|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * | 
|  | * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/kvm.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/srcu.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/debugfs.h> | 
|  |  | 
|  | #include <asm/kvm_ppc.h> | 
|  | #include <asm/kvm_book3s.h> | 
|  | #include <asm/book3s/64/mmu-hash.h> | 
|  | #include <asm/hvcall.h> | 
|  | #include <asm/synch.h> | 
|  | #include <asm/ppc-opcode.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/pte-walk.h> | 
|  |  | 
|  | #include "book3s.h" | 
|  | #include "book3s_hv.h" | 
|  | #include "trace_hv.h" | 
|  |  | 
|  | //#define DEBUG_RESIZE_HPT	1 | 
|  |  | 
|  | #ifdef DEBUG_RESIZE_HPT | 
|  | #define resize_hpt_debug(resize, ...)				\ | 
|  | do {							\ | 
|  | printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\ | 
|  | printk(__VA_ARGS__);				\ | 
|  | } while (0) | 
|  | #else | 
|  | #define resize_hpt_debug(resize, ...)				\ | 
|  | do { } while (0) | 
|  | #endif | 
|  |  | 
|  | static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, | 
|  | long pte_index, unsigned long pteh, | 
|  | unsigned long ptel, unsigned long *pte_idx_ret); | 
|  |  | 
|  | struct kvm_resize_hpt { | 
|  | /* These fields read-only after init */ | 
|  | struct kvm *kvm; | 
|  | struct work_struct work; | 
|  | u32 order; | 
|  |  | 
|  | /* These fields protected by kvm->arch.mmu_setup_lock */ | 
|  |  | 
|  | /* Possible values and their usage: | 
|  | *  <0     an error occurred during allocation, | 
|  | *  -EBUSY allocation is in the progress, | 
|  | *  0      allocation made successfully. | 
|  | */ | 
|  | int error; | 
|  |  | 
|  | /* Private to the work thread, until error != -EBUSY, | 
|  | * then protected by kvm->arch.mmu_setup_lock. | 
|  | */ | 
|  | struct kvm_hpt_info hpt; | 
|  | }; | 
|  |  | 
|  | int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order) | 
|  | { | 
|  | unsigned long hpt = 0; | 
|  | int cma = 0; | 
|  | struct page *page = NULL; | 
|  | struct revmap_entry *rev; | 
|  | unsigned long npte; | 
|  |  | 
|  | if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER)) | 
|  | return -EINVAL; | 
|  |  | 
|  | page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT)); | 
|  | if (page) { | 
|  | hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page)); | 
|  | memset((void *)hpt, 0, (1ul << order)); | 
|  | cma = 1; | 
|  | } | 
|  |  | 
|  | if (!hpt) | 
|  | hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL | 
|  | |__GFP_NOWARN, order - PAGE_SHIFT); | 
|  |  | 
|  | if (!hpt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* HPTEs are 2**4 bytes long */ | 
|  | npte = 1ul << (order - 4); | 
|  |  | 
|  | /* Allocate reverse map array */ | 
|  | rev = vmalloc(array_size(npte, sizeof(struct revmap_entry))); | 
|  | if (!rev) { | 
|  | if (cma) | 
|  | kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT)); | 
|  | else | 
|  | free_pages(hpt, order - PAGE_SHIFT); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | info->order = order; | 
|  | info->virt = hpt; | 
|  | info->cma = cma; | 
|  | info->rev = rev; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info) | 
|  | { | 
|  | atomic64_set(&kvm->arch.mmio_update, 0); | 
|  | kvm->arch.hpt = *info; | 
|  | kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18); | 
|  |  | 
|  | pr_debug("KVM guest htab at %lx (order %ld), LPID %llx\n", | 
|  | info->virt, (long)info->order, kvm->arch.lpid); | 
|  | } | 
|  |  | 
|  | int kvmppc_alloc_reset_hpt(struct kvm *kvm, int order) | 
|  | { | 
|  | int err = -EBUSY; | 
|  | struct kvm_hpt_info info; | 
|  |  | 
|  | mutex_lock(&kvm->arch.mmu_setup_lock); | 
|  | if (kvm->arch.mmu_ready) { | 
|  | kvm->arch.mmu_ready = 0; | 
|  | /* order mmu_ready vs. vcpus_running */ | 
|  | smp_mb(); | 
|  | if (atomic_read(&kvm->arch.vcpus_running)) { | 
|  | kvm->arch.mmu_ready = 1; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (kvm_is_radix(kvm)) { | 
|  | err = kvmppc_switch_mmu_to_hpt(kvm); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kvm->arch.hpt.order == order) { | 
|  | /* We already have a suitable HPT */ | 
|  |  | 
|  | /* Set the entire HPT to 0, i.e. invalid HPTEs */ | 
|  | memset((void *)kvm->arch.hpt.virt, 0, 1ul << order); | 
|  | /* | 
|  | * Reset all the reverse-mapping chains for all memslots | 
|  | */ | 
|  | kvmppc_rmap_reset(kvm); | 
|  | err = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kvm->arch.hpt.virt) { | 
|  | kvmppc_free_hpt(&kvm->arch.hpt); | 
|  | kvmppc_rmap_reset(kvm); | 
|  | } | 
|  |  | 
|  | err = kvmppc_allocate_hpt(&info, order); | 
|  | if (err < 0) | 
|  | goto out; | 
|  | kvmppc_set_hpt(kvm, &info); | 
|  |  | 
|  | out: | 
|  | if (err == 0) | 
|  | /* Ensure that each vcpu will flush its TLB on next entry. */ | 
|  | cpumask_setall(&kvm->arch.need_tlb_flush); | 
|  |  | 
|  | mutex_unlock(&kvm->arch.mmu_setup_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void kvmppc_free_hpt(struct kvm_hpt_info *info) | 
|  | { | 
|  | vfree(info->rev); | 
|  | info->rev = NULL; | 
|  | if (info->cma) | 
|  | kvm_free_hpt_cma(virt_to_page((void *)info->virt), | 
|  | 1 << (info->order - PAGE_SHIFT)); | 
|  | else if (info->virt) | 
|  | free_pages(info->virt, info->order - PAGE_SHIFT); | 
|  | info->virt = 0; | 
|  | info->order = 0; | 
|  | } | 
|  |  | 
|  | /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */ | 
|  | static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize) | 
|  | { | 
|  | return (pgsize > 0x1000) ? HPTE_V_LARGE : 0; | 
|  | } | 
|  |  | 
|  | /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */ | 
|  | static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize) | 
|  | { | 
|  | return (pgsize == 0x10000) ? 0x1000 : 0; | 
|  | } | 
|  |  | 
|  | void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, | 
|  | unsigned long porder) | 
|  | { | 
|  | unsigned long i; | 
|  | unsigned long npages; | 
|  | unsigned long hp_v, hp_r; | 
|  | unsigned long addr, hash; | 
|  | unsigned long psize; | 
|  | unsigned long hp0, hp1; | 
|  | unsigned long idx_ret; | 
|  | long ret; | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  |  | 
|  | psize = 1ul << porder; | 
|  | npages = memslot->npages >> (porder - PAGE_SHIFT); | 
|  |  | 
|  | /* VRMA can't be > 1TB */ | 
|  | if (npages > 1ul << (40 - porder)) | 
|  | npages = 1ul << (40 - porder); | 
|  | /* Can't use more than 1 HPTE per HPTEG */ | 
|  | if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1) | 
|  | npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1; | 
|  |  | 
|  | hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) | | 
|  | HPTE_V_BOLTED | hpte0_pgsize_encoding(psize); | 
|  | hp1 = hpte1_pgsize_encoding(psize) | | 
|  | HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX; | 
|  |  | 
|  | for (i = 0; i < npages; ++i) { | 
|  | addr = i << porder; | 
|  | /* can't use hpt_hash since va > 64 bits */ | 
|  | hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) | 
|  | & kvmppc_hpt_mask(&kvm->arch.hpt); | 
|  | /* | 
|  | * We assume that the hash table is empty and no | 
|  | * vcpus are using it at this stage.  Since we create | 
|  | * at most one HPTE per HPTEG, we just assume entry 7 | 
|  | * is available and use it. | 
|  | */ | 
|  | hash = (hash << 3) + 7; | 
|  | hp_v = hp0 | ((addr >> 16) & ~0x7fUL); | 
|  | hp_r = hp1 | addr; | 
|  | ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r, | 
|  | &idx_ret); | 
|  | if (ret != H_SUCCESS) { | 
|  | pr_err("KVM: map_vrma at %lx failed, ret=%ld\n", | 
|  | addr, ret); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvmppc_mmu_hv_init(void) | 
|  | { | 
|  | unsigned long nr_lpids; | 
|  |  | 
|  | if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_HVMODE)) { | 
|  | if (WARN_ON(mfspr(SPRN_LPID) != 0)) | 
|  | return -EINVAL; | 
|  | nr_lpids = 1UL << mmu_lpid_bits; | 
|  | } else { | 
|  | nr_lpids = 1UL << KVM_MAX_NESTED_GUESTS_SHIFT; | 
|  | } | 
|  |  | 
|  | if (!cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | /* POWER7 has 10-bit LPIDs, POWER8 has 12-bit LPIDs */ | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_207S)) | 
|  | WARN_ON(nr_lpids != 1UL << 12); | 
|  | else | 
|  | WARN_ON(nr_lpids != 1UL << 10); | 
|  |  | 
|  | /* | 
