| // SPDX-License-Identifier: GPL-2.0-only | 
 | #include <linux/types.h> | 
 | #include <linux/string.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/random.h> | 
 | #include <asm/dmi.h> | 
 | #include <asm/unaligned.h> | 
 |  | 
 | #ifndef SMBIOS_ENTRY_POINT_SCAN_START | 
 | #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000 | 
 | #endif | 
 |  | 
 | struct kobject *dmi_kobj; | 
 | EXPORT_SYMBOL_GPL(dmi_kobj); | 
 |  | 
 | /* | 
 |  * DMI stands for "Desktop Management Interface".  It is part | 
 |  * of and an antecedent to, SMBIOS, which stands for System | 
 |  * Management BIOS.  See further: https://www.dmtf.org/standards | 
 |  */ | 
 | static const char dmi_empty_string[] = ""; | 
 |  | 
 | static u32 dmi_ver __initdata; | 
 | static u32 dmi_len; | 
 | static u16 dmi_num; | 
 | static u8 smbios_entry_point[32]; | 
 | static int smbios_entry_point_size; | 
 |  | 
 | /* DMI system identification string used during boot */ | 
 | static char dmi_ids_string[128] __initdata; | 
 |  | 
 | static struct dmi_memdev_info { | 
 | 	const char *device; | 
 | 	const char *bank; | 
 | 	u64 size;		/* bytes */ | 
 | 	u16 handle; | 
 | 	u8 type;		/* DDR2, DDR3, DDR4 etc */ | 
 | } *dmi_memdev; | 
 | static int dmi_memdev_nr; | 
 | static int dmi_memdev_populated_nr __initdata; | 
 |  | 
 | static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) | 
 | { | 
 | 	const u8 *bp = ((u8 *) dm) + dm->length; | 
 | 	const u8 *nsp; | 
 |  | 
 | 	if (s) { | 
 | 		while (--s > 0 && *bp) | 
 | 			bp += strlen(bp) + 1; | 
 |  | 
 | 		/* Strings containing only spaces are considered empty */ | 
 | 		nsp = bp; | 
 | 		while (*nsp == ' ') | 
 | 			nsp++; | 
 | 		if (*nsp != '\0') | 
 | 			return bp; | 
 | 	} | 
 |  | 
 | 	return dmi_empty_string; | 
 | } | 
 |  | 
 | static const char * __init dmi_string(const struct dmi_header *dm, u8 s) | 
 | { | 
 | 	const char *bp = dmi_string_nosave(dm, s); | 
 | 	char *str; | 
 | 	size_t len; | 
 |  | 
 | 	if (bp == dmi_empty_string) | 
 | 		return dmi_empty_string; | 
 |  | 
 | 	len = strlen(bp) + 1; | 
 | 	str = dmi_alloc(len); | 
 | 	if (str != NULL) | 
 | 		strcpy(str, bp); | 
 |  | 
 | 	return str; | 
 | } | 
 |  | 
 | /* | 
 |  *	We have to be cautious here. We have seen BIOSes with DMI pointers | 
 |  *	pointing to completely the wrong place for example | 
 |  */ | 
 | static void dmi_decode_table(u8 *buf, | 
 | 			     void (*decode)(const struct dmi_header *, void *), | 
 | 			     void *private_data) | 
 | { | 
 | 	u8 *data = buf; | 
 | 	int i = 0; | 
 |  | 
 | 	/* | 
 | 	 * Stop when we have seen all the items the table claimed to have | 
 | 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS | 
 | 	 * >= 3.0 only) OR we run off the end of the table (should never | 
 | 	 * happen but sometimes does on bogus implementations.) | 
 | 	 */ | 
 | 	while ((!dmi_num || i < dmi_num) && | 
 | 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) { | 
 | 		const struct dmi_header *dm = (const struct dmi_header *)data; | 
 |  | 
 | 		/* | 
 | 		 * If a short entry is found (less than 4 bytes), not only it | 
 | 		 * is invalid, but we cannot reliably locate the next entry. | 
 | 		 */ | 
 | 		if (dm->length < sizeof(struct dmi_header)) { | 
 | 			pr_warn(FW_BUG | 
 | 				"Corrupted DMI table, offset %zd (only %d entries processed)\n", | 
 | 				data - buf, i); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 *  We want to know the total length (formatted area and | 
 | 		 *  strings) before decoding to make sure we won't run off the | 
 | 		 *  table in dmi_decode or dmi_string | 
 | 		 */ | 
 | 		data += dm->length; | 
 | 		while ((data - buf < dmi_len - 1) && (data[0] || data[1])) | 
 | 			data++; | 
 | 		if (data - buf < dmi_len - 1) | 
 | 			decode(dm, private_data); | 
 |  | 
 | 		data += 2; | 
 | 		i++; | 
 |  | 
 | 		/* | 
 | 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] | 
 | 		 * For tables behind a 64-bit entry point, we have no item | 
 | 		 * count and no exact table length, so stop on end-of-table | 
 | 		 * marker. For tables behind a 32-bit entry point, we have | 
 | 		 * seen OEM structures behind the end-of-table marker on | 
 | 		 * some systems, so don't trust it. | 
 | 		 */ | 
 | 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* Trim DMI table length if needed */ | 
 | 	if (dmi_len > data - buf) | 
 | 		dmi_len = data - buf; | 
 | } | 
 |  | 
 | static phys_addr_t dmi_base; | 
 |  | 
 | static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, | 
 | 		void *)) | 
 | { | 
 | 	u8 *buf; | 
 | 	u32 orig_dmi_len = dmi_len; | 
 |  | 
