| // SPDX-License-Identifier: GPL-2.0-or-later | 
 | /* | 
 |  * PowerPC64 SLB support. | 
 |  * | 
 |  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM | 
 |  * Based on earlier code written by: | 
 |  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com | 
 |  *    Copyright (c) 2001 Dave Engebretsen | 
 |  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
 |  */ | 
 |  | 
 | #include <asm/interrupt.h> | 
 | #include <asm/mmu.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/paca.h> | 
 | #include <asm/lppaca.h> | 
 | #include <asm/ppc-opcode.h> | 
 | #include <asm/cputable.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/smp.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/context_tracking.h> | 
 | #include <linux/mm_types.h> | 
 | #include <linux/pgtable.h> | 
 |  | 
 | #include <asm/udbg.h> | 
 | #include <asm/code-patching.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | static long slb_allocate_user(struct mm_struct *mm, unsigned long ea); | 
 |  | 
 | bool stress_slb_enabled __initdata; | 
 |  | 
 | static int __init parse_stress_slb(char *p) | 
 | { | 
 | 	stress_slb_enabled = true; | 
 | 	return 0; | 
 | } | 
 | early_param("stress_slb", parse_stress_slb); | 
 |  | 
 | __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key); | 
 |  | 
 | static void assert_slb_presence(bool present, unsigned long ea) | 
 | { | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 	unsigned long tmp; | 
 |  | 
 | 	WARN_ON_ONCE(mfmsr() & MSR_EE); | 
 |  | 
 | 	if (!cpu_has_feature(CPU_FTR_ARCH_206)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware | 
 | 	 * ignores all other bits from 0-27, so just clear them all. | 
 | 	 */ | 
 | 	ea &= ~((1UL << SID_SHIFT) - 1); | 
 | 	asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0"); | 
 |  | 
 | 	WARN_ON(present == (tmp == 0)); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void slb_shadow_update(unsigned long ea, int ssize, | 
 | 				     unsigned long flags, | 
 | 				     enum slb_index index) | 
 | { | 
 | 	struct slb_shadow *p = get_slb_shadow(); | 
 |  | 
 | 	/* | 
 | 	 * Clear the ESID first so the entry is not valid while we are | 
 | 	 * updating it.  No write barriers are needed here, provided | 
 | 	 * we only update the current CPU's SLB shadow buffer. | 
 | 	 */ | 
 | 	WRITE_ONCE(p->save_area[index].esid, 0); | 
 | 	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags))); | 
 | 	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index))); | 
 | } | 
 |  | 
 | static inline void slb_shadow_clear(enum slb_index index) | 
 | { | 
 | 	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index)); | 
 | } | 
 |  | 
 | static inline void create_shadowed_slbe(unsigned long ea, int ssize, | 
 | 					unsigned long flags, | 
 | 					enum slb_index index) | 
 | { | 
 | 	/* | 
 | 	 * Updating the shadow buffer before writing the SLB ensures | 
 | 	 * we don't get a stale entry here if we get preempted by PHYP | 
 | 	 * between these two statements. | 
 | 	 */ | 
 | 	slb_shadow_update(ea, ssize, flags, index); | 
 |  | 
 | 	assert_slb_presence(false, ea); | 
 | 	asm volatile("slbmte  %0,%1" : | 
 | 		     : "r" (mk_vsid_data(ea, ssize, flags)), | 
 | 		       "r" (mk_esid_data(ea, ssize, index)) | 
 | 		     : "memory" ); | 
 | } | 
 |  | 
 | /* | 
 |  * Insert bolted entries into SLB (which may not be empty, so don't clear | 
 |  * slb_cache_ptr). | 
 |  */ | 
 | void __slb_restore_bolted_realmode(void) | 
 | { | 