|  | * Reserve the last implemented LPID use in partition | 
|  | * switching for POWER7 and POWER8. | 
|  | */ | 
|  | nr_lpids -= 1; | 
|  | } | 
|  |  | 
|  | kvmppc_init_lpid(nr_lpids); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags, | 
|  | long pte_index, unsigned long pteh, | 
|  | unsigned long ptel, unsigned long *pte_idx_ret) | 
|  | { | 
|  | long ret; | 
|  |  | 
|  | preempt_disable(); | 
|  | ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel, | 
|  | kvm->mm->pgd, false, pte_idx_ret); | 
|  | preempt_enable(); | 
|  | if (ret == H_TOO_HARD) { | 
|  | /* this can't happen */ | 
|  | pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n"); | 
|  | ret = H_RESOURCE;	/* or something */ | 
|  | } | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu, | 
|  | gva_t eaddr) | 
|  | { | 
|  | u64 mask; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < vcpu->arch.slb_nr; i++) { | 
|  | if (!(vcpu->arch.slb[i].orige & SLB_ESID_V)) | 
|  | continue; | 
|  |  | 
|  | if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T) | 
|  | mask = ESID_MASK_1T; | 
|  | else | 
|  | mask = ESID_MASK; | 
|  |  | 
|  | if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0) | 
|  | return &vcpu->arch.slb[i]; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r, | 
|  | unsigned long ea) | 
|  | { | 
|  | unsigned long ra_mask; | 
|  |  | 
|  | ra_mask = kvmppc_actual_pgsz(v, r) - 1; | 
|  | return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask); | 
|  | } | 
|  |  | 
|  | static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, | 
|  | struct kvmppc_pte *gpte, bool data, bool iswrite) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | struct kvmppc_slb *slbe; | 
|  | unsigned long slb_v; | 
|  | unsigned long pp, key; | 
|  | unsigned long v, orig_v, gr; | 
|  | __be64 *hptep; | 
|  | long int index; | 
|  | int virtmode = __kvmppc_get_msr_hv(vcpu) & (data ? MSR_DR : MSR_IR); | 
|  |  | 
|  | if (kvm_is_radix(vcpu->kvm)) | 
|  | return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite); | 
|  |  | 
|  | /* Get SLB entry */ | 
|  | if (virtmode) { | 
|  | slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr); | 
|  | if (!slbe) | 
|  | return -EINVAL; | 
|  | slb_v = slbe->origv; | 
|  | } else { | 
|  | /* real mode access */ | 
|  | slb_v = vcpu->kvm->arch.vrma_slb_v; | 
|  | } | 
|  |  | 
|  | preempt_disable(); | 
|  | /* Find the HPTE in the hash table */ | 
|  | index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v, | 
|  | HPTE_V_VALID | HPTE_V_ABSENT); | 
|  | if (index < 0) { | 
|  | preempt_enable(); | 
|  | return -ENOENT; | 
|  | } | 
|  | hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); | 
|  | v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) | 
|  | v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1])); | 
|  | gr = kvm->arch.hpt.rev[index].guest_rpte; | 
|  |  | 
|  | unlock_hpte(hptep, orig_v); | 
|  | preempt_enable(); | 
|  |  | 
|  | gpte->eaddr = eaddr; | 
|  | gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff); | 
|  |  | 
|  | /* Get PP bits and key for permission check */ | 
|  | pp = gr & (HPTE_R_PP0 | HPTE_R_PP); | 
|  | key = (__kvmppc_get_msr_hv(vcpu) & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; | 
|  | key &= slb_v; | 
|  |  | 
|  | /* Calculate permissions */ | 
|  | gpte->may_read = hpte_read_permission(pp, key); | 
|  | gpte->may_write = hpte_write_permission(pp, key); | 
|  | gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G)); | 
|  |  | 
|  | /* Storage key permission check for POWER7 */ | 
|  | if (data && virtmode) { | 
|  | int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr); | 
|  | if (amrfield & 1) | 
|  | gpte->may_read = 0; | 
|  | if (amrfield & 2) | 
|  | gpte->may_write = 0; | 
|  | } | 
|  |  | 
|  | /* Get the guest physical address */ | 
|  | gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Quick test for whether an instruction is a load or a store. | 
|  | * If the instruction is a load or a store, then this will indicate | 
|  | * which it is, at least on server processors.  (Embedded processors | 
|  | * have some external PID instructions that don't follow the rule | 
|  | * embodied here.)  If the instruction isn't a load or store, then | 
|  | * this doesn't return anything useful. | 
|  | */ | 
|  | static int instruction_is_store(ppc_inst_t instr) | 
|  | { | 
|  | unsigned int mask; | 
|  | unsigned int suffix; | 
|  |  | 
|  | mask = 0x10000000; | 
|  | suffix = ppc_inst_val(instr); | 
|  | if (ppc_inst_prefixed(instr)) | 
|  | suffix = ppc_inst_suffix(instr); | 
|  | else if ((suffix & 0xfc000000) == 0x7c000000) | 
|  | mask = 0x100;		/* major opcode 31 */ | 
|  | return (suffix & mask) != 0; | 
|  | } | 
|  |  | 
|  | int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu, | 
|  | unsigned long gpa, gva_t ea, int is_store) | 
|  | { | 
|  | ppc_inst_t last_inst; | 
|  | bool is_prefixed = !!(kvmppc_get_msr(vcpu) & SRR1_PREFIXED); | 
|  |  | 
|  | /* | 
|  | * Fast path - check if the guest physical address corresponds to a | 
|  | * device on the FAST_MMIO_BUS, if so we can avoid loading the | 
|  | * instruction all together, then we can just handle it and return. | 
|  | */ | 
|  | if (is_store) { | 
|  | int idx, ret; | 
|  |  | 
|  | idx = srcu_read_lock(&vcpu->kvm->srcu); | 
|  | ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0, | 
|  | NULL); | 
|  | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
|  | if (!ret) { | 
|  | kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + (is_prefixed ? 8 : 4)); | 
|  | return RESUME_GUEST; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we fail, we just return to the guest and try executing it again. | 
|  | */ | 
|  | if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != | 
|  | EMULATE_DONE) | 
|  | return RESUME_GUEST; | 
|  |  | 
|  | /* | 
|  | * WARNING: We do not know for sure whether the instruction we just | 
|  | * read from memory is the same that caused the fault in the first | 
|  | * place. | 
|  | * | 
|  | * If the fault is prefixed but the instruction is not or vice | 
|  | * versa, try again so that we don't advance pc the wrong amount. | 
|  | */ | 
|  | if (ppc_inst_prefixed(last_inst) != is_prefixed) | 
|  | return RESUME_GUEST; | 
|  |  | 
|  | /* | 
|  | * If the instruction we read is neither an load or a store, | 
|  | * then it can't access memory, so we don't need to worry about | 
|  | * enforcing access permissions.  So, assuming it is a load or | 
|  | * store, we just check that its direction (load or store) is | 
|  | * consistent with the original fault, since that's what we | 
|  | * checked the access permissions against.  If there is a mismatch | 
|  | * we just return and retry the instruction. | 
|  | */ | 
|  |  | 
|  | if (instruction_is_store(last_inst) != !!is_store) | 
|  | return RESUME_GUEST; | 
|  |  | 
|  | /* | 
|  | * Emulated accesses are emulated by looking at the hash for | 
|  | * translation once, then performing the access later. The | 
|  | * translation could be invalidated in the meantime in which | 
|  | * point performing the subsequent memory access on the old | 
|  | * physical address could possibly be a security hole for the | 
|  | * guest (but not the host). | 
|  | * | 
|  | * This is less of an issue for MMIO stores since they aren't | 
|  | * globally visible. It could be an issue for MMIO loads to | 
|  | * a certain extent but we'll ignore it for now. | 
|  | */ | 
|  |  | 
|  | vcpu->arch.paddr_accessed = gpa; | 
|  | vcpu->arch.vaddr_accessed = ea; | 
|  | return kvmppc_emulate_mmio(vcpu); | 
|  | } | 
|  |  | 
|  | int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu, | 
|  | unsigned long ea, unsigned long dsisr) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | unsigned long hpte[3], r; | 
|  | unsigned long hnow_v, hnow_r; | 
|  | __be64 *hptep; | 
|  | unsigned long mmu_seq, psize, pte_size; | 
|  | unsigned long gpa_base, gfn_base; | 
|  | unsigned long gpa, gfn, hva, pfn, hpa; | 
|  | struct kvm_memory_slot *memslot; | 
|  | unsigned long *rmap; | 
|  | struct revmap_entry *rev; | 
|  | struct page *page; | 
|  | long index, ret; | 
|  | bool is_ci; | 
|  | bool writing, write_ok; | 
|  | unsigned int shift; | 
|  | unsigned long rcbits; | 
|  | long mmio_update; | 