 | 	buf = dmi_early_remap(dmi_base, orig_dmi_len); | 
 | 	if (buf == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dmi_decode_table(buf, decode, NULL); | 
 |  | 
 | 	add_device_randomness(buf, dmi_len); | 
 |  | 
 | 	dmi_early_unmap(buf, orig_dmi_len); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init dmi_checksum(const u8 *buf, u8 len) | 
 | { | 
 | 	u8 sum = 0; | 
 | 	int a; | 
 |  | 
 | 	for (a = 0; a < len; a++) | 
 | 		sum += buf[a]; | 
 |  | 
 | 	return sum == 0; | 
 | } | 
 |  | 
 | static const char *dmi_ident[DMI_STRING_MAX]; | 
 | static LIST_HEAD(dmi_devices); | 
 | int dmi_available; | 
 | EXPORT_SYMBOL_GPL(dmi_available); | 
 |  | 
 | /* | 
 |  *	Save a DMI string | 
 |  */ | 
 | static void __init dmi_save_ident(const struct dmi_header *dm, int slot, | 
 | 		int string) | 
 | { | 
 | 	const char *d = (const char *) dm; | 
 | 	const char *p; | 
 |  | 
 | 	if (dmi_ident[slot] || dm->length <= string) | 
 | 		return; | 
 |  | 
 | 	p = dmi_string(dm, d[string]); | 
 | 	if (p == NULL) | 
 | 		return; | 
 |  | 
 | 	dmi_ident[slot] = p; | 
 | } | 
 |  | 
 | static void __init dmi_save_release(const struct dmi_header *dm, int slot, | 
 | 		int index) | 
 | { | 
 | 	const u8 *minor, *major; | 
 | 	char *s; | 
 |  | 
 | 	/* If the table doesn't have the field, let's return */ | 
 | 	if (dmi_ident[slot] || dm->length < index) | 
 | 		return; | 
 |  | 
 | 	minor = (u8 *) dm + index; | 
 | 	major = (u8 *) dm + index - 1; | 
 |  | 
 | 	/* As per the spec, if the system doesn't support this field, | 
 | 	 * the value is FF | 
 | 	 */ | 
 | 	if (*major == 0xFF && *minor == 0xFF) | 
 | 		return; | 
 |  | 
 | 	s = dmi_alloc(8); | 
 | 	if (!s) | 
 | 		return; | 
 |  | 
 | 	sprintf(s, "%u.%u", *major, *minor); | 
 |  | 
 | 	dmi_ident[slot] = s; | 
 | } | 
 |  | 
 | static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, | 
 | 		int index) | 
 | { | 
 | 	const u8 *d; | 
 | 	char *s; | 
 | 	int is_ff = 1, is_00 = 1, i; | 
 |  | 
 | 	if (dmi_ident[slot] || dm->length < index + 16) | 
 | 		return; | 
 |  | 
 | 	d = (u8 *) dm + index; | 
 | 	for (i = 0; i < 16 && (is_ff || is_00); i++) { | 
 | 		if (d[i] != 0x00) | 
 | 			is_00 = 0; | 
 | 		if (d[i] != 0xFF) | 
 | 			is_ff = 0; | 
 | 	} | 
 |  | 
 | 	if (is_ff || is_00) | 
 | 		return; | 
 |  | 
 | 	s = dmi_alloc(16*2+4+1); | 
 | 	if (!s) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of | 
 | 	 * the UUID are supposed to be little-endian encoded.  The specification | 
 | 	 * says that this is the defacto standard. | 
 | 	 */ | 
 | 	if (dmi_ver >= 0x020600) | 
 | 		sprintf(s, "%pUl", d); | 
 | 	else | 
 | 		sprintf(s, "%pUb", d); | 
 |  | 
 | 	dmi_ident[slot] = s; | 
 | } | 
 |  | 
 | static void __init dmi_save_type(const struct dmi_header *dm, int slot, | 
 | 		int index) | 
 | { | 
 | 	const u8 *d; | 
 | 	char *s; | 
 |  | 
 | 	if (dmi_ident[slot] || dm->length <= index) | 
 | 		return; | 
 |  | 
 | 	s = dmi_alloc(4); | 
 | 	if (!s) | 
 | 		return; | 
 |  | 
 | 	d = (u8 *) dm + index; | 
 | 	sprintf(s, "%u", *d & 0x7F); | 
 | 	dmi_ident[slot] = s; | 
 | } | 
 |  | 
 | static void __init dmi_save_one_device(int type, const char *name) | 
 | { | 
 | 	struct dmi_device *dev; | 
 |  | 
 | 	/* No duplicate device */ | 
 | 	if (dmi_find_device(type, name, NULL)) | 
 | 		return; | 
 |  | 
 | 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); | 
 | 	if (!dev) | 
 | 		return; | 
 |  | 
 | 	dev->type = type; | 
 | 	strcpy((char *)(dev + 1), name); | 
 | 	dev->name = (char *)(dev + 1); | 
 | 	dev->device_data = NULL; | 
 | 	list_add(&dev->list, &dmi_devices); | 
 | } | 
 |  | 
 | static void __init dmi_save_devices(const struct dmi_header *dm) | 
 | { | 
 | 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2; | 
 |  | 
 | 	for (i = 0; i < count; i++) { | 
 | 		const char *d = (char *)(dm + 1) + (i * 2); | 
 |  | 
 | 		/* Skip disabled device */ | 
 | 		if ((*d & 0x80) == 0) | 
 | 			continue; | 
 |  | 
 | 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) | 
 | { | 
 | 	int i, count; | 
 | 	struct dmi_device *dev; | 
 |  | 
 | 	if (dm->length < 0x05) | 
 | 		return; | 
 |  | 
 | 	count = *(u8 *)(dm + 1); | 
 | 	for (i = 1; i <= count; i++) { | 
 | 		const char *devname = dmi_string(dm, i); | 
 |  | 
 | 		if (devname == dmi_empty_string) | 
 | 			continue; | 
 |  | 
 | 		dev = dmi_alloc(sizeof(*dev)); | 
 | 		if (!dev) | 
 | 			break; | 
 |  | 
 | 		dev->type = DMI_DEV_TYPE_OEM_STRING; | 
 | 		dev->name = devname; | 
 | 		dev->device_data = NULL; | 
 |  | 
 | 		list_add(&dev->list, &dmi_devices); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init dmi_save_ipmi_device(const struct dmi_header *dm) | 