 | 	struct slb_shadow *p = get_slb_shadow(); | 
 | 	enum slb_index index; | 
 |  | 
 | 	 /* No isync needed because realmode. */ | 
 | 	for (index = 0; index < SLB_NUM_BOLTED; index++) { | 
 | 		asm volatile("slbmte  %0,%1" : | 
 | 		     : "r" (be64_to_cpu(p->save_area[index].vsid)), | 
 | 		       "r" (be64_to_cpu(p->save_area[index].esid))); | 
 | 	} | 
 |  | 
 | 	assert_slb_presence(true, local_paca->kstack); | 
 | } | 
 |  | 
 | /* | 
 |  * Insert the bolted entries into an empty SLB. | 
 |  */ | 
 | void slb_restore_bolted_realmode(void) | 
 | { | 
 | 	__slb_restore_bolted_realmode(); | 
 | 	get_paca()->slb_cache_ptr = 0; | 
 |  | 
 | 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | 
 | 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | 
 | } | 
 |  | 
 | /* | 
 |  * This flushes all SLB entries including 0, so it must be realmode. | 
 |  */ | 
 | void slb_flush_all_realmode(void) | 
 | { | 
 | 	asm volatile("slbmte %0,%0; slbia" : : "r" (0)); | 
 | } | 
 |  | 
 | static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside) | 
 | { | 
 | 	struct slb_shadow *p = get_slb_shadow(); | 
 | 	unsigned long ksp_esid_data, ksp_vsid_data; | 
 | 	u32 ih; | 
 |  | 
 | 	/* | 
 | 	 * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside | 
 | 	 * information created with Class=0 entries, which we use for kernel | 
 | 	 * SLB entries (the SLB entries themselves are still invalidated). | 
 | 	 * | 
 | 	 * Older processors will ignore this optimisation. Over-invalidation | 
 | 	 * is fine because we never rely on lookaside information existing. | 
 | 	 */ | 
 | 	if (preserve_kernel_lookaside) | 
 | 		ih = 1; | 
 | 	else | 
 | 		ih = 0; | 
 |  | 
 | 	ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid); | 
 | 	ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid); | 
 |  | 
 | 	asm volatile(PPC_SLBIA(%0)"	\n" | 
 | 		     "slbmte	%1, %2	\n" | 
 | 		     :: "i" (ih), | 
 | 			"r" (ksp_vsid_data), | 
 | 			"r" (ksp_esid_data) | 
 | 		     : "memory"); | 
 | } | 
 |  | 
 | /* | 
 |  * This flushes non-bolted entries, it can be run in virtual mode. Must | 
 |  * be called with interrupts disabled. | 
 |  */ | 
 | void slb_flush_and_restore_bolted(void) | 
 | { | 
 | 	BUILD_BUG_ON(SLB_NUM_BOLTED != 2); | 
 |  | 
 | 	WARN_ON(!irqs_disabled()); | 
 |  | 
 | 	/* | 
 | 	 * We can't take a PMU exception in the following code, so hard | 
 | 	 * disable interrupts. | 
 | 	 */ | 
 | 	hard_irq_disable(); | 
 |  | 
 | 	isync(); | 
 | 	__slb_flush_and_restore_bolted(false); | 
 | 	isync(); | 
 |  | 
 | 	assert_slb_presence(true, get_paca()->kstack); | 
 |  | 
 | 	get_paca()->slb_cache_ptr = 0; | 
 |  | 
 | 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | 
 | 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | 
 | } | 
 |  | 
 | void slb_save_contents(struct slb_entry *slb_ptr) | 
 | { | 
 | 	int i; | 
 | 	unsigned long e, v; | 
 |  | 
 | 	/* Save slb_cache_ptr value. */ | 
 | 	get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr; | 
 |  | 
 | 	if (!slb_ptr) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < mmu_slb_size; i++) { | 
 | 		asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i)); | 
 | 		asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i)); | 
 | 		slb_ptr->esid = e; | 
 | 		slb_ptr->vsid = v; | 
 | 		slb_ptr++; | 
 | 	} | 
 | } | 
 |  | 
 | void slb_dump_contents(struct slb_entry *slb_ptr) | 
 | { | 
 | 	int i, n; | 
 | 	unsigned long e, v; | 
 | 	unsigned long llp; | 
 |  | 