|  | pte_t pte, *ptep; | 
|  |  | 
|  | if (kvm_is_radix(kvm)) | 
|  | return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr); | 
|  |  | 
|  | /* | 
|  | * Real-mode code has already searched the HPT and found the | 
|  | * entry we're interested in.  Lock the entry and check that | 
|  | * it hasn't changed.  If it has, just return and re-execute the | 
|  | * instruction. | 
|  | */ | 
|  | if (ea != vcpu->arch.pgfault_addr) | 
|  | return RESUME_GUEST; | 
|  |  | 
|  | if (vcpu->arch.pgfault_cache) { | 
|  | mmio_update = atomic64_read(&kvm->arch.mmio_update); | 
|  | if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) { | 
|  | r = vcpu->arch.pgfault_cache->rpte; | 
|  | psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0], | 
|  | r); | 
|  | gpa_base = r & HPTE_R_RPN & ~(psize - 1); | 
|  | gfn_base = gpa_base >> PAGE_SHIFT; | 
|  | gpa = gpa_base | (ea & (psize - 1)); | 
|  | return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, | 
|  | dsisr & DSISR_ISSTORE); | 
|  | } | 
|  | } | 
|  | index = vcpu->arch.pgfault_index; | 
|  | hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); | 
|  | rev = &kvm->arch.hpt.rev[index]; | 
|  | preempt_disable(); | 
|  | while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) | 
|  | cpu_relax(); | 
|  | hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK; | 
|  | hpte[1] = be64_to_cpu(hptep[1]); | 
|  | hpte[2] = r = rev->guest_rpte; | 
|  | unlock_hpte(hptep, hpte[0]); | 
|  | preempt_enable(); | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]); | 
|  | hpte[1] = hpte_new_to_old_r(hpte[1]); | 
|  | } | 
|  | if (hpte[0] != vcpu->arch.pgfault_hpte[0] || | 
|  | hpte[1] != vcpu->arch.pgfault_hpte[1]) | 
|  | return RESUME_GUEST; | 
|  |  | 
|  | /* Translate the logical address and get the page */ | 
|  | psize = kvmppc_actual_pgsz(hpte[0], r); | 
|  | gpa_base = r & HPTE_R_RPN & ~(psize - 1); | 
|  | gfn_base = gpa_base >> PAGE_SHIFT; | 
|  | gpa = gpa_base | (ea & (psize - 1)); | 
|  | gfn = gpa >> PAGE_SHIFT; | 
|  | memslot = gfn_to_memslot(kvm, gfn); | 
|  |  | 
|  | trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr); | 
|  |  | 
|  | /* No memslot means it's an emulated MMIO region */ | 
|  | if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) | 
|  | return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, | 
|  | dsisr & DSISR_ISSTORE); | 
|  |  | 
|  | /* | 
|  | * This should never happen, because of the slot_is_aligned() | 
|  | * check in kvmppc_do_h_enter(). | 
|  | */ | 
|  | if (gfn_base < memslot->base_gfn) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* used to check for invalidations in progress */ | 
|  | mmu_seq = kvm->mmu_invalidate_seq; | 
|  | smp_rmb(); | 
|  |  | 
|  | ret = -EFAULT; | 
|  | page = NULL; | 
|  | writing = (dsisr & DSISR_ISSTORE) != 0; | 
|  | /* If writing != 0, then the HPTE must allow writing, if we get here */ | 
|  | write_ok = writing; | 
|  | hva = gfn_to_hva_memslot(memslot, gfn); | 
|  |  | 
|  | /* | 
|  | * Do a fast check first, since __gfn_to_pfn_memslot doesn't | 
|  | * do it with !atomic && !async, which is how we call it. | 
|  | * We always ask for write permission since the common case | 
|  | * is that the page is writable. | 
|  | */ | 
|  | if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) { | 
|  | write_ok = true; | 
|  | } else { | 
|  | /* Call KVM generic code to do the slow-path check */ | 
|  | pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL, | 
|  | writing, &write_ok, NULL); | 
|  | if (is_error_noslot_pfn(pfn)) | 
|  | return -EFAULT; | 
|  | page = NULL; | 
|  | if (pfn_valid(pfn)) { | 
|  | page = pfn_to_page(pfn); | 
|  | if (PageReserved(page)) | 
|  | page = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the PTE from the process' radix tree and use that | 
|  | * so we get the shift and attribute bits. | 
|  | */ | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); | 
|  | pte = __pte(0); | 
|  | if (ptep) | 
|  | pte = READ_ONCE(*ptep); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | /* | 
|  | * If the PTE disappeared temporarily due to a THP | 
|  | * collapse, just return and let the guest try again. | 
|  | */ | 
|  | if (!pte_present(pte)) { | 
|  | if (page) | 
|  | put_page(page); | 
|  | return RESUME_GUEST; | 
|  | } | 
|  | hpa = pte_pfn(pte) << PAGE_SHIFT; | 
|  | pte_size = PAGE_SIZE; | 
|  | if (shift) | 
|  | pte_size = 1ul << shift; | 
|  | is_ci = pte_ci(pte); | 
|  |  | 
|  | if (psize > pte_size) | 
|  | goto out_put; | 
|  | if (pte_size > psize) | 
|  | hpa |= hva & (pte_size - psize); | 
|  |  | 
|  | /* Check WIMG vs. the actual page we're accessing */ | 
|  | if (!hpte_cache_flags_ok(r, is_ci)) { | 
|  | if (is_ci) | 
|  | goto out_put; | 
|  | /* | 
|  | * Allow guest to map emulated device memory as | 
|  | * uncacheable, but actually make it cacheable. | 
|  | */ | 
|  | r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the HPTE to point to hpa. | 
|  | * Since the hpa is at PAGE_SIZE granularity, make sure we | 
|  | * don't mask out lower-order bits if psize < PAGE_SIZE. | 
|  | */ | 
|  | if (psize < PAGE_SIZE) | 
|  | psize = PAGE_SIZE; | 
|  | r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa; | 
|  | if (hpte_is_writable(r) && !write_ok) | 
|  | r = hpte_make_readonly(r); | 
|  | ret = RESUME_GUEST; | 
|  | preempt_disable(); | 
|  | while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) | 
|  | cpu_relax(); | 
|  | hnow_v = be64_to_cpu(hptep[0]); | 
|  | hnow_r = be64_to_cpu(hptep[1]); | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | hnow_v = hpte_new_to_old_v(hnow_v, hnow_r); | 
|  | hnow_r = hpte_new_to_old_r(hnow_r); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the HPT is being resized, don't update the HPTE, | 
|  | * instead let the guest retry after the resize operation is complete. | 
|  | * The synchronization for mmu_ready test vs. set is provided | 
|  | * by the HPTE lock. | 
|  | */ | 
|  | if (!kvm->arch.mmu_ready) | 
|  | goto out_unlock; | 
|  |  | 
|  | if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] || | 
|  | rev->guest_rpte != hpte[2]) | 
|  | /* HPTE has been changed under us; let the guest retry */ | 
|  | goto out_unlock; | 
|  | hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID; | 
|  |  | 
|  | /* Always put the HPTE in the rmap chain for the page base address */ | 
|  | rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn]; | 
|  | lock_rmap(rmap); | 
|  |  | 
|  | /* Check if we might have been invalidated; let the guest retry if so */ | 
|  | ret = RESUME_GUEST; | 
|  | if (mmu_invalidate_retry(vcpu->kvm, mmu_seq)) { | 
|  | unlock_rmap(rmap); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */ | 
|  | rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; | 
|  | r &= rcbits | ~(HPTE_R_R | HPTE_R_C); | 
|  |  | 
|  | if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) { | 
|  | /* HPTE was previously valid, so we need to invalidate it */ | 
|  | unlock_rmap(rmap); | 
|  | hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); | 
|  | kvmppc_invalidate_hpte(kvm, hptep, index); | 
|  | /* don't lose previous R and C bits */ | 
|  | r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); | 
|  | } else { | 
|  | kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0); | 
|  | } | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | r = hpte_old_to_new_r(hpte[0], r); | 
|  | hpte[0] = hpte_old_to_new_v(hpte[0]); | 
|  | } | 
|  | hptep[1] = cpu_to_be64(r); | 
|  | eieio(); | 
|  | __unlock_hpte(hptep, hpte[0]); | 
|  | asm volatile("ptesync" : : : "memory"); | 
|  | preempt_enable(); | 
|  | if (page && hpte_is_writable(r)) | 
|  | set_page_dirty_lock(page); | 
|  |  | 
|  | out_put: | 
|  | trace_kvm_page_fault_exit(vcpu, hpte, ret); | 
|  |  | 
|  | if (page) | 
|  | put_page(page); | 
|  | return ret; | 
|  |  | 
|  | out_unlock: | 
|  | __unlock_hpte(hptep, be64_to_cpu(hptep[0])); | 
|  | preempt_enable(); | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | void kvmppc_rmap_reset(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_memslots *slots; | 
|  | struct kvm_memory_slot *memslot; | 
|  | int srcu_idx, bkt; | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&kvm->srcu); | 
|  | slots = kvm_memslots(kvm); | 