 | { | 
 | 	struct dmi_device *dev; | 
 | 	void *data; | 
 |  | 
 | 	data = dmi_alloc(dm->length); | 
 | 	if (data == NULL) | 
 | 		return; | 
 |  | 
 | 	memcpy(data, dm, dm->length); | 
 |  | 
 | 	dev = dmi_alloc(sizeof(*dev)); | 
 | 	if (!dev) | 
 | 		return; | 
 |  | 
 | 	dev->type = DMI_DEV_TYPE_IPMI; | 
 | 	dev->name = "IPMI controller"; | 
 | 	dev->device_data = data; | 
 |  | 
 | 	list_add_tail(&dev->list, &dmi_devices); | 
 | } | 
 |  | 
 | static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, | 
 | 					int devfn, const char *name, int type) | 
 | { | 
 | 	struct dmi_dev_onboard *dev; | 
 |  | 
 | 	/* Ignore invalid values */ | 
 | 	if (type == DMI_DEV_TYPE_DEV_SLOT && | 
 | 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) | 
 | 		return; | 
 |  | 
 | 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); | 
 | 	if (!dev) | 
 | 		return; | 
 |  | 
 | 	dev->instance = instance; | 
 | 	dev->segment = segment; | 
 | 	dev->bus = bus; | 
 | 	dev->devfn = devfn; | 
 |  | 
 | 	strcpy((char *)&dev[1], name); | 
 | 	dev->dev.type = type; | 
 | 	dev->dev.name = (char *)&dev[1]; | 
 | 	dev->dev.device_data = dev; | 
 |  | 
 | 	list_add(&dev->dev.list, &dmi_devices); | 
 | } | 
 |  | 
 | static void __init dmi_save_extended_devices(const struct dmi_header *dm) | 
 | { | 
 | 	const char *name; | 
 | 	const u8 *d = (u8 *)dm; | 
 |  | 
 | 	if (dm->length < 0x0B) | 
 | 		return; | 
 |  | 
 | 	/* Skip disabled device */ | 
 | 	if ((d[0x5] & 0x80) == 0) | 
 | 		return; | 
 |  | 
 | 	name = dmi_string_nosave(dm, d[0x4]); | 
 | 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, | 
 | 			     DMI_DEV_TYPE_DEV_ONBOARD); | 
 | 	dmi_save_one_device(d[0x5] & 0x7f, name); | 
 | } | 
 |  | 
 | static void __init dmi_save_system_slot(const struct dmi_header *dm) | 
 | { | 
 | 	const u8 *d = (u8 *)dm; | 
 |  | 
 | 	/* Need SMBIOS 2.6+ structure */ | 
 | 	if (dm->length < 0x11) | 
 | 		return; | 
 | 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], | 
 | 			     d[0x10], dmi_string_nosave(dm, d[0x4]), | 
 | 			     DMI_DEV_TYPE_DEV_SLOT); | 
 | } | 
 |  | 
 | static void __init count_mem_devices(const struct dmi_header *dm, void *v) | 
 | { | 
 | 	if (dm->type != DMI_ENTRY_MEM_DEVICE) | 
 | 		return; | 
 | 	dmi_memdev_nr++; | 
 | } | 
 |  | 
 | static void __init save_mem_devices(const struct dmi_header *dm, void *v) | 
 | { | 
 | 	const char *d = (const char *)dm; | 
 | 	static int nr; | 
 | 	u64 bytes; | 
 | 	u16 size; | 
 |  | 
 | 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13) | 
 | 		return; | 
 | 	if (nr >= dmi_memdev_nr) { | 
 | 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); | 
 | 		return; | 
 | 	} | 
 | 	dmi_memdev[nr].handle = get_unaligned(&dm->handle); | 
 | 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]); | 
 | 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); | 
 | 	dmi_memdev[nr].type = d[0x12]; | 
 |  | 
 | 	size = get_unaligned((u16 *)&d[0xC]); | 
 | 	if (size == 0) | 
 | 		bytes = 0; | 
 | 	else if (size == 0xffff) | 
 | 		bytes = ~0ull; | 
 | 	else if (size & 0x8000) | 
 | 		bytes = (u64)(size & 0x7fff) << 10; | 
 | 	else if (size != 0x7fff || dm->length < 0x20) | 
 | 		bytes = (u64)size << 20; | 
 | 	else | 
 | 		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; | 
 |  | 
 | 	if (bytes) | 
 | 		dmi_memdev_populated_nr++; | 
 |  | 
 | 	dmi_memdev[nr].size = bytes; | 
 | 	nr++; | 
 | } | 
 |  | 
 | static void __init dmi_memdev_walk(void) | 
 | { | 
 | 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { | 
 | 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); | 
 | 		if (dmi_memdev) | 
 | 			dmi_walk_early(save_mem_devices); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  *	Process a DMI table entry. Right now all we care about are the BIOS | 
 |  *	and machine entries. For 2.5 we should pull the smbus controller info | 
 |  *	out of here. | 
 |  */ | 
 | static void __init dmi_decode(const struct dmi_header *dm, void *dummy) | 
 | { | 
 | 	switch (dm->type) { | 
 | 	case 0:		/* BIOS Information */ | 
 | 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); | 
 | 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5); | 
 | 		dmi_save_ident(dm, DMI_BIOS_DATE, 8); | 
 | 		dmi_save_release(dm, DMI_BIOS_RELEASE, 21); | 
 | 		dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23); | 
 | 		break; | 
 | 	case 1:		/* System Information */ | 
 | 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4); | 
 | 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); | 
 | 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); | 
