_source_id = kvm_request_irq_source_id(kvm); | 
|  | if (pit->irq_source_id < 0) | 
|  | goto fail_request; | 
|  |  | 
|  | mutex_init(&pit->pit_state.lock); | 
|  |  | 
|  | pid = get_pid(task_tgid(current)); | 
|  | pid_nr = pid_vnr(pid); | 
|  | put_pid(pid); | 
|  |  | 
|  | pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr); | 
|  | if (IS_ERR(pit->worker)) | 
|  | goto fail_kthread; | 
|  |  | 
|  | kthread_init_work(&pit->expired, pit_do_work); | 
|  |  | 
|  | pit->kvm = kvm; | 
|  |  | 
|  | pit_state = &pit->pit_state; | 
|  | hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | 
|  | pit_state->timer.function = pit_timer_fn; | 
|  |  | 
|  | pit_state->irq_ack_notifier.gsi = 0; | 
|  | pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq; | 
|  | pit->mask_notifier.func = pit_mask_notifer; | 
|  |  | 
|  | kvm_pit_reset(pit); | 
|  |  | 
|  | kvm_pit_set_reinject(pit, true); | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  | kvm_iodevice_init(&pit->dev, &pit_dev_ops); | 
|  | ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS, | 
|  | KVM_PIT_MEM_LENGTH, &pit->dev); | 
|  | if (ret < 0) | 
|  | goto fail_register_pit; | 
|  |  | 
|  | if (flags & KVM_PIT_SPEAKER_DUMMY) { | 
|  | kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops); | 
|  | ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, | 
|  | KVM_SPEAKER_BASE_ADDRESS, 4, | 
|  | &pit->speaker_dev); | 
|  | if (ret < 0) | 
|  | goto fail_register_speaker; | 
|  | } | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  |  | 
|  | return pit; | 
|  |  | 
|  | fail_register_speaker: | 
|  | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); | 
|  | fail_register_pit: | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | kvm_pit_set_reinject(pit, false); | 
|  | kthread_destroy_worker(pit->worker); | 
|  | fail_kthread: | 
|  | kvm_free_irq_source_id(kvm, pit->irq_source_id); | 
|  | fail_request: | 
|  | kfree(pit); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void kvm_free_pit(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_pit *pit = kvm->arch.vpit; | 
|  |  | 
|  | if (pit) { | 
|  | mutex_lock(&kvm->slots_lock); | 
|  | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev); | 
|  | kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev); | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | kvm_pit_set_reinject(pit, false); | 
|  | hrtimer_cancel(&pit->pit_state.timer); | 
|  | kthread_destroy_worker(pit->worker); | 
|  | kvm_free_irq_source_id(kvm, pit->irq_source_id); | 
|  | kfree(pit); | 
|  | } | 
|  | } |