|  | kvm_for_each_memslot(memslot, bkt, slots) { | 
|  | /* Mutual exclusion with kvm_unmap_hva_range etc. */ | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | /* | 
|  | * This assumes it is acceptable to lose reference and | 
|  | * change bits across a reset. | 
|  | */ | 
|  | memset(memslot->arch.rmap, 0, | 
|  | memslot->npages * sizeof(*memslot->arch.rmap)); | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  | } | 
|  | srcu_read_unlock(&kvm->srcu, srcu_idx); | 
|  | } | 
|  |  | 
|  | /* Must be called with both HPTE and rmap locked */ | 
|  | static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i, | 
|  | struct kvm_memory_slot *memslot, | 
|  | unsigned long *rmapp, unsigned long gfn) | 
|  | { | 
|  | __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); | 
|  | struct revmap_entry *rev = kvm->arch.hpt.rev; | 
|  | unsigned long j, h; | 
|  | unsigned long ptel, psize, rcbits; | 
|  |  | 
|  | j = rev[i].forw; | 
|  | if (j == i) { | 
|  | /* chain is now empty */ | 
|  | *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); | 
|  | } else { | 
|  | /* remove i from chain */ | 
|  | h = rev[i].back; | 
|  | rev[h].forw = j; | 
|  | rev[j].back = h; | 
|  | rev[i].forw = rev[i].back = i; | 
|  | *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j; | 
|  | } | 
|  |  | 
|  | /* Now check and modify the HPTE */ | 
|  | ptel = rev[i].guest_rpte; | 
|  | psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel); | 
|  | if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && | 
|  | hpte_rpn(ptel, psize) == gfn) { | 
|  | hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); | 
|  | kvmppc_invalidate_hpte(kvm, hptep, i); | 
|  | hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO); | 
|  | /* Harvest R and C */ | 
|  | rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C); | 
|  | *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT; | 
|  | if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap) | 
|  | kvmppc_update_dirty_map(memslot, gfn, psize); | 
|  | if (rcbits & ~rev[i].guest_rpte) { | 
|  | rev[i].guest_rpte = ptel | rcbits; | 
|  | note_hpte_modification(kvm, &rev[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | unsigned long gfn) | 
|  | { | 
|  | unsigned long i; | 
|  | __be64 *hptep; | 
|  | unsigned long *rmapp; | 
|  |  | 
|  | rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; | 
|  | for (;;) { | 
|  | lock_rmap(rmapp); | 
|  | if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { | 
|  | unlock_rmap(rmapp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To avoid an ABBA deadlock with the HPTE lock bit, | 
|  | * we can't spin on the HPTE lock while holding the | 
|  | * rmap chain lock. | 
|  | */ | 
|  | i = *rmapp & KVMPPC_RMAP_INDEX; | 
|  | hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); | 
|  | if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { | 
|  | /* unlock rmap before spinning on the HPTE lock */ | 
|  | unlock_rmap(rmapp); | 
|  | while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) | 
|  | cpu_relax(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn); | 
|  | unlock_rmap(rmapp); | 
|  | __unlock_hpte(hptep, be64_to_cpu(hptep[0])); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool kvm_unmap_gfn_range_hv(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | gfn_t gfn; | 
|  |  | 
|  | if (kvm_is_radix(kvm)) { | 
|  | for (gfn = range->start; gfn < range->end; gfn++) | 
|  | kvm_unmap_radix(kvm, range->slot, gfn); | 
|  | } else { | 
|  | for (gfn = range->start; gfn < range->end; gfn++) | 
|  | kvm_unmap_rmapp(kvm, range->slot, gfn); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void kvmppc_core_flush_memslot_hv(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot) | 
|  | { | 
|  | unsigned long gfn; | 
|  | unsigned long n; | 
|  | unsigned long *rmapp; | 
|  |  | 
|  | gfn = memslot->base_gfn; | 
|  | rmapp = memslot->arch.rmap; | 
|  | if (kvm_is_radix(kvm)) { | 
|  | kvmppc_radix_flush_memslot(kvm, memslot); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (n = memslot->npages; n; --n, ++gfn) { | 
|  | /* | 
|  | * Testing the present bit without locking is OK because | 
|  | * the memslot has been marked invalid already, and hence | 
|  | * no new HPTEs referencing this page can be created, | 
|  | * thus the present bit can't go from 0 to 1. | 
|  | */ | 
|  | if (*rmapp & KVMPPC_RMAP_PRESENT) | 
|  | kvm_unmap_rmapp(kvm, memslot, gfn); | 
|  | ++rmapp; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | unsigned long gfn) | 
|  | { | 
|  | struct revmap_entry *rev = kvm->arch.hpt.rev; | 
|  | unsigned long head, i, j; | 
|  | __be64 *hptep; | 
|  | bool ret = false; | 
|  | unsigned long *rmapp; | 
|  |  | 
|  | rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; | 
|  | retry: | 
|  | lock_rmap(rmapp); | 
|  | if (*rmapp & KVMPPC_RMAP_REFERENCED) { | 
|  | *rmapp &= ~KVMPPC_RMAP_REFERENCED; | 
|  | ret = true; | 
|  | } | 
|  | if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { | 
|  | unlock_rmap(rmapp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | i = head = *rmapp & KVMPPC_RMAP_INDEX; | 
|  | do { | 
|  | hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); | 
|  | j = rev[i].forw; | 
|  |  | 
|  | /* If this HPTE isn't referenced, ignore it */ | 
|  | if (!(be64_to_cpu(hptep[1]) & HPTE_R_R)) | 
|  | continue; | 
|  |  | 
|  | if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { | 
|  | /* unlock rmap before spinning on the HPTE lock */ | 
|  | unlock_rmap(rmapp); | 
|  | while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK) | 
|  | cpu_relax(); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* Now check and modify the HPTE */ | 
|  | if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) && | 
|  | (be64_to_cpu(hptep[1]) & HPTE_R_R)) { | 
|  | kvmppc_clear_ref_hpte(kvm, hptep, i); | 
|  | if (!(rev[i].guest_rpte & HPTE_R_R)) { | 
|  | rev[i].guest_rpte |= HPTE_R_R; | 
|  | note_hpte_modification(kvm, &rev[i]); | 
|  | } | 
|  | ret = true; | 
|  | } | 
|  | __unlock_hpte(hptep, be64_to_cpu(hptep[0])); | 
|  | } while ((i = j) != head); | 
|  |  | 
|  | unlock_rmap(rmapp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool kvm_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | gfn_t gfn; | 
|  | bool ret = false; | 
|  |  | 
|  | if (kvm_is_radix(kvm)) { | 
|  | for (gfn = range->start; gfn < range->end; gfn++) | 
|  | ret |= kvm_age_radix(kvm, range->slot, gfn); | 
|  | } else { | 
|  | for (gfn = range->start; gfn < range->end; gfn++) | 
|  | ret |= kvm_age_rmapp(kvm, range->slot, gfn); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot, | 
|  | unsigned long gfn) | 
|  | { | 
|  | struct revmap_entry *rev = kvm->arch.hpt.rev; | 
|  | unsigned long head, i, j; | 
|  | unsigned long *hp; | 
|  | bool ret = true; | 
|  | unsigned long *rmapp; | 
|  |  | 
|  | rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; | 
|  | if (*rmapp & KVMPPC_RMAP_REFERENCED) | 
|  | return true; | 
|  |  | 
|  | lock_rmap(rmapp); | 
|  | if (*rmapp & KVMPPC_RMAP_REFERENCED) | 
|  | goto out; | 
|  |  | 
|  | if (*rmapp & KVMPPC_RMAP_PRESENT) { | 
|  | i = head = *rmapp & KVMPPC_RMAP_INDEX; | 
|  | do { | 
|  | hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4)); | 
|  | j = rev[i].forw; | 
|  | if (be64_to_cpu(hp[1]) & HPTE_R_R) | 
|  | goto out; | 
|  | } while ((i = j) != head); | 
|  | } | 
|  | ret = false; | 
|  |  | 
|  | out: | 
|  | unlock_rmap(rmapp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool kvm_test_age_gfn_hv(struct kvm *kvm, struct kvm_gfn_range *range) | 
|  | { | 
|  | WARN_ON(range->start + 1 != range->end); | 
|  |  | 
|  | if (kvm_is_radix(kvm)) | 
|  | return kvm_test_age_radix(kvm, range->slot, range->start); | 
|  | else | 
|  | return kvm_test_age_rmapp(kvm, range->slot, range->start); | 
|  | } | 
|  |  | 
|  | static int vcpus_running(struct kvm *kvm) | 
|  | { | 
|  | return atomic_read(&kvm->arch.vcpus_running) != 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the number of system pages that are dirty. | 
|  | * This can be more than 1 if we find a huge-page HPTE. | 
|  | */ | 
|  | static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp) | 
|  | { | 
|  | struct revmap_entry *rev = kvm->arch.hpt.rev; | 