 | 	if (!slb_ptr) | 
 | 		return; | 
 |  | 
 | 	pr_err("SLB contents of cpu 0x%x\n", smp_processor_id()); | 
 |  | 
 | 	for (i = 0; i < mmu_slb_size; i++) { | 
 | 		e = slb_ptr->esid; | 
 | 		v = slb_ptr->vsid; | 
 | 		slb_ptr++; | 
 |  | 
 | 		if (!e && !v) | 
 | 			continue; | 
 |  | 
 | 		pr_err("%02d %016lx %016lx %s\n", i, e, v, | 
 | 				(e & SLB_ESID_V) ? "VALID" : "NOT VALID"); | 
 |  | 
 | 		if (!(e & SLB_ESID_V)) | 
 | 			continue; | 
 |  | 
 | 		llp = v & SLB_VSID_LLP; | 
 | 		if (v & SLB_VSID_B_1T) { | 
 | 			pr_err("     1T ESID=%9lx VSID=%13lx LLP:%3lx\n", | 
 | 			       GET_ESID_1T(e), | 
 | 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp); | 
 | 		} else { | 
 | 			pr_err("   256M ESID=%9lx VSID=%13lx LLP:%3lx\n", | 
 | 			       GET_ESID(e), | 
 | 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 		/* RR is not so useful as it's often not used for allocation */ | 
 | 		pr_err("SLB RR allocator index %d\n", get_paca()->stab_rr); | 
 |  | 
 | 		/* Dump slb cache entires as well. */ | 
 | 		pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr); | 
 | 		pr_err("Valid SLB cache entries:\n"); | 
 | 		n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES); | 
 | 		for (i = 0; i < n; i++) | 
 | 			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); | 
 | 		pr_err("Rest of SLB cache entries:\n"); | 
 | 		for (i = n; i < SLB_CACHE_ENTRIES; i++) | 
 | 			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); | 
 | 	} | 
 | } | 
 |  | 
 | void slb_vmalloc_update(void) | 
 | { | 
 | 	/* | 
 | 	 * vmalloc is not bolted, so just have to flush non-bolted. | 
 | 	 */ | 
 | 	slb_flush_and_restore_bolted(); | 
 | } | 
 |  | 
 | static bool preload_hit(struct thread_info *ti, unsigned long esid) | 
 | { | 
 | 	unsigned char i; | 
 |  | 
 | 	for (i = 0; i < ti->slb_preload_nr; i++) { | 
 | 		unsigned char idx; | 
 |  | 
 | 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; | 
 | 		if (esid == ti->slb_preload_esid[idx]) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool preload_add(struct thread_info *ti, unsigned long ea) | 
 | { | 
 | 	unsigned char idx; | 
 | 	unsigned long esid; | 
 |  | 
 | 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { | 
 | 		/* EAs are stored >> 28 so 256MB segments don't need clearing */ | 
 | 		if (ea & ESID_MASK_1T) | 
 | 			ea &= ESID_MASK_1T; | 
 | 	} | 
 |  | 
 | 	esid = ea >> SID_SHIFT; | 
 |  | 
 | 	if (preload_hit(ti, esid)) | 
 | 		return false; | 
 |  | 
 | 	idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR; | 
 | 	ti->slb_preload_esid[idx] = esid; | 
 | 	if (ti->slb_preload_nr == SLB_PRELOAD_NR) | 
 | 		ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; | 
 | 	else | 
 | 		ti->slb_preload_nr++; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void preload_age(struct thread_info *ti) | 
 | { | 
 | 	if (!ti->slb_preload_nr) | 
 | 		return; | 
 | 	ti->slb_preload_nr--; | 
 | 	ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; | 
 | } | 
 |  | 
 | void slb_setup_new_exec(void) | 
 | { | 
 | 	struct thread_info *ti = current_thread_info(); | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	unsigned long exec = 0x10000000; | 
 |  | 
 | 	WARN_ON(irqs_disabled()); | 
 |  | 
 | 	/* | 
 | 	 * preload cache can only be used to determine whether a SLB | 
 | 	 * entry exists if it does not start to overflow. | 
 | 	 */ | 
 | 	if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR) | 
 | 		return; | 
 |  | 
 | 	hard_irq_disable(); | 
