|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | *  sun4m SMP support. | 
|  | * | 
|  | * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) | 
|  | */ | 
|  |  | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/cpu.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/switch_to.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/timer.h> | 
|  | #include <asm/oplib.h> | 
|  |  | 
|  | #include "irq.h" | 
|  | #include "kernel.h" | 
|  |  | 
|  | #define IRQ_IPI_SINGLE		12 | 
|  | #define IRQ_IPI_MASK		13 | 
|  | #define IRQ_IPI_RESCHED		14 | 
|  | #define IRQ_CROSS_CALL		15 | 
|  |  | 
|  | static inline unsigned long | 
|  | swap_ulong(volatile unsigned long *ptr, unsigned long val) | 
|  | { | 
|  | __asm__ __volatile__("swap [%1], %0\n\t" : | 
|  | "=&r" (val), "=&r" (ptr) : | 
|  | "0" (val), "1" (ptr)); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | void sun4m_cpu_pre_starting(void *arg) | 
|  | { | 
|  | } | 
|  |  | 
|  | void sun4m_cpu_pre_online(void *arg) | 
|  | { | 
|  | int cpuid = hard_smp_processor_id(); | 
|  |  | 
|  | /* Allow master to continue. The master will then give us the | 
|  | * go-ahead by setting the smp_commenced_mask and will wait without | 
|  | * timeouts until our setup is completed fully (signified by | 
|  | * our bit being set in the cpu_online_mask). | 
|  | */ | 
|  | swap_ulong(&cpu_callin_map[cpuid], 1); | 
|  |  | 
|  | /* XXX: What's up with all the flushes? */ | 
|  | local_ops->cache_all(); | 
|  | local_ops->tlb_all(); | 
|  |  | 
|  | /* Fix idle thread fields. */ | 
|  | __asm__ __volatile__("ld [%0], %%g6\n\t" | 
|  | : : "r" (¤t_set[cpuid]) | 
|  | : "memory" /* paranoid */); | 
|  |  | 
|  | /* Attach to the address space of init_task. */ | 
|  | mmgrab(&init_mm); | 
|  | current->active_mm = &init_mm; | 
|  |  | 
|  | while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) | 
|  | mb(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Cycle through the processors asking the PROM to start each one. | 
|  | */ | 
|  | void __init smp4m_boot_cpus(void) | 
|  | { | 
|  | sun4m_unmask_profile_irq(); | 
|  | local_ops->cache_all(); | 
|  | } | 
|  |  | 
|  | int smp4m_boot_one_cpu(int i, struct task_struct *idle) | 
|  | { | 
|  | unsigned long *entry = &sun4m_cpu_startup; | 
|  | int timeout; | 
|  | int cpu_node; | 
|  |  | 
|  | cpu_find_by_mid(i, &cpu_node); | 
|  | current_set[i] = task_thread_info(idle); | 
|  |  | 
|  | /* See trampoline.S for details... */ | 
|  | entry += ((i - 1) * 3); | 
|  |  | 
|  | /* | 
|  | * Initialize the contexts table | 
|  | * Since the call to prom_startcpu() trashes the structure, | 
|  | * we need to re-initialize it for each cpu | 
|  | */ | 
|  | smp_penguin_ctable.which_io = 0; | 
|  | smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; | 
|  | smp_penguin_ctable.reg_size = 0; | 
|  |  | 
|  | /* whirrr, whirrr, whirrrrrrrrr... */ | 
|  | printk(KERN_INFO "Starting CPU %d at %p\n", i, entry); | 
|  | local_ops->cache_all(); | 
|  | prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry); | 
|  |  | 
|  | /* wheee... it's going... */ | 
|  | for (timeout = 0; timeout < 10000; timeout++) { | 
|  | if (cpu_callin_map[i]) | 
|  | break; | 
|  | udelay(200); | 
|  | } | 
|  |  | 
|  | if (!(cpu_callin_map[i])) { | 
|  | printk(KERN_ERR "Processor %d is stuck.\n", i); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | local_ops->cache_all(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init smp4m_smp_done(void) | 
|  | { | 
|  | int i, first; | 
|  | int *prev; | 
|  |  | 
|  | /* setup cpu list for irq rotation */ | 
|  | first = 0; | 
|  | prev = &first; | 
|  | for_each_online_cpu(i) { | 
|  | *prev = i; | 
|  | prev = &cpu_data(i).next; | 
|  | } | 
|  | *prev = first; | 
|  | local_ops->cache_all(); | 
|  |  | 
|  | /* Ok, they are spinning and ready to go. */ | 
|  | } | 
|  |  | 
|  | static void sun4m_send_ipi(int cpu, int level) | 