|  | unsigned long head, i, j; | 
|  | unsigned long n; | 
|  | unsigned long v, r; | 
|  | __be64 *hptep; | 
|  | int npages_dirty = 0; | 
|  |  | 
|  | retry: | 
|  | lock_rmap(rmapp); | 
|  | if (!(*rmapp & KVMPPC_RMAP_PRESENT)) { | 
|  | unlock_rmap(rmapp); | 
|  | return npages_dirty; | 
|  | } | 
|  |  | 
|  | i = head = *rmapp & KVMPPC_RMAP_INDEX; | 
|  | do { | 
|  | unsigned long hptep1; | 
|  | hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4)); | 
|  | j = rev[i].forw; | 
|  |  | 
|  | /* | 
|  | * Checking the C (changed) bit here is racy since there | 
|  | * is no guarantee about when the hardware writes it back. | 
|  | * If the HPTE is not writable then it is stable since the | 
|  | * page can't be written to, and we would have done a tlbie | 
|  | * (which forces the hardware to complete any writeback) | 
|  | * when making the HPTE read-only. | 
|  | * If vcpus are running then this call is racy anyway | 
|  | * since the page could get dirtied subsequently, so we | 
|  | * expect there to be a further call which would pick up | 
|  | * any delayed C bit writeback. | 
|  | * Otherwise we need to do the tlbie even if C==0 in | 
|  | * order to pick up any delayed writeback of C. | 
|  | */ | 
|  | hptep1 = be64_to_cpu(hptep[1]); | 
|  | if (!(hptep1 & HPTE_R_C) && | 
|  | (!hpte_is_writable(hptep1) || vcpus_running(kvm))) | 
|  | continue; | 
|  |  | 
|  | if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) { | 
|  | /* unlock rmap before spinning on the HPTE lock */ | 
|  | unlock_rmap(rmapp); | 
|  | while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK)) | 
|  | cpu_relax(); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* Now check and modify the HPTE */ | 
|  | if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) { | 
|  | __unlock_hpte(hptep, be64_to_cpu(hptep[0])); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* need to make it temporarily absent so C is stable */ | 
|  | hptep[0] |= cpu_to_be64(HPTE_V_ABSENT); | 
|  | kvmppc_invalidate_hpte(kvm, hptep, i); | 
|  | v = be64_to_cpu(hptep[0]); | 
|  | r = be64_to_cpu(hptep[1]); | 
|  | if (r & HPTE_R_C) { | 
|  | hptep[1] = cpu_to_be64(r & ~HPTE_R_C); | 
|  | if (!(rev[i].guest_rpte & HPTE_R_C)) { | 
|  | rev[i].guest_rpte |= HPTE_R_C; | 
|  | note_hpte_modification(kvm, &rev[i]); | 
|  | } | 
|  | n = kvmppc_actual_pgsz(v, r); | 
|  | n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | if (n > npages_dirty) | 
|  | npages_dirty = n; | 
|  | eieio(); | 
|  | } | 
|  | v &= ~HPTE_V_ABSENT; | 
|  | v |= HPTE_V_VALID; | 
|  | __unlock_hpte(hptep, v); | 
|  | } while ((i = j) != head); | 
|  |  | 
|  | unlock_rmap(rmapp); | 
|  | return npages_dirty; | 
|  | } | 
|  |  | 
|  | void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa, | 
|  | struct kvm_memory_slot *memslot, | 
|  | unsigned long *map) | 
|  | { | 
|  | unsigned long gfn; | 
|  |  | 
|  | if (!vpa->dirty || !vpa->pinned_addr) | 
|  | return; | 
|  | gfn = vpa->gpa >> PAGE_SHIFT; | 
|  | if (gfn < memslot->base_gfn || | 
|  | gfn >= memslot->base_gfn + memslot->npages) | 
|  | return; | 
|  |  | 
|  | vpa->dirty = false; | 
|  | if (map) | 
|  | __set_bit_le(gfn - memslot->base_gfn, map); | 
|  | } | 
|  |  | 
|  | long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm, | 
|  | struct kvm_memory_slot *memslot, unsigned long *map) | 
|  | { | 
|  | unsigned long i; | 
|  | unsigned long *rmapp; | 
|  |  | 
|  | preempt_disable(); | 
|  | rmapp = memslot->arch.rmap; | 
|  | for (i = 0; i < memslot->npages; ++i) { | 
|  | int npages = kvm_test_clear_dirty_npages(kvm, rmapp); | 
|  | /* | 
|  | * Note that if npages > 0 then i must be a multiple of npages, | 
|  | * since we always put huge-page HPTEs in the rmap chain | 
|  | * corresponding to their page base address. | 
|  | */ | 
|  | if (npages) | 
|  | set_dirty_bits(map, i, npages); | 
|  | ++rmapp; | 
|  | } | 
|  | preempt_enable(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa, | 
|  | unsigned long *nb_ret) | 
|  | { | 
|  | struct kvm_memory_slot *memslot; | 
|  | unsigned long gfn = gpa >> PAGE_SHIFT; | 
|  | struct page *page, *pages[1]; | 
|  | int npages; | 
|  | unsigned long hva, offset; | 
|  | int srcu_idx; | 
|  |  | 
|  | srcu_idx = srcu_read_lock(&kvm->srcu); | 
|  | memslot = gfn_to_memslot(kvm, gfn); | 
|  | if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) | 
|  | goto err; | 
|  | hva = gfn_to_hva_memslot(memslot, gfn); | 
|  | npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages); | 
|  | if (npages < 1) | 
|  | goto err; | 
|  | page = pages[0]; | 
|  | srcu_read_unlock(&kvm->srcu, srcu_idx); | 
|  |  | 
|  | offset = gpa & (PAGE_SIZE - 1); | 
|  | if (nb_ret) | 
|  | *nb_ret = PAGE_SIZE - offset; | 
|  | return page_address(page) + offset; | 
|  |  | 
|  | err: | 
|  | srcu_read_unlock(&kvm->srcu, srcu_idx); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa, | 
|  | bool dirty) | 
|  | { | 
|  | struct page *page = virt_to_page(va); | 
|  | struct kvm_memory_slot *memslot; | 
|  | unsigned long gfn; | 
|  | int srcu_idx; | 
|  |  | 
|  | put_page(page); | 
|  |  | 
|  | if (!dirty) | 
|  | return; | 
|  |  | 
|  | /* We need to mark this page dirty in the memslot dirty_bitmap, if any */ | 
|  | gfn = gpa >> PAGE_SHIFT; | 
|  | srcu_idx = srcu_read_lock(&kvm->srcu); | 
|  | memslot = gfn_to_memslot(kvm, gfn); | 
|  | if (memslot && memslot->dirty_bitmap) | 
|  | set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap); | 
|  | srcu_read_unlock(&kvm->srcu, srcu_idx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * HPT resizing | 
|  | */ | 
|  | static int resize_hpt_allocate(struct kvm_resize_hpt *resize) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = kvmppc_allocate_hpt(&resize->hpt, resize->order); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  |  | 
|  | resize_hpt_debug(resize, "%s(): HPT @ 0x%lx\n", __func__, | 
|  | resize->hpt.virt); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize, | 
|  | unsigned long idx) | 
|  | { | 
|  | struct kvm *kvm = resize->kvm; | 
|  | struct kvm_hpt_info *old = &kvm->arch.hpt; | 
|  | struct kvm_hpt_info *new = &resize->hpt; | 
|  | unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1; | 
|  | unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1; | 
|  | __be64 *hptep, *new_hptep; | 
|  | unsigned long vpte, rpte, guest_rpte; | 
|  | int ret; | 
|  | struct revmap_entry *rev; | 
|  | unsigned long apsize, avpn, pteg, hash; | 
|  | unsigned long new_idx, new_pteg, replace_vpte; | 
|  | int pshift; | 
|  |  | 
|  | hptep = (__be64 *)(old->virt + (idx << 4)); | 
|  |  | 
|  | /* Guest is stopped, so new HPTEs can't be added or faulted | 
|  | * in, only unmapped or altered by host actions.  So, it's | 
|  | * safe to check this before we take the HPTE lock */ | 
|  | vpte = be64_to_cpu(hptep[0]); | 
|  | if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) | 
|  | return 0; /* nothing to do */ | 
|  |  | 
|  | while (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) | 
|  | cpu_relax(); | 
|  |  | 
|  | vpte = be64_to_cpu(hptep[0]); | 
|  |  | 
|  | ret = 0; | 
|  | if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT)) | 
|  | /* Nothing to do */ | 
|  | goto out; | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | rpte = be64_to_cpu(hptep[1]); | 
|  | vpte = hpte_new_to_old_v(vpte, rpte); | 
|  | } | 
|  |  | 
|  | /* Unmap */ | 
|  | rev = &old->rev[idx]; | 
|  | guest_rpte = rev->guest_rpte; | 
|  |  | 
|  | ret = -EIO; | 
|  | apsize = kvmppc_actual_pgsz(vpte, guest_rpte); | 
|  | if (!apsize) | 
|  | goto out; | 
|  |  | 
|  | if (vpte & HPTE_V_VALID) { | 
|  | unsigned long gfn = hpte_rpn(guest_rpte, apsize); | 
|  | int srcu_idx = srcu_read_lock(&kvm->srcu); | 
|  | struct kvm_memory_slot *memslot = | 
|  | __gfn_to_memslot(kvm_memslots(kvm), gfn); | 
|  |  | 
|  | if (memslot) { | 
|  | unsigned long *rmapp; | 
|  | rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; | 
|  |  | 
|  | lock_rmap(rmapp); | 
|  | kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn); | 
|  | unlock_rmap(rmapp); | 
|  | } | 
|  |  | 
|  | srcu_read_unlock(&kvm->srcu, srcu_idx); | 
|  | } | 
|  |  | 
|  | /* Reload PTE after unmap */ | 
|  | vpte = be64_to_cpu(hptep[0]); | 
|  | BUG_ON(vpte & HPTE_V_VALID); | 