 | 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); | 
 | 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); | 
 | 		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); | 
 | 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); | 
 | 		break; | 
 | 	case 2:		/* Base Board Information */ | 
 | 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); | 
 | 		dmi_save_ident(dm, DMI_BOARD_NAME, 5); | 
 | 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6); | 
 | 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); | 
 | 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); | 
 | 		break; | 
 | 	case 3:		/* Chassis Information */ | 
 | 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); | 
 | 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); | 
 | 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); | 
 | 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); | 
 | 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); | 
 | 		break; | 
 | 	case 9:		/* System Slots */ | 
 | 		dmi_save_system_slot(dm); | 
 | 		break; | 
 | 	case 10:	/* Onboard Devices Information */ | 
 | 		dmi_save_devices(dm); | 
 | 		break; | 
 | 	case 11:	/* OEM Strings */ | 
 | 		dmi_save_oem_strings_devices(dm); | 
 | 		break; | 
 | 	case 38:	/* IPMI Device Information */ | 
 | 		dmi_save_ipmi_device(dm); | 
 | 		break; | 
 | 	case 41:	/* Onboard Devices Extended Information */ | 
 | 		dmi_save_extended_devices(dm); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init print_filtered(char *buf, size_t len, const char *info) | 
 | { | 
 | 	int c = 0; | 
 | 	const char *p; | 
 |  | 
 | 	if (!info) | 
 | 		return c; | 
 |  | 
 | 	for (p = info; *p; p++) | 
 | 		if (isprint(*p)) | 
 | 			c += scnprintf(buf + c, len - c, "%c", *p); | 
 | 		else | 
 | 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); | 
 | 	return c; | 
 | } | 
 |  | 
 | static void __init dmi_format_ids(char *buf, size_t len) | 
 | { | 
 | 	int c = 0; | 
 | 	const char *board;	/* Board Name is optional */ | 
 |  | 
 | 	c += print_filtered(buf + c, len - c, | 
 | 			    dmi_get_system_info(DMI_SYS_VENDOR)); | 
 | 	c += scnprintf(buf + c, len - c, " "); | 
 | 	c += print_filtered(buf + c, len - c, | 
 | 			    dmi_get_system_info(DMI_PRODUCT_NAME)); | 
 |  | 
 | 	board = dmi_get_system_info(DMI_BOARD_NAME); | 
 | 	if (board) { | 
 | 		c += scnprintf(buf + c, len - c, "/"); | 
 | 		c += print_filtered(buf + c, len - c, board); | 
 | 	} | 
 | 	c += scnprintf(buf + c, len - c, ", BIOS "); | 
 | 	c += print_filtered(buf + c, len - c, | 
 | 			    dmi_get_system_info(DMI_BIOS_VERSION)); | 
 | 	c += scnprintf(buf + c, len - c, " "); | 
 | 	c += print_filtered(buf + c, len - c, | 
 | 			    dmi_get_system_info(DMI_BIOS_DATE)); | 
 | } | 
 |  | 
 | /* | 
 |  * Check for DMI/SMBIOS headers in the system firmware image.  Any | 
 |  * SMBIOS header must start 16 bytes before the DMI header, so take a | 
 |  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset | 
 |  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS | 
 |  * takes precedence) and return 0.  Otherwise return 1. | 
 |  */ | 
 | static int __init dmi_present(const u8 *buf) | 
 | { | 
 | 	u32 smbios_ver; | 
 |  | 
 | 	/* | 
 | 	 * The size of this structure is 31 bytes, but we also accept value | 
 | 	 * 30 due to a mistake in SMBIOS specification version 2.1. | 
 | 	 */ | 
 | 	if (memcmp(buf, "_SM_", 4) == 0 && | 
 | 	    buf[5] >= 30 && buf[5] <= 32 && | 
 | 	    dmi_checksum(buf, buf[5])) { | 
 | 		smbios_ver = get_unaligned_be16(buf + 6); | 
 | 		smbios_entry_point_size = buf[5]; | 
 | 		memcpy(smbios_entry_point, buf, smbios_entry_point_size); | 
 |  | 
 | 		/* Some BIOS report weird SMBIOS version, fix that up */ | 
 | 		switch (smbios_ver) { | 
 | 		case 0x021F: | 
 | 		case 0x0221: | 
 | 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", | 
 | 				 smbios_ver & 0xFF, 3); | 
 | 			smbios_ver = 0x0203; | 
 | 			break; | 
 | 		case 0x0233: | 
 | 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); | 
 | 			smbios_ver = 0x0206; | 
 | 			break; | 
 | 		} | 
 | 	} else { | 
 | 		smbios_ver = 0; | 
 | 	} | 
 |  | 
 | 	buf += 16; | 
 |  | 
 | 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { | 
 | 		if (smbios_ver) | 
 | 			dmi_ver = smbios_ver; | 
 | 		else | 
 | 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); | 
 | 		dmi_ver <<= 8; | 
 | 		dmi_num = get_unaligned_le16(buf + 12); | 
 | 		dmi_len = get_unaligned_le16(buf + 6); | 
 | 		dmi_base = get_unaligned_le32(buf + 8); | 
 |  | 
 | 		if (dmi_walk_early(dmi_decode) == 0) { | 
 | 			if (smbios_ver) { | 