|  | { | 
|  | sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set); | 
|  | } | 
|  |  | 
|  | static void sun4m_ipi_resched(int cpu) | 
|  | { | 
|  | sun4m_send_ipi(cpu, IRQ_IPI_RESCHED); | 
|  | } | 
|  |  | 
|  | static void sun4m_ipi_single(int cpu) | 
|  | { | 
|  | sun4m_send_ipi(cpu, IRQ_IPI_SINGLE); | 
|  | } | 
|  |  | 
|  | static void sun4m_ipi_mask_one(int cpu) | 
|  | { | 
|  | sun4m_send_ipi(cpu, IRQ_IPI_MASK); | 
|  | } | 
|  |  | 
|  | static struct smp_funcall { | 
|  | void *func; | 
|  | unsigned long arg1; | 
|  | unsigned long arg2; | 
|  | unsigned long arg3; | 
|  | unsigned long arg4; | 
|  | unsigned long arg5; | 
|  | unsigned long processors_in[SUN4M_NCPUS];  /* Set when ipi entered. */ | 
|  | unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */ | 
|  | } ccall_info; | 
|  |  | 
|  | static DEFINE_SPINLOCK(cross_call_lock); | 
|  |  | 
|  | /* Cross calls must be serialized, at least currently. */ | 
|  | static void sun4m_cross_call(void *func, cpumask_t mask, unsigned long arg1, | 
|  | unsigned long arg2, unsigned long arg3, | 
|  | unsigned long arg4) | 
|  | { | 
|  | register int ncpus = SUN4M_NCPUS; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&cross_call_lock, flags); | 
|  |  | 
|  | /* Init function glue. */ | 
|  | ccall_info.func = func; | 
|  | ccall_info.arg1 = arg1; | 
|  | ccall_info.arg2 = arg2; | 
|  | ccall_info.arg3 = arg3; | 
|  | ccall_info.arg4 = arg4; | 
|  | ccall_info.arg5 = 0; | 
|  |  | 
|  | /* Init receive/complete mapping, plus fire the IPI's off. */ | 
|  | { | 
|  | register int i; | 
|  |  | 
|  | cpumask_clear_cpu(smp_processor_id(), &mask); | 
|  | cpumask_and(&mask, cpu_online_mask, &mask); | 
|  | for (i = 0; i < ncpus; i++) { | 
|  | if (cpumask_test_cpu(i, &mask)) { | 
|  | ccall_info.processors_in[i] = 0; | 
|  | ccall_info.processors_out[i] = 0; | 
|  | sun4m_send_ipi(i, IRQ_CROSS_CALL); | 
|  | } else { | 
|  | ccall_info.processors_in[i] = 1; | 
|  | ccall_info.processors_out[i] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | register int i; | 
|  |  | 
|  | i = 0; | 
|  | do { | 
|  | if (!cpumask_test_cpu(i, &mask)) | 
|  | continue; | 
|  | while (!ccall_info.processors_in[i]) | 
|  | barrier(); | 
|  | } while (++i < ncpus); | 
|  |  | 
|  | i = 0; | 
|  | do { | 
|  | if (!cpumask_test_cpu(i, &mask)) | 
|  | continue; | 
|  | while (!ccall_info.processors_out[i]) | 
|  | barrier(); | 
|  | } while (++i < ncpus); | 
|  | } | 
|  | spin_unlock_irqrestore(&cross_call_lock, flags); | 
|  | } | 
|  |  | 
|  | /* Running cross calls. */ | 
|  | void smp4m_cross_call_irq(void) | 
|  | { | 
|  | void (*func)(unsigned long, unsigned long, unsigned long, unsigned long, | 
|  | unsigned long) = ccall_info.func; | 
|  | int i = smp_processor_id(); | 
|  |  | 
|  | ccall_info.processors_in[i] = 1; | 
|  | func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4, | 
|  | ccall_info.arg5); | 
|  | ccall_info.processors_out[i] = 1; | 
|  | } | 
|  |  | 
|  | void smp4m_percpu_timer_interrupt(struct pt_regs *regs) | 
|  | { | 
|  | struct pt_regs *old_regs; | 
|  | struct clock_event_device *ce; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | old_regs = set_irq_regs(regs); | 
|  |  | 
|  | ce = &per_cpu(sparc32_clockevent, cpu); | 
|  |  | 
|  | if (clockevent_state_periodic(ce)) | 
|  | sun4m_clear_profile_irq(cpu); | 
|  | else | 
|  | sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */ | 
|  |  | 
|  | irq_enter(); | 
|  | ce->event_handler(ce); | 
|  | irq_exit(); | 
|  |  | 
|  | set_irq_regs(old_regs); | 
|  | } | 
|  |  | 
|  | static const struct sparc32_ipi_ops sun4m_ipi_ops = { | 
|  | .cross_call = sun4m_cross_call, | 
|  | .resched    = sun4m_ipi_resched, | 
|  | .single     = sun4m_ipi_single, | 
|  | .mask_one   = sun4m_ipi_mask_one, | 
|  | }; | 
|  |  | 
|  | void __init sun4m_init_smp(void) | 
|  | { | 
|  | sparc32_ipi_ops = &sun4m_ipi_ops; | 
|  | } |