|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * This test checks the response of the system clock to frequency | 
|  | * steps made with adjtimex(). The frequency error and stability of | 
|  | * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock | 
|  | * is measured in two intervals following the step. The test fails if | 
|  | * values from the second interval exceed specified limits. | 
|  | * | 
|  | * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com>  2017 | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  | #include <sys/timex.h> | 
|  | #include <time.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include "../kselftest.h" | 
|  |  | 
|  | #define SAMPLES 100 | 
|  | #define SAMPLE_READINGS 10 | 
|  | #define MEAN_SAMPLE_INTERVAL 0.1 | 
|  | #define STEP_INTERVAL 1.0 | 
|  | #define MAX_PRECISION 500e-9 | 
|  | #define MAX_FREQ_ERROR 0.02e-6 | 
|  | #define MAX_STDDEV 50e-9 | 
|  |  | 
|  | #ifndef ADJ_SETOFFSET | 
|  | #define ADJ_SETOFFSET 0x0100 | 
|  | #endif | 
|  |  | 
|  | struct sample { | 
|  | double offset; | 
|  | double time; | 
|  | }; | 
|  |  | 
|  | static time_t mono_raw_base; | 
|  | static time_t mono_base; | 
|  | static long user_hz; | 
|  | static double precision; | 
|  | static double mono_freq_offset; | 
|  |  | 
|  | static double diff_timespec(struct timespec *ts1, struct timespec *ts2) | 
|  | { | 
|  | return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9; | 
|  | } | 
|  |  | 
|  | static double get_sample(struct sample *sample) | 
|  | { | 
|  | double delay, mindelay = 0.0; | 
|  | struct timespec ts1, ts2, ts3; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < SAMPLE_READINGS; i++) { | 
|  | clock_gettime(CLOCK_MONOTONIC_RAW, &ts1); | 
|  | clock_gettime(CLOCK_MONOTONIC, &ts2); | 
|  | clock_gettime(CLOCK_MONOTONIC_RAW, &ts3); | 
|  |  | 
|  | ts1.tv_sec -= mono_raw_base; | 
|  | ts2.tv_sec -= mono_base; | 
|  | ts3.tv_sec -= mono_raw_base; | 
|  |  | 
|  | delay = diff_timespec(&ts3, &ts1); | 
|  | if (delay <= 1e-9) { | 
|  | i--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!i || delay < mindelay) { | 
|  | sample->offset = diff_timespec(&ts2, &ts1); | 
|  | sample->offset -= delay / 2.0; | 
|  | sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9; | 
|  | mindelay = delay; | 
|  | } | 
|  | } | 
|  |  | 
|  | return mindelay; | 
|  | } | 
|  |  | 
|  | static void reset_ntp_error(void) | 
|  | { | 
|  | struct timex txc; | 
|  |  | 
|  | txc.modes = ADJ_SETOFFSET; | 
|  | txc.time.tv_sec = 0; | 
|  | txc.time.tv_usec = 0; | 
|  |  | 
|  | if (adjtimex(&txc) < 0) { | 
|  | perror("[FAIL] adjtimex"); | 
|  | ksft_exit_fail(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_frequency(double freq) | 
|  | { | 
|  | struct timex txc; | 
|  | int tick_offset; | 
|  |  | 
|  | tick_offset = 1e6 * freq / user_hz; | 
|  |  | 
|  | txc.modes = ADJ_TICK | ADJ_FREQUENCY; | 
|  | txc.tick = 1000000 / user_hz + tick_offset; | 
|  | txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16); | 
|  |  | 
|  | if (adjtimex(&txc) < 0) { | 
|  | perror("[FAIL] adjtimex"); | 
|  | ksft_exit_fail(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void regress(struct sample *samples, int n, double *intercept, | 
|  | double *slope, double *r_stddev, double *r_max) | 
|  | { | 
|  | double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum; | 
|  | int i; | 
|  |  | 
|  | x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0; | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | x = samples[i].time; | 
|  | y = samples[i].offset; | 
|  |  | 
|  | x_sum += x; | 
|  | y_sum += y; | 
|  | xy_sum += x * y; | 
|  | x2_sum += x * x; | 
|  | } | 
|  |  | 
|  | *slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n); | 
|  | *intercept = (y_sum - *slope * x_sum) / n; | 
|  |  | 