 | 				pr_info("SMBIOS %d.%d present.\n", | 
 | 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); | 
 | 			} else { | 
 | 				smbios_entry_point_size = 15; | 
 | 				memcpy(smbios_entry_point, buf, | 
 | 				       smbios_entry_point_size); | 
 | 				pr_info("Legacy DMI %d.%d present.\n", | 
 | 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); | 
 | 			} | 
 | 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); | 
 | 			pr_info("DMI: %s\n", dmi_ids_string); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy | 
 |  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. | 
 |  */ | 
 | static int __init dmi_smbios3_present(const u8 *buf) | 
 | { | 
 | 	if (memcmp(buf, "_SM3_", 5) == 0 && | 
 | 	    buf[6] >= 24 && buf[6] <= 32 && | 
 | 	    dmi_checksum(buf, buf[6])) { | 
 | 		dmi_ver = get_unaligned_be24(buf + 7); | 
 | 		dmi_num = 0;			/* No longer specified */ | 
 | 		dmi_len = get_unaligned_le32(buf + 12); | 
 | 		dmi_base = get_unaligned_le64(buf + 16); | 
 | 		smbios_entry_point_size = buf[6]; | 
 | 		memcpy(smbios_entry_point, buf, smbios_entry_point_size); | 
 |  | 
 | 		if (dmi_walk_early(dmi_decode) == 0) { | 
 | 			pr_info("SMBIOS %d.%d.%d present.\n", | 
 | 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, | 
 | 				dmi_ver & 0xFF); | 
 | 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); | 
 | 			pr_info("DMI: %s\n", dmi_ids_string); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void __init dmi_scan_machine(void) | 
 | { | 
 | 	char __iomem *p, *q; | 
 | 	char buf[32]; | 
 |  | 
 | 	if (efi_enabled(EFI_CONFIG_TABLES)) { | 
 | 		/* | 
 | 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is | 
 | 		 * allowed to define both the 64-bit entry point (smbios3) and | 
 | 		 * the 32-bit entry point (smbios), in which case they should | 
 | 		 * either both point to the same SMBIOS structure table, or the | 
 | 		 * table pointed to by the 64-bit entry point should contain a | 
 | 		 * superset of the table contents pointed to by the 32-bit entry | 
 | 		 * point (section 5.2) | 
 | 		 * This implies that the 64-bit entry point should have | 
 | 		 * precedence if it is defined and supported by the OS. If we | 
 | 		 * have the 64-bit entry point, but fail to decode it, fall | 
 | 		 * back to the legacy one (if available) | 
 | 		 */ | 
 | 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { | 
 | 			p = dmi_early_remap(efi.smbios3, 32); | 
 | 			if (p == NULL) | 
 | 				goto error; | 
 | 			memcpy_fromio(buf, p, 32); | 
 | 			dmi_early_unmap(p, 32); | 
 |  | 
 | 			if (!dmi_smbios3_present(buf)) { | 
 | 				dmi_available = 1; | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 		if (efi.smbios == EFI_INVALID_TABLE_ADDR) | 
 | 			goto error; | 
 |  | 
 | 		/* This is called as a core_initcall() because it isn't | 
 | 		 * needed during early boot.  This also means we can | 
 | 		 * iounmap the space when we're done with it. | 
 | 		 */ | 
 | 		p = dmi_early_remap(efi.smbios, 32); | 
 | 		if (p == NULL) | 
 | 			goto error; | 
 | 		memcpy_fromio(buf, p, 32); | 
 | 		dmi_early_unmap(p, 32); | 
 |  | 
 | 		if (!dmi_present(buf)) { | 
 | 			dmi_available = 1; | 
 | 			return; | 
 | 		} | 
 | 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { | 
 | 		p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000); | 
 | 		if (p == NULL) | 
 | 			goto error; | 
 |  | 
 | 		/* | 
 | 		 * Same logic as above, look for a 64-bit entry point | 
 | 		 * first, and if not found, fall back to 32-bit entry point. | 
 | 		 */ | 
 | 		memcpy_fromio(buf, p, 16); | 
 | 		for (q = p + 16; q < p + 0x10000; q += 16) { | 
 | 			memcpy_fromio(buf + 16, q, 16); | 
 | 			if (!dmi_smbios3_present(buf)) { | 
 | 				dmi_available = 1; | 
 | 				dmi_early_unmap(p, 0x10000); | 
 | 				return; | 
 | 			} | 
 | 			memcpy(buf, buf + 16, 16); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Iterate over all possible DMI header addresses q. | 
 | 		 * Maintain the 32 bytes around q in buf.  On the | 
 | 		 * first iteration, substitute zero for the | 
 | 		 * out-of-range bytes so there is no chance of falsely | 
 | 		 * detecting an SMBIOS header. | 
 | 		 */ | 
 | 		memset(buf, 0, 16); | 
 | 		for (q = p; q < p + 0x10000; q += 16) { | 
 | 			memcpy_fromio(buf + 16, q, 16); | 
 | 			if (!dmi_present(buf)) { | 
 | 				dmi_available = 1; | 
 | 				dmi_early_unmap(p, 0x10000); | 
 | 				return; | 
 | 			} | 
 | 			memcpy(buf, buf + 16, 16); | 
 | 		} | 
 | 		dmi_early_unmap(p, 0x10000); | 
 | 	} | 
 |  error: | 
 | 	pr_info("DMI not present or invalid.\n"); | 
 | } | 
 |  | 
 | static BIN_ATTR_SIMPLE_ADMIN_RO(smbios_entry_point); | 