 |  | 
 | 	/* | 
 | 	 * We have no good place to clear the slb preload cache on exec, | 
 | 	 * flush_thread is about the earliest arch hook but that happens | 
 | 	 * after we switch to the mm and have already preloaded the SLBEs. | 
 | 	 * | 
 | 	 * For the most part that's probably okay to use entries from the | 
 | 	 * previous exec, they will age out if unused. It may turn out to | 
 | 	 * be an advantage to clear the cache before switching to it, | 
 | 	 * however. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * preload some userspace segments into the SLB. | 
 | 	 * Almost all 32 and 64bit PowerPC executables are linked at | 
 | 	 * 0x10000000 so it makes sense to preload this segment. | 
 | 	 */ | 
 | 	if (!is_kernel_addr(exec)) { | 
 | 		if (preload_add(ti, exec)) | 
 | 			slb_allocate_user(mm, exec); | 
 | 	} | 
 |  | 
 | 	/* Libraries and mmaps. */ | 
 | 	if (!is_kernel_addr(mm->mmap_base)) { | 
 | 		if (preload_add(ti, mm->mmap_base)) | 
 | 			slb_allocate_user(mm, mm->mmap_base); | 
 | 	} | 
 |  | 
 | 	/* see switch_slb */ | 
 | 	asm volatile("isync" : : : "memory"); | 
 |  | 
 | 	local_irq_enable(); | 
 | } | 
 |  | 
 | void preload_new_slb_context(unsigned long start, unsigned long sp) | 
 | { | 
 | 	struct thread_info *ti = current_thread_info(); | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	unsigned long heap = mm->start_brk; | 
 |  | 
 | 	WARN_ON(irqs_disabled()); | 
 |  | 
 | 	/* see above */ | 
 | 	if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR) | 
 | 		return; | 
 |  | 
 | 	hard_irq_disable(); | 
 |  | 
 | 	/* Userspace entry address. */ | 
 | 	if (!is_kernel_addr(start)) { | 
 | 		if (preload_add(ti, start)) | 
 | 			slb_allocate_user(mm, start); | 
 | 	} | 
 |  | 
 | 	/* Top of stack, grows down. */ | 
 | 	if (!is_kernel_addr(sp)) { | 
 | 		if (preload_add(ti, sp)) | 
 | 			slb_allocate_user(mm, sp); | 
 | 	} | 
 |  | 
 | 	/* Bottom of heap, grows up. */ | 
 | 	if (heap && !is_kernel_addr(heap)) { | 
 | 		if (preload_add(ti, heap)) | 
 | 			slb_allocate_user(mm, heap); | 
 | 	} | 
 |  | 
 | 	/* see switch_slb */ | 
 | 	asm volatile("isync" : : : "memory"); | 
 |  | 
 | 	local_irq_enable(); | 
 | } | 
 |  | 
 | static void slb_cache_slbie_kernel(unsigned int index) | 
 | { | 
 | 	unsigned long slbie_data = get_paca()->slb_cache[index]; | 
 | 	unsigned long ksp = get_paca()->kstack; | 
 |  | 
 | 	slbie_data <<= SID_SHIFT; | 
 | 	slbie_data |= 0xc000000000000000ULL; | 
 | 	if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data) | 
 | 		return; | 
 | 	slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT; | 
 |  | 
 | 	asm volatile("slbie %0" : : "r" (slbie_data)); | 
 | } | 
 |  | 
 | static void slb_cache_slbie_user(unsigned int index) | 
 | { | 
 | 	unsigned long slbie_data = get_paca()->slb_cache[index]; | 
 |  | 
 | 	slbie_data <<= SID_SHIFT; | 
 | 	slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT; | 
 | 	slbie_data |= SLBIE_C; /* user slbs have C=1 */ | 
 |  | 
 | 	asm volatile("slbie %0" : : "r" (slbie_data)); | 
 | } | 
 |  | 
 | /* Flush all user entries from the segment table of the current processor. */ | 
 | void switch_slb(struct task_struct *tsk, struct mm_struct *mm) | 
 | { | 
 | 	struct thread_info *ti = task_thread_info(tsk); | 
 | 	unsigned char i; | 
 |  | 
 | 	/* | 
 | 	 * We need interrupts hard-disabled here, not just soft-disabled, | 
 | 	 * so that a PMU interrupt can't occur, which might try to access | 