|  | BUG_ON(!(vpte & HPTE_V_ABSENT)); | 
|  |  | 
|  | ret = 0; | 
|  | if (!(vpte & HPTE_V_BOLTED)) | 
|  | goto out; | 
|  |  | 
|  | rpte = be64_to_cpu(hptep[1]); | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | vpte = hpte_new_to_old_v(vpte, rpte); | 
|  | rpte = hpte_new_to_old_r(rpte); | 
|  | } | 
|  |  | 
|  | pshift = kvmppc_hpte_base_page_shift(vpte, rpte); | 
|  | avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23); | 
|  | pteg = idx / HPTES_PER_GROUP; | 
|  | if (vpte & HPTE_V_SECONDARY) | 
|  | pteg = ~pteg; | 
|  |  | 
|  | if (!(vpte & HPTE_V_1TB_SEG)) { | 
|  | unsigned long offset, vsid; | 
|  |  | 
|  | /* We only have 28 - 23 bits of offset in avpn */ | 
|  | offset = (avpn & 0x1f) << 23; | 
|  | vsid = avpn >> 5; | 
|  | /* We can find more bits from the pteg value */ | 
|  | if (pshift < 23) | 
|  | offset |= ((vsid ^ pteg) & old_hash_mask) << pshift; | 
|  |  | 
|  | hash = vsid ^ (offset >> pshift); | 
|  | } else { | 
|  | unsigned long offset, vsid; | 
|  |  | 
|  | /* We only have 40 - 23 bits of seg_off in avpn */ | 
|  | offset = (avpn & 0x1ffff) << 23; | 
|  | vsid = avpn >> 17; | 
|  | if (pshift < 23) | 
|  | offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift; | 
|  |  | 
|  | hash = vsid ^ (vsid << 25) ^ (offset >> pshift); | 
|  | } | 
|  |  | 
|  | new_pteg = hash & new_hash_mask; | 
|  | if (vpte & HPTE_V_SECONDARY) | 
|  | new_pteg = ~hash & new_hash_mask; | 
|  |  | 
|  | new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP); | 
|  | new_hptep = (__be64 *)(new->virt + (new_idx << 4)); | 
|  |  | 
|  | replace_vpte = be64_to_cpu(new_hptep[0]); | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | unsigned long replace_rpte = be64_to_cpu(new_hptep[1]); | 
|  | replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte); | 
|  | } | 
|  |  | 
|  | if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) { | 
|  | BUG_ON(new->order >= old->order); | 
|  |  | 
|  | if (replace_vpte & HPTE_V_BOLTED) { | 
|  | if (vpte & HPTE_V_BOLTED) | 
|  | /* Bolted collision, nothing we can do */ | 
|  | ret = -ENOSPC; | 
|  | /* Discard the new HPTE */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Discard the previous HPTE */ | 
|  | } | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | rpte = hpte_old_to_new_r(vpte, rpte); | 
|  | vpte = hpte_old_to_new_v(vpte); | 
|  | } | 
|  |  | 
|  | new_hptep[1] = cpu_to_be64(rpte); | 
|  | new->rev[new_idx].guest_rpte = guest_rpte; | 
|  | /* No need for a barrier, since new HPT isn't active */ | 
|  | new_hptep[0] = cpu_to_be64(vpte); | 
|  | unlock_hpte(new_hptep, vpte); | 
|  |  | 
|  | out: | 
|  | unlock_hpte(hptep, vpte); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int resize_hpt_rehash(struct kvm_resize_hpt *resize) | 
|  | { | 
|  | struct kvm *kvm = resize->kvm; | 
|  | unsigned  long i; | 
|  | int rc; | 
|  |  | 
|  | for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) { | 
|  | rc = resize_hpt_rehash_hpte(resize, i); | 
|  | if (rc != 0) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void resize_hpt_pivot(struct kvm_resize_hpt *resize) | 
|  | { | 
|  | struct kvm *kvm = resize->kvm; | 
|  | struct kvm_hpt_info hpt_tmp; | 
|  |  | 
|  | /* Exchange the pending tables in the resize structure with | 
|  | * the active tables */ | 
|  |  | 
|  | resize_hpt_debug(resize, "resize_hpt_pivot()\n"); | 
|  |  | 
|  | spin_lock(&kvm->mmu_lock); | 
|  | asm volatile("ptesync" : : : "memory"); | 
|  |  | 
|  | hpt_tmp = kvm->arch.hpt; | 
|  | kvmppc_set_hpt(kvm, &resize->hpt); | 
|  | resize->hpt = hpt_tmp; | 
|  |  | 
|  | spin_unlock(&kvm->mmu_lock); | 
|  |  | 
|  | synchronize_srcu_expedited(&kvm->srcu); | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) | 
|  | kvmppc_setup_partition_table(kvm); | 
|  |  | 
|  | resize_hpt_debug(resize, "resize_hpt_pivot() done\n"); | 
|  | } | 
|  |  | 
|  | static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize) | 
|  | { | 
|  | if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock))) | 
|  | return; | 
|  |  | 
|  | if (!resize) | 
|  | return; | 
|  |  | 
|  | if (resize->error != -EBUSY) { | 
|  | if (resize->hpt.virt) | 
|  | kvmppc_free_hpt(&resize->hpt); | 
|  | kfree(resize); | 
|  | } | 
|  |  | 
|  | if (kvm->arch.resize_hpt == resize) | 
|  | kvm->arch.resize_hpt = NULL; | 
|  | } | 
|  |  | 
|  | static void resize_hpt_prepare_work(struct work_struct *work) | 
|  | { | 
|  | struct kvm_resize_hpt *resize = container_of(work, | 
|  | struct kvm_resize_hpt, | 
|  | work); | 
|  | struct kvm *kvm = resize->kvm; | 
|  | int err = 0; | 
|  |  | 
|  | if (WARN_ON(resize->error != -EBUSY)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&kvm->arch.mmu_setup_lock); | 
|  |  | 
|  | /* Request is still current? */ | 
|  | if (kvm->arch.resize_hpt == resize) { | 
|  | /* We may request large allocations here: | 
|  | * do not sleep with kvm->arch.mmu_setup_lock held for a while. | 
|  | */ | 
|  | mutex_unlock(&kvm->arch.mmu_setup_lock); | 
|  |  | 
|  | resize_hpt_debug(resize, "%s(): order = %d\n", __func__, | 
|  | resize->order); | 
|  |  | 
|  | err = resize_hpt_allocate(resize); | 
|  |  | 
|  | /* We have strict assumption about -EBUSY | 
|  | * when preparing for HPT resize. | 
|  | */ | 
|  | if (WARN_ON(err == -EBUSY)) | 
|  | err = -EINPROGRESS; | 
|  |  | 
|  | mutex_lock(&kvm->arch.mmu_setup_lock); | 
|  | /* It is possible that kvm->arch.resize_hpt != resize | 
|  | * after we grab kvm->arch.mmu_setup_lock again. | 
|  | */ | 
|  | } | 
|  |  | 
|  | resize->error = err; | 
|  |  | 
|  | if (kvm->arch.resize_hpt != resize) | 
|  | resize_hpt_release(kvm, resize); | 
|  |  | 
|  | mutex_unlock(&kvm->arch.mmu_setup_lock); | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm, | 
|  | struct kvm_ppc_resize_hpt *rhpt) | 
|  | { | 
|  | unsigned long flags = rhpt->flags; | 
|  | unsigned long shift = rhpt->shift; | 
|  | struct kvm_resize_hpt *resize; | 
|  | int ret; | 
|  |  | 
|  | if (flags != 0 || kvm_is_radix(kvm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (shift && ((shift < 18) || (shift > 46))) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&kvm->arch.mmu_setup_lock); | 
|  |  | 
|  | resize = kvm->arch.resize_hpt; | 
|  |  | 
|  | if (resize) { | 
|  | if (resize->order == shift) { | 
|  | /* Suitable resize in progress? */ | 
|  | ret = resize->error; | 
|  | if (ret == -EBUSY) | 
|  | ret = 100; /* estimated time in ms */ | 
|  | else if (ret) | 
|  | resize_hpt_release(kvm, resize); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* not suitable, cancel it */ | 
|  | resize_hpt_release(kvm, resize); | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | if (!shift) | 
|  | goto out; /* nothing to do */ | 
|  |  | 
|  | /* start new resize */ | 
|  |  | 
|  | resize = kzalloc(sizeof(*resize), GFP_KERNEL); | 
|  | if (!resize) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | resize->error = -EBUSY; | 
|  | resize->order = shift; | 
|  | resize->kvm = kvm; | 
|  | INIT_WORK(&resize->work, resize_hpt_prepare_work); | 
|  | kvm->arch.resize_hpt = resize; | 
|  |  | 
|  | schedule_work(&resize->work); | 
|  |  | 
|  | ret = 100; /* estimated time in ms */ | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&kvm->arch.mmu_setup_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void resize_hpt_boot_vcpu(void *opaque) | 
|  | { | 
|  | /* Nothing to do, just force a KVM exit */ | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm, | 
|  | struct kvm_ppc_resize_hpt *rhpt) | 
|  | { | 
|  | unsigned long flags = rhpt->flags; | 
|  | unsigned long shift = rhpt->shift; | 
|  | struct kvm_resize_hpt *resize; | 
|  | int ret; | 
|  |  | 
|  | if (flags != 0 || kvm_is_radix(kvm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (shift && ((shift < 18) || (shift > 46))) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&kvm->arch.mmu_setup_lock); | 
|  |  | 
|  | resize = kvm->arch.resize_hpt; | 
|  |  | 
|  | /* This shouldn't be possible */ | 
|  | ret = -EIO; | 
|  | if (WARN_ON(!kvm->arch.mmu_ready)) | 
|  | goto out_no_hpt; | 
|  |  | 
|  | /* Stop VCPUs from running while we mess with the HPT */ | 
|  | kvm->arch.mmu_ready = 0; | 
|  | smp_mb(); | 
|  |  | 
|  | /* Boot all CPUs out of the guest so they re-read | 
|  | * mmu_ready */ | 