 | static BIN_ATTR_SIMPLE_ADMIN_RO(DMI); | 
 |  | 
 | static int __init dmi_init(void) | 
 | { | 
 | 	struct kobject *tables_kobj; | 
 | 	u8 *dmi_table; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	if (!dmi_available) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay | 
 | 	 * even after farther error, as it can be used by other modules like | 
 | 	 * dmi-sysfs. | 
 | 	 */ | 
 | 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); | 
 | 	if (!dmi_kobj) | 
 | 		goto err; | 
 |  | 
 | 	tables_kobj = kobject_create_and_add("tables", dmi_kobj); | 
 | 	if (!tables_kobj) | 
 | 		goto err; | 
 |  | 
 | 	dmi_table = dmi_remap(dmi_base, dmi_len); | 
 | 	if (!dmi_table) | 
 | 		goto err_tables; | 
 |  | 
 | 	bin_attr_smbios_entry_point.size = smbios_entry_point_size; | 
 | 	bin_attr_smbios_entry_point.private = smbios_entry_point; | 
 | 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); | 
 | 	if (ret) | 
 | 		goto err_unmap; | 
 |  | 
 | 	bin_attr_DMI.size = dmi_len; | 
 | 	bin_attr_DMI.private = dmi_table; | 
 | 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	sysfs_remove_bin_file(tables_kobj, | 
 | 			      &bin_attr_smbios_entry_point); | 
 |  err_unmap: | 
 | 	dmi_unmap(dmi_table); | 
 |  err_tables: | 
 | 	kobject_del(tables_kobj); | 
 | 	kobject_put(tables_kobj); | 
 |  err: | 
 | 	pr_err("dmi: Firmware registration failed.\n"); | 
 |  | 
 | 	return ret; | 
 | } | 
 | subsys_initcall(dmi_init); | 
 |  | 
 | /** | 
 |  *	dmi_setup - scan and setup DMI system information | 
 |  * | 
 |  *	Scan the DMI system information. This setups DMI identifiers | 
 |  *	(dmi_system_id) for printing it out on task dumps and prepares | 
 |  *	DIMM entry information (dmi_memdev_info) from the SMBIOS table | 
 |  *	for using this when reporting memory errors. | 
 |  */ | 
 | void __init dmi_setup(void) | 
 | { | 
 | 	dmi_scan_machine(); | 
 | 	if (!dmi_available) | 
 | 		return; | 
 |  | 
 | 	dmi_memdev_walk(); | 
 | 	pr_info("DMI: Memory slots populated: %d/%d\n", | 
 | 		dmi_memdev_populated_nr, dmi_memdev_nr); | 
 | 	dump_stack_set_arch_desc("%s", dmi_ids_string); | 
 | } | 
 |  | 
 | /** | 
 |  *	dmi_matches - check if dmi_system_id structure matches system DMI data | 
 |  *	@dmi: pointer to the dmi_system_id structure to check | 
 |  */ | 
 | static bool dmi_matches(const struct dmi_system_id *dmi) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { | 
 | 		int s = dmi->matches[i].slot; | 
 | 		if (s == DMI_NONE) | 
 | 			break; | 
 | 		if (s == DMI_OEM_STRING) { | 
 | 			/* DMI_OEM_STRING must be exact match */ | 
 | 			const struct dmi_device *valid; | 
 |  | 
 | 			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, | 
 | 						dmi->matches[i].substr, NULL); | 
 | 			if (valid) | 
 | 				continue; | 
 | 		} else if (dmi_ident[s]) { | 
 | 			if (dmi->matches[i].exact_match) { | 
 | 				if (!strcmp(dmi_ident[s], | 
 | 					    dmi->matches[i].substr)) | 
 | 					continue; | 
 | 			} else { | 
 | 				if (strstr(dmi_ident[s], | 
 | 					   dmi->matches[i].substr)) | 
 | 					continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* No match */ | 
 | 		return false; | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  *	dmi_is_end_of_table - check for end-of-table marker | 
 |  *	@dmi: pointer to the dmi_system_id structure to check | 
 |  */ | 
 | static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) | 
 | { | 
 | 	return dmi->matches[0].slot == DMI_NONE; | 
 | } | 
 |  | 
 | /** | 
 |  *	dmi_check_system - check system DMI data | 
 |  *	@list: array of dmi_system_id structures to match against | 
 |  *		All non-null elements of the list must match | 
 |  *		their slot's (field index's) data (i.e., each | 
 |  *		list string must be a substring of the specified | 
 |  *		DMI slot's string data) to be considered a | 
 |  *		successful match. | 
 |  * | 
 |  *	Walk the blacklist table running matching functions until someone | 
 |  *	returns non zero or we hit the end. Callback function is called for | 
 |  *	each successful match. Returns the number of matches. | 
 |  * | 
 |  *	dmi_setup must be called before this function is called. | 
 |  */ | 
 | int dmi_check_system(const struct dmi_system_id *list) | 
 | { | 
 | 	int count = 0; | 
 | 	const struct dmi_system_id *d; | 
 |  | 
 | 	for (d = list; !dmi_is_end_of_table(d); d++) | 
 | 		if (dmi_matches(d)) { | 
 | 			count++; | 
 | 			if (d->callback && d->callback(d)) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 	return count; | 
 | } | 
 | EXPORT_SYMBOL(dmi_check_system); | 
 |  | 
 | /** | 