 | 	 * user memory (to get a stack trace) and possible cause an SLB miss | 
 | 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA. | 
 | 	 */ | 
 | 	hard_irq_disable(); | 
 | 	isync(); | 
 | 	if (stress_slb()) { | 
 | 		__slb_flush_and_restore_bolted(false); | 
 | 		isync(); | 
 | 		get_paca()->slb_cache_ptr = 0; | 
 | 		get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | 
 |  | 
 | 	} else if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
 | 		/* | 
 | 		 * SLBIA IH=3 invalidates all Class=1 SLBEs and their | 
 | 		 * associated lookaside structures, which matches what | 
 | 		 * switch_slb wants. So ARCH_300 does not use the slb | 
 | 		 * cache. | 
 | 		 */ | 
 | 		asm volatile(PPC_SLBIA(3)); | 
 |  | 
 | 	} else { | 
 | 		unsigned long offset = get_paca()->slb_cache_ptr; | 
 |  | 
 | 		if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && | 
 | 		    offset <= SLB_CACHE_ENTRIES) { | 
 | 			/* | 
 | 			 * Could assert_slb_presence(true) here, but | 
 | 			 * hypervisor or machine check could have come | 
 | 			 * in and removed the entry at this point. | 
 | 			 */ | 
 |  | 
 | 			for (i = 0; i < offset; i++) | 
 | 				slb_cache_slbie_user(i); | 
 |  | 
 | 			/* Workaround POWER5 < DD2.1 issue */ | 
 | 			if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1) | 
 | 				slb_cache_slbie_user(0); | 
 |  | 
 | 		} else { | 
 | 			/* Flush but retain kernel lookaside information */ | 
 | 			__slb_flush_and_restore_bolted(true); | 
 | 			isync(); | 
 |  | 
 | 			get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | 
 | 		} | 
 |  | 
 | 		get_paca()->slb_cache_ptr = 0; | 
 | 	} | 
 | 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | 
 |  | 
 | 	copy_mm_to_paca(mm); | 
 |  | 
 | 	/* | 
 | 	 * We gradually age out SLBs after a number of context switches to | 
 | 	 * reduce reload overhead of unused entries (like we do with FP/VEC | 
 | 	 * reload). Each time we wrap 256 switches, take an entry out of the | 
 | 	 * SLB preload cache. | 
 | 	 */ | 
 | 	tsk->thread.load_slb++; | 
 | 	if (!tsk->thread.load_slb) { | 
 | 		unsigned long pc = KSTK_EIP(tsk); | 
 |  | 
 | 		preload_age(ti); | 
 | 		preload_add(ti, pc); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < ti->slb_preload_nr; i++) { | 
 | 		unsigned char idx; | 
 | 		unsigned long ea; | 
 |  | 
 | 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; | 
 | 		ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT; | 
 |  | 
 | 		slb_allocate_user(mm, ea); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Synchronize slbmte preloads with possible subsequent user memory | 
 | 	 * address accesses by the kernel (user mode won't happen until | 
 | 	 * rfid, which is safe). | 
 | 	 */ | 
 | 	isync(); | 
 | } | 
 |  | 
 | void slb_set_size(u16 size) | 
 | { | 
 | 	mmu_slb_size = size; | 
 | } | 
 |  | 
 | void slb_initialize(void) | 
 | { | 
 | 	unsigned long linear_llp, vmalloc_llp, io_llp; | 
 | 	unsigned long lflags; | 
 | 	static int slb_encoding_inited; | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | 	unsigned long vmemmap_llp; | 
 | #endif | 
 |  | 
 | 	/* Prepare our SLB miss handler based on our page size */ | 
 | 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; | 
 | 	io_llp = mmu_psize_defs[mmu_io_psize].sllp; | 
 | 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; | 
 | 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; | 
 | #endif | 
 | 	if (!slb_encoding_inited) { | 
 | 		slb_encoding_inited = 1; | 