|  | *r_max = 0.0, r2_sum = 0.0; | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | x = samples[i].time; | 
|  | y = samples[i].offset; | 
|  | r = fabs(x * *slope + *intercept - y); | 
|  | if (*r_max < r) | 
|  | *r_max = r; | 
|  | r2_sum += r * r; | 
|  | } | 
|  |  | 
|  | *r_stddev = sqrt(r2_sum / n); | 
|  | } | 
|  |  | 
|  | static int run_test(int calibration, double freq_base, double freq_step) | 
|  | { | 
|  | struct sample samples[SAMPLES]; | 
|  | double intercept, slope, stddev1, max1, stddev2, max2; | 
|  | double freq_error1, freq_error2; | 
|  | int i; | 
|  |  | 
|  | set_frequency(freq_base); | 
|  |  | 
|  | for (i = 0; i < 10; i++) | 
|  | usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10); | 
|  |  | 
|  | reset_ntp_error(); | 
|  |  | 
|  | set_frequency(freq_base + freq_step); | 
|  |  | 
|  | for (i = 0; i < 10; i++) | 
|  | usleep(rand() % 2000000 * STEP_INTERVAL / 10); | 
|  |  | 
|  | set_frequency(freq_base); | 
|  |  | 
|  | for (i = 0; i < SAMPLES; i++) { | 
|  | usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL); | 
|  | get_sample(&samples[i]); | 
|  | } | 
|  |  | 
|  | if (calibration) { | 
|  | regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1); | 
|  | mono_freq_offset = slope; | 
|  | printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n", | 
|  | 1e6 * mono_freq_offset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1); | 
|  | freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - | 
|  | freq_base; | 
|  |  | 
|  | regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope, | 
|  | &stddev2, &max2); | 
|  | freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - | 
|  | freq_base; | 
|  |  | 
|  | printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t", | 
|  | 1e6 * freq_step, | 
|  | 1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1, | 
|  | 1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2); | 
|  |  | 
|  | if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) { | 
|  | printf("[FAIL]\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | printf("[OK]\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void init_test(void) | 
|  | { | 
|  | struct timespec ts; | 
|  | struct sample sample; | 
|  |  | 
|  | if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) { | 
|  | perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)"); | 
|  | ksft_exit_fail(); | 
|  | } | 
|  |  | 
|  | mono_raw_base = ts.tv_sec; | 
|  |  | 
|  | if (clock_gettime(CLOCK_MONOTONIC, &ts)) { | 
|  | perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)"); | 
|  | ksft_exit_fail(); | 
|  | } | 
|  |  | 
|  | mono_base = ts.tv_sec; | 
|  |  | 
|  | user_hz = sysconf(_SC_CLK_TCK); | 
|  |  | 
|  | precision = get_sample(&sample) / 2.0; | 
|  | printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t", | 
|  | 1e9 * precision); | 
|  |  | 
|  | if (precision > MAX_PRECISION) | 
|  | ksft_exit_skip("precision: %.0f ns > MAX_PRECISION: %.0f ns\n", | 
|  | 1e9 * precision, 1e9 * MAX_PRECISION); | 
|  |  | 
|  | printf("[OK]\n"); | 
|  | srand(ts.tv_sec ^ ts.tv_nsec); | 
|  |  | 
|  | run_test(1, 0.0, 0.0); | 
|  | } | 
|  |  | 
|  | int main(int argc, char **argv) | 
|  | { | 
|  | double freq_base, freq_step; | 
|  | int i, j, fails = 0; | 
|  |  | 
|  | init_test(); | 
|  |  | 
|  | printf("Checking response to frequency step:\n"); | 
|  | printf("  Step           1st interval              2nd interval\n"); | 
|  | printf("             Freq    Dev     Max       Freq    Dev     Max\n"); | 
|  |  | 
|  | for (i = 2; i >= 0; i--) { | 
|  | for (j = 0; j < 5; j++) { | 
|  | freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6; | 
|  | freq_step = 10e-6 * (1 << (6 * i)); | 
|  | fails += run_test(0, freq_base, freq_step); | 
|  | } | 
|  | } | 
|  |  | 
|  | set_frequency(0.0); | 
|  |  | 
|  | if (fails) | 
|  | ksft_exit_fail(); | 
|  |  | 
|  | ksft_exit_pass(); | 
|  | } |