 |  *	dmi_first_match - find dmi_system_id structure matching system DMI data | 
 |  *	@list: array of dmi_system_id structures to match against | 
 |  *		All non-null elements of the list must match | 
 |  *		their slot's (field index's) data (i.e., each | 
 |  *		list string must be a substring of the specified | 
 |  *		DMI slot's string data) to be considered a | 
 |  *		successful match. | 
 |  * | 
 |  *	Walk the blacklist table until the first match is found.  Return the | 
 |  *	pointer to the matching entry or NULL if there's no match. | 
 |  * | 
 |  *	dmi_setup must be called before this function is called. | 
 |  */ | 
 | const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) | 
 | { | 
 | 	const struct dmi_system_id *d; | 
 |  | 
 | 	for (d = list; !dmi_is_end_of_table(d); d++) | 
 | 		if (dmi_matches(d)) | 
 | 			return d; | 
 |  | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(dmi_first_match); | 
 |  | 
 | /** | 
 |  *	dmi_get_system_info - return DMI data value | 
 |  *	@field: data index (see enum dmi_field) | 
 |  * | 
 |  *	Returns one DMI data value, can be used to perform | 
 |  *	complex DMI data checks. | 
 |  */ | 
 | const char *dmi_get_system_info(int field) | 
 | { | 
 | 	return dmi_ident[field]; | 
 | } | 
 | EXPORT_SYMBOL(dmi_get_system_info); | 
 |  | 
 | /** | 
 |  * dmi_name_in_serial - Check if string is in the DMI product serial information | 
 |  * @str: string to check for | 
 |  */ | 
 | int dmi_name_in_serial(const char *str) | 
 | { | 
 | 	int f = DMI_PRODUCT_SERIAL; | 
 | 	if (dmi_ident[f] && strstr(dmi_ident[f], str)) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name | 
 |  *	@str: Case sensitive Name | 
 |  */ | 
 | int dmi_name_in_vendors(const char *str) | 
 | { | 
 | 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; | 
 | 	int i; | 
 | 	for (i = 0; fields[i] != DMI_NONE; i++) { | 
 | 		int f = fields[i]; | 
 | 		if (dmi_ident[f] && strstr(dmi_ident[f], str)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(dmi_name_in_vendors); | 
 |  | 
 | /** | 
 |  *	dmi_find_device - find onboard device by type/name | 
 |  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types | 
 |  *	@name: device name string or %NULL to match all | 
 |  *	@from: previous device found in search, or %NULL for new search. | 
 |  * | 
 |  *	Iterates through the list of known onboard devices. If a device is | 
 |  *	found with a matching @type and @name, a pointer to its device | 
 |  *	structure is returned.  Otherwise, %NULL is returned. | 
 |  *	A new search is initiated by passing %NULL as the @from argument. | 
 |  *	If @from is not %NULL, searches continue from next device. | 
 |  */ | 
 | const struct dmi_device *dmi_find_device(int type, const char *name, | 
 | 				    const struct dmi_device *from) | 
 | { | 
 | 	const struct list_head *head = from ? &from->list : &dmi_devices; | 
 | 	struct list_head *d; | 
 |  | 
 | 	for (d = head->next; d != &dmi_devices; d = d->next) { | 
 | 		const struct dmi_device *dev = | 
 | 			list_entry(d, struct dmi_device, list); | 
 |  | 
 | 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && | 
 | 		    ((name == NULL) || (strcmp(dev->name, name) == 0))) | 
 | 			return dev; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(dmi_find_device); | 
 |  | 
 | /** | 
 |  *	dmi_get_date - parse a DMI date | 
 |  *	@field:	data index (see enum dmi_field) | 
 |  *	@yearp: optional out parameter for the year | 
 |  *	@monthp: optional out parameter for the month | 
 |  *	@dayp: optional out parameter for the day | 
 |  * | 
 |  *	The date field is assumed to be in the form resembling | 
 |  *	[mm[/dd]]/yy[yy] and the result is stored in the out | 
 |  *	parameters any or all of which can be omitted. | 
 |  * | 
 |  *	If the field doesn't exist, all out parameters are set to zero | 
 |  *	and false is returned.  Otherwise, true is returned with any | 
 |  *	invalid part of date set to zero. | 
 |  * | 
 |  *	On return, year, month and day are guaranteed to be in the | 
 |  *	range of [0,9999], [0,12] and [0,31] respectively. | 
 |  */ | 
 | bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) | 
 | { | 
 | 	int year = 0, month = 0, day = 0; | 
 | 	bool exists; | 
 | 	const char *s, *y; | 
 | 	char *e; | 
 |  | 
 | 	s = dmi_get_system_info(field); | 
 | 	exists = s; | 
 | 	if (!exists) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Determine year first.  We assume the date string resembles | 
 | 	 * mm/dd/yy[yy] but the original code extracted only the year | 
 | 	 * from the end.  Keep the behavior in the spirit of no | 
 | 	 * surprises. | 
 | 	 */ | 