 | 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp); | 
 | 		pr_devel("SLB: io      LLP = %04lx\n", io_llp); | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	get_paca()->stab_rr = SLB_NUM_BOLTED - 1; | 
 | 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; | 
 | 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; | 
 |  | 
 | 	lflags = SLB_VSID_KERNEL | linear_llp; | 
 |  | 
 | 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */ | 
 | 	asm volatile("isync":::"memory"); | 
 | 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory"); | 
 | 	asm volatile("isync; slbia; isync":::"memory"); | 
 | 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); | 
 |  | 
 | 	/* | 
 | 	 * For the boot cpu, we're running on the stack in init_thread_union, | 
 | 	 * which is in the first segment of the linear mapping, and also | 
 | 	 * get_paca()->kstack hasn't been initialized yet. | 
 | 	 * For secondary cpus, we need to bolt the kernel stack entry now. | 
 | 	 */ | 
 | 	slb_shadow_clear(KSTACK_INDEX); | 
 | 	if (raw_smp_processor_id() != boot_cpuid && | 
 | 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) | 
 | 		create_shadowed_slbe(get_paca()->kstack, | 
 | 				     mmu_kernel_ssize, lflags, KSTACK_INDEX); | 
 |  | 
 | 	asm volatile("isync":::"memory"); | 
 | } | 
 |  | 
 | static void slb_cache_update(unsigned long esid_data) | 
 | { | 
 | 	int slb_cache_index; | 
 |  | 
 | 	if (cpu_has_feature(CPU_FTR_ARCH_300)) | 
 | 		return; /* ISAv3.0B and later does not use slb_cache */ | 
 |  | 
 | 	if (stress_slb()) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Now update slb cache entries | 
 | 	 */ | 
 | 	slb_cache_index = local_paca->slb_cache_ptr; | 
 | 	if (slb_cache_index < SLB_CACHE_ENTRIES) { | 
 | 		/* | 
 | 		 * We have space in slb cache for optimized switch_slb(). | 
 | 		 * Top 36 bits from esid_data as per ISA | 
 | 		 */ | 
 | 		local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT; | 
 | 		local_paca->slb_cache_ptr++; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Our cache is full and the current cache content strictly | 
 | 		 * doesn't indicate the active SLB contents. Bump the ptr | 
 | 		 * so that switch_slb() will ignore the cache. | 
 | 		 */ | 
 | 		local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1; | 
 | 	} | 
 | } | 
 |  | 
 | static enum slb_index alloc_slb_index(bool kernel) | 
 | { | 
 | 	enum slb_index index; | 
 |  | 
 | 	/* | 
 | 	 * The allocation bitmaps can become out of synch with the SLB | 
 | 	 * when the _switch code does slbie when bolting a new stack | 
 | 	 * segment and it must not be anywhere else in the SLB. This leaves | 
 | 	 * a kernel allocated entry that is unused in the SLB. With very | 
 | 	 * large systems or small segment sizes, the bitmaps could slowly | 
 | 	 * fill with these entries. They will eventually be cleared out | 
 | 	 * by the round robin allocator in that case, so it's probably not | 
 | 	 * worth accounting for. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * SLBs beyond 32 entries are allocated with stab_rr only | 
 | 	 * POWER7/8/9 have 32 SLB entries, this could be expanded if a | 
 | 	 * future CPU has more. | 
 | 	 */ | 
 | 	if (local_paca->slb_used_bitmap != U32_MAX) { | 
 | 		index = ffz(local_paca->slb_used_bitmap); | 
 | 		local_paca->slb_used_bitmap |= 1U << index; | 
 | 		if (kernel) | 
 | 			local_paca->slb_kern_bitmap |= 1U << index; | 
 | 	} else { | 
 | 		/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */ | 