|  | on_each_cpu(resize_hpt_boot_vcpu, NULL, 1); | 
|  |  | 
|  | ret = -ENXIO; | 
|  | if (!resize || (resize->order != shift)) | 
|  | goto out; | 
|  |  | 
|  | ret = resize->error; | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = resize_hpt_rehash(resize); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | resize_hpt_pivot(resize); | 
|  |  | 
|  | out: | 
|  | /* Let VCPUs run again */ | 
|  | kvm->arch.mmu_ready = 1; | 
|  | smp_mb(); | 
|  | out_no_hpt: | 
|  | resize_hpt_release(kvm, resize); | 
|  | mutex_unlock(&kvm->arch.mmu_setup_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Functions for reading and writing the hash table via reads and | 
|  | * writes on a file descriptor. | 
|  | * | 
|  | * Reads return the guest view of the hash table, which has to be | 
|  | * pieced together from the real hash table and the guest_rpte | 
|  | * values in the revmap array. | 
|  | * | 
|  | * On writes, each HPTE written is considered in turn, and if it | 
|  | * is valid, it is written to the HPT as if an H_ENTER with the | 
|  | * exact flag set was done.  When the invalid count is non-zero | 
|  | * in the header written to the stream, the kernel will make | 
|  | * sure that that many HPTEs are invalid, and invalidate them | 
|  | * if not. | 
|  | */ | 
|  |  | 
|  | struct kvm_htab_ctx { | 
|  | unsigned long	index; | 
|  | unsigned long	flags; | 
|  | struct kvm	*kvm; | 
|  | int		first_pass; | 
|  | }; | 
|  |  | 
|  | #define HPTE_SIZE	(2 * sizeof(unsigned long)) | 
|  |  | 
|  | /* | 
|  | * Returns 1 if this HPT entry has been modified or has pending | 
|  | * R/C bit changes. | 
|  | */ | 
|  | static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp) | 
|  | { | 
|  | unsigned long rcbits_unset; | 
|  |  | 
|  | if (revp->guest_rpte & HPTE_GR_MODIFIED) | 
|  | return 1; | 
|  |  | 
|  | /* Also need to consider changes in reference and changed bits */ | 
|  | rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); | 
|  | if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) && | 
|  | (be64_to_cpu(hptp[1]) & rcbits_unset)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static long record_hpte(unsigned long flags, __be64 *hptp, | 
|  | unsigned long *hpte, struct revmap_entry *revp, | 
|  | int want_valid, int first_pass) | 
|  | { | 
|  | unsigned long v, r, hr; | 
|  | unsigned long rcbits_unset; | 
|  | int ok = 1; | 
|  | int valid, dirty; | 
|  |  | 
|  | /* Unmodified entries are uninteresting except on the first pass */ | 
|  | dirty = hpte_dirty(revp, hptp); | 
|  | if (!first_pass && !dirty) | 
|  | return 0; | 
|  |  | 
|  | valid = 0; | 
|  | if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) { | 
|  | valid = 1; | 
|  | if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && | 
|  | !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED)) | 
|  | valid = 0; | 
|  | } | 
|  | if (valid != want_valid) | 
|  | return 0; | 
|  |  | 
|  | v = r = 0; | 
|  | if (valid || dirty) { | 
|  | /* lock the HPTE so it's stable and read it */ | 
|  | preempt_disable(); | 
|  | while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) | 
|  | cpu_relax(); | 
|  | v = be64_to_cpu(hptp[0]); | 
|  | hr = be64_to_cpu(hptp[1]); | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | v = hpte_new_to_old_v(v, hr); | 
|  | hr = hpte_new_to_old_r(hr); | 
|  | } | 
|  |  | 
|  | /* re-evaluate valid and dirty from synchronized HPTE value */ | 
|  | valid = !!(v & HPTE_V_VALID); | 
|  | dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED); | 
|  |  | 
|  | /* Harvest R and C into guest view if necessary */ | 
|  | rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C); | 
|  | if (valid && (rcbits_unset & hr)) { | 
|  | revp->guest_rpte |= (hr & | 
|  | (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED; | 
|  | dirty = 1; | 
|  | } | 
|  |  | 
|  | if (v & HPTE_V_ABSENT) { | 
|  | v &= ~HPTE_V_ABSENT; | 
|  | v |= HPTE_V_VALID; | 
|  | valid = 1; | 
|  | } | 
|  | if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED)) | 
|  | valid = 0; | 
|  |  | 
|  | r = revp->guest_rpte; | 
|  | /* only clear modified if this is the right sort of entry */ | 
|  | if (valid == want_valid && dirty) { | 
|  | r &= ~HPTE_GR_MODIFIED; | 
|  | revp->guest_rpte = r; | 
|  | } | 
|  | unlock_hpte(hptp, be64_to_cpu(hptp[0])); | 
|  | preempt_enable(); | 
|  | if (!(valid == want_valid && (first_pass || dirty))) | 
|  | ok = 0; | 
|  | } | 
|  | hpte[0] = cpu_to_be64(v); | 
|  | hpte[1] = cpu_to_be64(r); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | static ssize_t kvm_htab_read(struct file *file, char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct kvm_htab_ctx *ctx = file->private_data; | 
|  | struct kvm *kvm = ctx->kvm; | 
|  | struct kvm_get_htab_header hdr; | 
|  | __be64 *hptp; | 
|  | struct revmap_entry *revp; | 
|  | unsigned long i, nb, nw; | 
|  | unsigned long __user *lbuf; | 
|  | struct kvm_get_htab_header __user *hptr; | 
|  | unsigned long flags; | 
|  | int first_pass; | 
|  | unsigned long hpte[2]; | 
|  |  | 
|  | if (!access_ok(buf, count)) | 
|  | return -EFAULT; | 
|  | if (kvm_is_radix(kvm)) | 
|  | return 0; | 
|  |  | 
|  | first_pass = ctx->first_pass; | 
|  | flags = ctx->flags; | 
|  |  | 
|  | i = ctx->index; | 
|  | hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); | 
|  | revp = kvm->arch.hpt.rev + i; | 
|  | lbuf = (unsigned long __user *)buf; | 
|  |  | 
|  | nb = 0; | 
|  | while (nb + sizeof(hdr) + HPTE_SIZE < count) { | 
|  | /* Initialize header */ | 
|  | hptr = (struct kvm_get_htab_header __user *)buf; | 
|  | hdr.n_valid = 0; | 
|  | hdr.n_invalid = 0; | 
|  | nw = nb; | 
|  | nb += sizeof(hdr); | 
|  | lbuf = (unsigned long __user *)(buf + sizeof(hdr)); | 
|  |  | 
|  | /* Skip uninteresting entries, i.e. clean on not-first pass */ | 
|  | if (!first_pass) { | 
|  | while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && | 
|  | !hpte_dirty(revp, hptp)) { | 
|  | ++i; | 
|  | hptp += 2; | 
|  | ++revp; | 
|  | } | 
|  | } | 
|  | hdr.index = i; | 
|  |  | 
|  | /* Grab a series of valid entries */ | 
|  | while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && | 
|  | hdr.n_valid < 0xffff && | 
|  | nb + HPTE_SIZE < count && | 
|  | record_hpte(flags, hptp, hpte, revp, 1, first_pass)) { | 
|  | /* valid entry, write it out */ | 
|  | ++hdr.n_valid; | 
|  | if (__put_user(hpte[0], lbuf) || | 
|  | __put_user(hpte[1], lbuf + 1)) | 
|  | return -EFAULT; | 
|  | nb += HPTE_SIZE; | 
|  | lbuf += 2; | 
|  | ++i; | 
|  | hptp += 2; | 
|  | ++revp; | 
|  | } | 
|  | /* Now skip invalid entries while we can */ | 
|  | while (i < kvmppc_hpt_npte(&kvm->arch.hpt) && | 
|  | hdr.n_invalid < 0xffff && | 
|  | record_hpte(flags, hptp, hpte, revp, 0, first_pass)) { | 
|  | /* found an invalid entry */ | 
|  | ++hdr.n_invalid; | 
|  | ++i; | 
|  | hptp += 2; | 
|  | ++revp; | 
|  | } | 
|  |  | 
|  | if (hdr.n_valid || hdr.n_invalid) { | 
|  | /* write back the header */ | 
|  | if (__copy_to_user(hptr, &hdr, sizeof(hdr))) | 
|  | return -EFAULT; | 
|  | nw = nb; | 
|  | buf = (char __user *)lbuf; | 
|  | } else { | 
|  | nb = nw; | 
|  | } | 
|  |  | 
|  | /* Check if we've wrapped around the hash table */ | 
|  | if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) { | 
|  | i = 0; | 
|  | ctx->first_pass = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->index = i; | 
|  |  | 
|  | return nb; | 
|  | } | 
|  |  | 
|  | static ssize_t kvm_htab_write(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct kvm_htab_ctx *ctx = file->private_data; | 
|  | struct kvm *kvm = ctx->kvm; | 
|  | struct kvm_get_htab_header hdr; | 
|  | unsigned long i, j; | 
|  | unsigned long v, r; | 
|  | unsigned long __user *lbuf; | 
|  | __be64 *hptp; | 
|  | unsigned long tmp[2]; | 
|  | ssize_t nb; | 
|  | long int err, ret; | 
|  | int mmu_ready; | 
|  | int pshift; | 
|  |  | 
|  | if (!access_ok(buf, count)) | 
|  | return -EFAULT; | 
|  | if (kvm_is_radix(kvm)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* lock out vcpus from running while we're doing this */ | 
|  | mutex_lock(&kvm->arch.mmu_setup_lock); | 
|  | mmu_ready = kvm->arch.mmu_ready; | 
|  | if (mmu_ready) { | 
|  | kvm->arch.mmu_ready = 0;	/* temporarily */ | 
|  | /* order mmu_ready vs. vcpus_running */ | 
|  | smp_mb(); | 