 | 	y = strrchr(s, '/'); | 
 | 	if (!y) | 
 | 		goto out; | 
 |  | 
 | 	y++; | 
 | 	year = simple_strtoul(y, &e, 10); | 
 | 	if (y != e && year < 100) {	/* 2-digit year */ | 
 | 		year += 1900; | 
 | 		if (year < 1996)	/* no dates < spec 1.0 */ | 
 | 			year += 100; | 
 | 	} | 
 | 	if (year > 9999)		/* year should fit in %04d */ | 
 | 		year = 0; | 
 |  | 
 | 	/* parse the mm and dd */ | 
 | 	month = simple_strtoul(s, &e, 10); | 
 | 	if (s == e || *e != '/' || !month || month > 12) { | 
 | 		month = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	s = e + 1; | 
 | 	day = simple_strtoul(s, &e, 10); | 
 | 	if (s == y || s == e || *e != '/' || day > 31) | 
 | 		day = 0; | 
 | out: | 
 | 	if (yearp) | 
 | 		*yearp = year; | 
 | 	if (monthp) | 
 | 		*monthp = month; | 
 | 	if (dayp) | 
 | 		*dayp = day; | 
 | 	return exists; | 
 | } | 
 | EXPORT_SYMBOL(dmi_get_date); | 
 |  | 
 | /** | 
 |  *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field | 
 |  * | 
 |  *	Returns year on success, -ENXIO if DMI is not selected, | 
 |  *	or a different negative error code if DMI field is not present | 
 |  *	or not parseable. | 
 |  */ | 
 | int dmi_get_bios_year(void) | 
 | { | 
 | 	bool exists; | 
 | 	int year; | 
 |  | 
 | 	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); | 
 | 	if (!exists) | 
 | 		return -ENODATA; | 
 |  | 
 | 	return year ? year : -ERANGE; | 
 | } | 
 | EXPORT_SYMBOL(dmi_get_bios_year); | 
 |  | 
 | /** | 
 |  *	dmi_walk - Walk the DMI table and get called back for every record | 
 |  *	@decode: Callback function | 
 |  *	@private_data: Private data to be passed to the callback function | 
 |  * | 
 |  *	Returns 0 on success, -ENXIO if DMI is not selected or not present, | 
 |  *	or a different negative error code if DMI walking fails. | 
 |  */ | 
 | int dmi_walk(void (*decode)(const struct dmi_header *, void *), | 
 | 	     void *private_data) | 
 | { | 
 | 	u8 *buf; | 
 |  | 
 | 	if (!dmi_available) | 
 | 		return -ENXIO; | 
 |  | 
 | 	buf = dmi_remap(dmi_base, dmi_len); | 
 | 	if (buf == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dmi_decode_table(buf, decode, private_data); | 
 |  | 
 | 	dmi_unmap(buf); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dmi_walk); | 
 |  | 
 | /** | 
 |  * dmi_match - compare a string to the dmi field (if exists) | 
 |  * @f: DMI field identifier | 
 |  * @str: string to compare the DMI field to | 
 |  * | 
 |  * Returns true if the requested field equals to the str (including NULL). | 
 |  */ | 
 | bool dmi_match(enum dmi_field f, const char *str) | 
 | { | 
 | 	const char *info = dmi_get_system_info(f); | 
 |  | 
 | 	if (info == NULL || str == NULL) | 
 | 		return info == str; | 
 |  | 
 | 	return !strcmp(info, str); | 
 | } | 
 | EXPORT_SYMBOL_GPL(dmi_match); | 
 |  | 
 | void dmi_memdev_name(u16 handle, const char **bank, const char **device) | 
 | { | 
 | 	int n; | 
 |  | 
 | 	if (dmi_memdev == NULL) | 
 | 		return; | 
 |  | 
 | 	for (n = 0; n < dmi_memdev_nr; n++) { | 
 | 		if (handle == dmi_memdev[n].handle) { | 
 | 			*bank = dmi_memdev[n].bank; | 
 | 			*device = dmi_memdev[n].device; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(dmi_memdev_name); | 
 |  | 
 | u64 dmi_memdev_size(u16 handle) | 
 | { | 
 | 	int n; | 
 |  | 
 | 	if (dmi_memdev) { | 
 | 		for (n = 0; n < dmi_memdev_nr; n++) { | 
 | 			if (handle == dmi_memdev[n].handle) | 
 | 				return dmi_memdev[n].size; | 
 | 		} | 
 | 	} | 
 | 	return ~0ull; | 
 | } | 
 | EXPORT_SYMBOL_GPL(dmi_memdev_size); | 
 |  | 
 | /** | 
 |  * dmi_memdev_type - get the memory type | 
 |  * @handle: DMI structure handle | 
 |  * | 
 |  * Return the DMI memory type of the module in the slot associated with the | 
 |  * given DMI handle, or 0x0 if no such DMI handle exists. | 
 |  */ | 
 | u8 dmi_memdev_type(u16 handle) | 
 | { | 
 | 	int n; | 
 |  | 
 | 	if (dmi_memdev) { | 
 | 		for (n = 0; n < dmi_memdev_nr; n++) { | 
 | 			if (handle == dmi_memdev[n].handle) | 
 | 				return dmi_memdev[n].type; | 
 | 		} | 
 | 	} | 
 | 	return 0x0;	/* Not a valid value */ | 
 | } | 
 | EXPORT_SYMBOL_GPL(dmi_memdev_type); | 
 |  | 
 | /** | 
 |  *	dmi_memdev_handle - get the DMI handle of a memory slot | 
 |  *	@slot: slot number | 
 |  * | 
 |  *	Return the DMI handle associated with a given memory slot, or %0xFFFF | 
 |  *      if there is no such slot. | 
 |  */ | 
 | u16 dmi_memdev_handle(int slot) | 
 | { | 
 | 	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr) | 
 | 		return dmi_memdev[slot].handle; | 
 |  | 
 | 	return 0xffff;	/* Not a valid value */ | 
 | } | 
 | EXPORT_SYMBOL_GPL(dmi_memdev_handle); |