 | 		index = local_paca->stab_rr; | 
 | 		if (index < (mmu_slb_size - 1)) | 
 | 			index++; | 
 | 		else | 
 | 			index = SLB_NUM_BOLTED; | 
 | 		local_paca->stab_rr = index; | 
 | 		if (index < 32) { | 
 | 			if (kernel) | 
 | 				local_paca->slb_kern_bitmap |= 1U << index; | 
 | 			else | 
 | 				local_paca->slb_kern_bitmap &= ~(1U << index); | 
 | 		} | 
 | 	} | 
 | 	BUG_ON(index < SLB_NUM_BOLTED); | 
 |  | 
 | 	return index; | 
 | } | 
 |  | 
 | static long slb_insert_entry(unsigned long ea, unsigned long context, | 
 | 				unsigned long flags, int ssize, bool kernel) | 
 | { | 
 | 	unsigned long vsid; | 
 | 	unsigned long vsid_data, esid_data; | 
 | 	enum slb_index index; | 
 |  | 
 | 	vsid = get_vsid(context, ea, ssize); | 
 | 	if (!vsid) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * There must not be a kernel SLB fault in alloc_slb_index or before | 
 | 	 * slbmte here or the allocation bitmaps could get out of whack with | 
 | 	 * the SLB. | 
 | 	 * | 
 | 	 * User SLB faults or preloads take this path which might get inlined | 
 | 	 * into the caller, so add compiler barriers here to ensure unsafe | 
 | 	 * memory accesses do not come between. | 
 | 	 */ | 
 | 	barrier(); | 
 |  | 
 | 	index = alloc_slb_index(kernel); | 
 |  | 
 | 	vsid_data = __mk_vsid_data(vsid, ssize, flags); | 
 | 	esid_data = mk_esid_data(ea, ssize, index); | 
 |  | 
 | 	/* | 
 | 	 * No need for an isync before or after this slbmte. The exception | 
 | 	 * we enter with and the rfid we exit with are context synchronizing. | 
 | 	 * User preloads should add isync afterwards in case the kernel | 
 | 	 * accesses user memory before it returns to userspace with rfid. | 
 | 	 */ | 
 | 	assert_slb_presence(false, ea); | 
 | 	if (stress_slb()) { | 
 | 		int slb_cache_index = local_paca->slb_cache_ptr; | 
 |  | 
 | 		/* | 
 | 		 * stress_slb() does not use slb cache, repurpose as a | 
 | 		 * cache of inserted (non-bolted) kernel SLB entries. All | 
 | 		 * non-bolted kernel entries are flushed on any user fault, | 
 | 		 * or if there are already 3 non-boled kernel entries. | 
 | 		 */ | 
 | 		BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3); | 
 | 		if (!kernel || slb_cache_index == 3) { | 
 | 			int i; | 
 |  | 
 | 			for (i = 0; i < slb_cache_index; i++) | 
 | 				slb_cache_slbie_kernel(i); | 
 | 			slb_cache_index = 0; | 
 | 		} | 
 |  | 
 | 		if (kernel) | 
 | 			local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT; | 
 | 		local_paca->slb_cache_ptr = slb_cache_index; | 
 | 	} | 
 | 	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)); | 
 |  | 
 | 	barrier(); | 
 |  | 
 | 	if (!kernel) | 
 | 		slb_cache_update(esid_data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static long slb_allocate_kernel(unsigned long ea, unsigned long id) | 
 | { | 
 | 	unsigned long context; | 
 | 	unsigned long flags; | 
 | 	int ssize; | 
 |  | 
 | 	if (id == LINEAR_MAP_REGION_ID) { | 
 |  | 
 | 		/* We only support upto H_MAX_PHYSMEM_BITS */ | 
 | 		if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS)) | 
 | 			return -EFAULT; | 
 |  | 
 | 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp; | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | 	} else if (id == VMEMMAP_REGION_ID) { | 
 |  | 
 | 		if (ea >= H_VMEMMAP_END) | 
 | 			return -EFAULT; | 
 |  | 
 | 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp; | 
 | #endif | 
 | 	} else if (id == VMALLOC_REGION_ID) { | 
 |  | 