|  | if (atomic_read(&kvm->arch.vcpus_running)) { | 
|  | kvm->arch.mmu_ready = 1; | 
|  | mutex_unlock(&kvm->arch.mmu_setup_lock); | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | for (nb = 0; nb + sizeof(hdr) <= count; ) { | 
|  | err = -EFAULT; | 
|  | if (__copy_from_user(&hdr, buf, sizeof(hdr))) | 
|  | break; | 
|  |  | 
|  | err = 0; | 
|  | if (nb + hdr.n_valid * HPTE_SIZE > count) | 
|  | break; | 
|  |  | 
|  | nb += sizeof(hdr); | 
|  | buf += sizeof(hdr); | 
|  |  | 
|  | err = -EINVAL; | 
|  | i = hdr.index; | 
|  | if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) || | 
|  | i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt)) | 
|  | break; | 
|  |  | 
|  | hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); | 
|  | lbuf = (unsigned long __user *)buf; | 
|  | for (j = 0; j < hdr.n_valid; ++j) { | 
|  | __be64 hpte_v; | 
|  | __be64 hpte_r; | 
|  |  | 
|  | err = -EFAULT; | 
|  | if (__get_user(hpte_v, lbuf) || | 
|  | __get_user(hpte_r, lbuf + 1)) | 
|  | goto out; | 
|  | v = be64_to_cpu(hpte_v); | 
|  | r = be64_to_cpu(hpte_r); | 
|  | err = -EINVAL; | 
|  | if (!(v & HPTE_V_VALID)) | 
|  | goto out; | 
|  | pshift = kvmppc_hpte_base_page_shift(v, r); | 
|  | if (pshift <= 0) | 
|  | goto out; | 
|  | lbuf += 2; | 
|  | nb += HPTE_SIZE; | 
|  |  | 
|  | if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) | 
|  | kvmppc_do_h_remove(kvm, 0, i, 0, tmp); | 
|  | err = -EIO; | 
|  | ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r, | 
|  | tmp); | 
|  | if (ret != H_SUCCESS) { | 
|  | pr_err("%s ret %ld i=%ld v=%lx r=%lx\n", __func__, ret, i, v, r); | 
|  | goto out; | 
|  | } | 
|  | if (!mmu_ready && is_vrma_hpte(v)) { | 
|  | unsigned long senc, lpcr; | 
|  |  | 
|  | senc = slb_pgsize_encoding(1ul << pshift); | 
|  | kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | | 
|  | (VRMA_VSID << SLB_VSID_SHIFT_1T); | 
|  | if (!cpu_has_feature(CPU_FTR_ARCH_300)) { | 
|  | lpcr = senc << (LPCR_VRMASD_SH - 4); | 
|  | kvmppc_update_lpcr(kvm, lpcr, | 
|  | LPCR_VRMASD); | 
|  | } else { | 
|  | kvmppc_setup_partition_table(kvm); | 
|  | } | 
|  | mmu_ready = 1; | 
|  | } | 
|  | ++i; | 
|  | hptp += 2; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < hdr.n_invalid; ++j) { | 
|  | if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) | 
|  | kvmppc_do_h_remove(kvm, 0, i, 0, tmp); | 
|  | ++i; | 
|  | hptp += 2; | 
|  | } | 
|  | err = 0; | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* Order HPTE updates vs. mmu_ready */ | 
|  | smp_wmb(); | 
|  | kvm->arch.mmu_ready = mmu_ready; | 
|  | mutex_unlock(&kvm->arch.mmu_setup_lock); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | return nb; | 
|  | } | 
|  |  | 
|  | static int kvm_htab_release(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct kvm_htab_ctx *ctx = filp->private_data; | 
|  |  | 
|  | filp->private_data = NULL; | 
|  | if (!(ctx->flags & KVM_GET_HTAB_WRITE)) | 
|  | atomic_dec(&ctx->kvm->arch.hpte_mod_interest); | 
|  | kvm_put_kvm(ctx->kvm); | 
|  | kfree(ctx); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations kvm_htab_fops = { | 
|  | .read		= kvm_htab_read, | 
|  | .write		= kvm_htab_write, | 
|  | .llseek		= default_llseek, | 
|  | .release	= kvm_htab_release, | 
|  | }; | 
|  |  | 
|  | int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf) | 
|  | { | 
|  | int ret; | 
|  | struct kvm_htab_ctx *ctx; | 
|  | int rwflag; | 
|  |  | 
|  | /* reject flags we don't recognize */ | 
|  | if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE)) | 
|  | return -EINVAL; | 
|  | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return -ENOMEM; | 
|  | kvm_get_kvm(kvm); | 
|  | ctx->kvm = kvm; | 
|  | ctx->index = ghf->start_index; | 
|  | ctx->flags = ghf->flags; | 
|  | ctx->first_pass = 1; | 
|  |  | 
|  | rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY; | 
|  | ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC); | 
|  | if (ret < 0) { | 
|  | kfree(ctx); | 
|  | kvm_put_kvm_no_destroy(kvm); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (rwflag == O_RDONLY) { | 
|  | mutex_lock(&kvm->slots_lock); | 
|  | atomic_inc(&kvm->arch.hpte_mod_interest); | 
|  | /* make sure kvmppc_do_h_enter etc. see the increment */ | 
|  | synchronize_srcu_expedited(&kvm->srcu); | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct debugfs_htab_state { | 
|  | struct kvm	*kvm; | 
|  | struct mutex	mutex; | 
|  | unsigned long	hpt_index; | 
|  | int		chars_left; | 
|  | int		buf_index; | 
|  | char		buf[64]; | 
|  | }; | 
|  |  | 
|  | static int debugfs_htab_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct kvm *kvm = inode->i_private; | 
|  | struct debugfs_htab_state *p; | 
|  |  | 
|  | p = kzalloc(sizeof(*p), GFP_KERNEL); | 
|  | if (!p) | 
|  | return -ENOMEM; | 
|  |  | 
|  | kvm_get_kvm(kvm); | 
|  | p->kvm = kvm; | 
|  | mutex_init(&p->mutex); | 
|  | file->private_data = p; | 
|  |  | 
|  | return nonseekable_open(inode, file); | 
|  | } | 
|  |  | 
|  | static int debugfs_htab_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct debugfs_htab_state *p = file->private_data; | 
|  |  | 
|  | kvm_put_kvm(p->kvm); | 
|  | kfree(p); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t debugfs_htab_read(struct file *file, char __user *buf, | 
|  | size_t len, loff_t *ppos) | 
|  | { | 
|  | struct debugfs_htab_state *p = file->private_data; | 
|  | ssize_t ret, r; | 
|  | unsigned long i, n; | 
|  | unsigned long v, hr, gr; | 
|  | struct kvm *kvm; | 
|  | __be64 *hptp; | 
|  |  | 
|  | kvm = p->kvm; | 
|  | if (kvm_is_radix(kvm)) | 
|  | return 0; | 
|  |  | 
|  | ret = mutex_lock_interruptible(&p->mutex); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (p->chars_left) { | 
|  | n = p->chars_left; | 
|  | if (n > len) | 
|  | n = len; | 
|  | r = copy_to_user(buf, p->buf + p->buf_index, n); | 
|  | n -= r; | 
|  | p->chars_left -= n; | 
|  | p->buf_index += n; | 
|  | buf += n; | 
|  | len -= n; | 
|  | ret = n; | 
|  | if (r) { | 
|  | if (!n) | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | i = p->hpt_index; | 
|  | hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE)); | 
|  | for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt); | 
|  | ++i, hptp += 2) { | 
|  | if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))) | 
|  | continue; | 
|  |  | 
|  | /* lock the HPTE so it's stable and read it */ | 
|  | preempt_disable(); | 
|  | while (!try_lock_hpte(hptp, HPTE_V_HVLOCK)) | 
|  | cpu_relax(); | 
|  | v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK; | 
|  | hr = be64_to_cpu(hptp[1]); | 
|  | gr = kvm->arch.hpt.rev[i].guest_rpte; | 
|  | unlock_hpte(hptp, v); | 
|  | preempt_enable(); | 
|  |  | 
|  | if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) | 
|  | continue; | 
|  |  | 
|  | n = scnprintf(p->buf, sizeof(p->buf), | 
|  | "%6lx %.16lx %.16lx %.16lx\n", | 
|  | i, v, hr, gr); | 
|  | p->chars_left = n; | 
|  | if (n > len) | 
|  | n = len; | 
|  | r = copy_to_user(buf, p->buf, n); | 
|  | n -= r; | 
|  | p->chars_left -= n; | 
|  | p->buf_index = n; | 
|  | buf += n; | 
|  | len -= n; | 
|  | ret += n; | 
|  | if (r) { | 
|  | if (!ret) | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | p->hpt_index = i; | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&p->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t debugfs_htab_write(struct file *file, const char __user *buf, | 
|  | size_t len, loff_t *ppos) | 
|  | { | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static const struct file_operations debugfs_htab_fops = { | 
|  | .owner	 = THIS_MODULE, | 
|  | .open	 = debugfs_htab_open, | 
|  | .release = debugfs_htab_release, | 
|  | .read	 = debugfs_htab_read, | 
|  | .write	 = debugfs_htab_write, | 
|  | .llseek	 = generic_file_llseek, | 
|  | }; | 
|  |  | 
|  | void kvmppc_mmu_debugfs_init(struct kvm *kvm) | 
|  | { | 
|  | debugfs_create_file("htab", 0400, kvm->debugfs_dentry, kvm, | 
|  | &debugfs_htab_fops); | 
|  | } | 
|  |  | 
|  | void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvmppc_mmu *mmu = &vcpu->arch.mmu; | 
|  |  | 
|  | vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */ | 
|  |  | 
|  | mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate; | 
|  |  | 
|  | vcpu->arch.hflags |= BOOK3S_HFLAG_SLB; | 
|  | } |