 | 		if (ea >= H_VMALLOC_END) | 
 | 			return -EFAULT; | 
 |  | 
 | 		flags = local_paca->vmalloc_sllp; | 
 |  | 
 | 	} else if (id == IO_REGION_ID) { | 
 |  | 
 | 		if (ea >= H_KERN_IO_END) | 
 | 			return -EFAULT; | 
 |  | 
 | 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp; | 
 |  | 
 | 	} else { | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	ssize = MMU_SEGSIZE_1T; | 
 | 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) | 
 | 		ssize = MMU_SEGSIZE_256M; | 
 |  | 
 | 	context = get_kernel_context(ea); | 
 |  | 
 | 	return slb_insert_entry(ea, context, flags, ssize, true); | 
 | } | 
 |  | 
 | static long slb_allocate_user(struct mm_struct *mm, unsigned long ea) | 
 | { | 
 | 	unsigned long context; | 
 | 	unsigned long flags; | 
 | 	int bpsize; | 
 | 	int ssize; | 
 |  | 
 | 	/* | 
 | 	 * consider this as bad access if we take a SLB miss | 
 | 	 * on an address above addr limit. | 
 | 	 */ | 
 | 	if (ea >= mm_ctx_slb_addr_limit(&mm->context)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	context = get_user_context(&mm->context, ea); | 
 | 	if (!context) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (unlikely(ea >= H_PGTABLE_RANGE)) { | 
 | 		WARN_ON(1); | 
 | 		return -EFAULT; | 
 | 	} | 
 |  | 
 | 	ssize = user_segment_size(ea); | 
 |  | 
 | 	bpsize = get_slice_psize(mm, ea); | 
 | 	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp; | 
 |  | 
 | 	return slb_insert_entry(ea, context, flags, ssize, false); | 
 | } | 
 |  | 
 | DEFINE_INTERRUPT_HANDLER_RAW(do_slb_fault) | 
 | { | 
 | 	unsigned long ea = regs->dar; | 
 | 	unsigned long id = get_region_id(ea); | 
 |  | 
 | 	/* IRQs are not reconciled here, so can't check irqs_disabled */ | 
 | 	VM_WARN_ON(mfmsr() & MSR_EE); | 
 |  | 
 | 	if (regs_is_unrecoverable(regs)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * SLB kernel faults must be very careful not to touch anything that is | 
 | 	 * not bolted. E.g., PACA and global variables are okay, mm->context | 
 | 	 * stuff is not. SLB user faults may access all of memory (and induce | 
 | 	 * one recursive SLB kernel fault), so the kernel fault must not | 
 | 	 * trample on the user fault state at those points. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * This is a raw interrupt handler, for performance, so that | 
 | 	 * fast_interrupt_return can be used. The handler must not touch local | 
 | 	 * irq state, or schedule. We could test for usermode and upgrade to a | 
 | 	 * normal process context (synchronous) interrupt for those, which | 
 | 	 * would make them first-class kernel code and able to be traced and | 
 | 	 * instrumented, although performance would suffer a bit, it would | 
 | 	 * probably be a good tradeoff. | 
 | 	 */ | 
 | 	if (id >= LINEAR_MAP_REGION_ID) { | 
 | 		long err; | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 		/* Catch recursive kernel SLB faults. */ | 
 | 		BUG_ON(local_paca->in_kernel_slb_handler); | 
 | 		local_paca->in_kernel_slb_handler = 1; | 
 | #endif | 
 | 		err = slb_allocate_kernel(ea, id); | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 		local_paca->in_kernel_slb_handler = 0; | 
 | #endif | 
 | 		return err; | 
 | 	} else { | 
 | 		struct mm_struct *mm = current->mm; | 
 | 		long err; | 
 |  | 
 | 		if (unlikely(!mm)) | 
 | 			return -EFAULT; | 
 |  | 
 | 		err = slb_allocate_user(mm, ea); | 
 | 		if (!err) | 
 | 			preload_add(current_thread_info(), ea); | 
 |  | 
 | 		return err; | 
 | 	} | 
 | } |