|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * PowerNV Platform dependent EEH operations | 
|  | * | 
|  | * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. | 
|  | */ | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/irqdomain.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/msi.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | #include <asm/eeh.h> | 
|  | #include <asm/eeh_event.h> | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/iommu.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/msi_bitmap.h> | 
|  | #include <asm/opal.h> | 
|  | #include <asm/ppc-pci.h> | 
|  | #include <asm/pnv-pci.h> | 
|  |  | 
|  | #include "powernv.h" | 
|  | #include "pci.h" | 
|  | #include "../../../../drivers/pci/pci.h" | 
|  |  | 
|  | static int eeh_event_irq = -EINVAL; | 
|  |  | 
|  | static void pnv_pcibios_bus_add_device(struct pci_dev *pdev) | 
|  | { | 
|  | dev_dbg(&pdev->dev, "EEH: Setting up device\n"); | 
|  | eeh_probe_device(pdev); | 
|  | } | 
|  |  | 
|  | static irqreturn_t pnv_eeh_event(int irq, void *data) | 
|  | { | 
|  | /* | 
|  | * We simply send a special EEH event if EEH has been | 
|  | * enabled. We don't care about EEH events until we've | 
|  | * finished processing the outstanding ones. Event processing | 
|  | * gets unmasked in next_error() if EEH is enabled. | 
|  | */ | 
|  | disable_irq_nosync(irq); | 
|  |  | 
|  | if (eeh_enabled()) | 
|  | eeh_send_failure_event(NULL); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static ssize_t pnv_eeh_ei_write(struct file *filp, | 
|  | const char __user *user_buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | struct pci_controller *hose = filp->private_data; | 
|  | struct eeh_pe *pe; | 
|  | int pe_no, type, func; | 
|  | unsigned long addr, mask; | 
|  | char buf[50]; | 
|  | int ret; | 
|  |  | 
|  | if (!eeh_ops || !eeh_ops->err_inject) | 
|  | return -ENXIO; | 
|  |  | 
|  | /* Copy over argument buffer */ | 
|  | ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count); | 
|  | if (!ret) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Retrieve parameters */ | 
|  | ret = sscanf(buf, "%x:%x:%x:%lx:%lx", | 
|  | &pe_no, &type, &func, &addr, &mask); | 
|  | if (ret != 5) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Retrieve PE */ | 
|  | pe = eeh_pe_get(hose, pe_no); | 
|  | if (!pe) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Do error injection */ | 
|  | ret = eeh_ops->err_inject(pe, type, func, addr, mask); | 
|  | return ret < 0 ? ret : count; | 
|  | } | 
|  |  | 
|  | static const struct file_operations pnv_eeh_ei_fops = { | 
|  | .open	= simple_open, | 
|  | .write	= pnv_eeh_ei_write, | 
|  | }; | 
|  |  | 
|  | static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val) | 
|  | { | 
|  | struct pci_controller *hose = data; | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  |  | 
|  | out_be64(phb->regs + offset, val); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val) | 
|  | { | 
|  | struct pci_controller *hose = data; | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  |  | 
|  | *val = in_be64(phb->regs + offset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define PNV_EEH_DBGFS_ENTRY(name, reg)				\ | 
|  | static int pnv_eeh_dbgfs_set_##name(void *data, u64 val)	\ | 
|  | {								\ | 
|  | return pnv_eeh_dbgfs_set(data, reg, val);		\ | 
|  | }								\ | 
|  | \ | 
|  | static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val)	\ | 
|  | {								\ | 
|  | return pnv_eeh_dbgfs_get(data, reg, val);		\ | 
|  | }								\ | 
|  | \ | 
|  | DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name,		\ | 
|  | pnv_eeh_dbgfs_get_##name,		\ | 
|  | pnv_eeh_dbgfs_set_##name,		\ | 
|  | "0x%llx\n") | 
|  |  | 
|  | PNV_EEH_DBGFS_ENTRY(outb, 0xD10); | 
|  | PNV_EEH_DBGFS_ENTRY(inbA, 0xD90); | 
|  | PNV_EEH_DBGFS_ENTRY(inbB, 0xE10); | 
|  |  | 
|  | #endif /* CONFIG_DEBUG_FS */ | 
|  |  | 
|  | static void pnv_eeh_enable_phbs(void) | 
|  | { | 
|  | struct pci_controller *hose; | 
|  | struct pnv_phb *phb; | 
|  |  | 
|  | list_for_each_entry(hose, &hose_list, list_node) { | 
|  | phb = hose->private_data; | 
|  | /* | 
|  | * If EEH is enabled, we're going to rely on that. | 
|  | * Otherwise, we restore to conventional mechanism | 
|  | * to clear frozen PE during PCI config access. | 
|  | */ | 
|  | if (eeh_enabled()) | 
|  | phb->flags |= PNV_PHB_FLAG_EEH; | 
|  | else | 
|  | phb->flags &= ~PNV_PHB_FLAG_EEH; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pnv_eeh_post_init - EEH platform dependent post initialization | 
|  | * | 
|  | * EEH platform dependent post initialization on powernv. When | 
|  | * the function is called, the EEH PEs and devices should have | 
|  | * been built. If the I/O cache staff has been built, EEH is | 
|  | * ready to supply service. | 
|  | */ | 
|  | int pnv_eeh_post_init(void) | 
|  | { | 
|  | struct pci_controller *hose; | 
|  | struct pnv_phb *phb; | 
|  | int ret = 0; | 
|  |  | 
|  | eeh_show_enabled(); | 
|  |  | 
|  | /* Register OPAL event notifier */ | 
|  | eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR)); | 
|  | if (eeh_event_irq < 0) { | 
|  | pr_err("%s: Can't register OPAL event interrupt (%d)\n", | 
|  | __func__, eeh_event_irq); | 
|  | return eeh_event_irq; | 
|  | } | 
|  |  | 
|  | ret = request_irq(eeh_event_irq, pnv_eeh_event, | 
|  | IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL); | 
|  | if (ret < 0) { | 
|  | irq_dispose_mapping(eeh_event_irq); | 
|  | pr_err("%s: Can't request OPAL event interrupt (%d)\n", | 
|  | __func__, eeh_event_irq); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (!eeh_enabled()) | 
|  | disable_irq(eeh_event_irq); | 
|  |  | 
|  | pnv_eeh_enable_phbs(); | 
|  |  | 
|  | list_for_each_entry(hose, &hose_list, list_node) { | 
|  | phb = hose->private_data; | 
|  |  | 
|  | /* Create debugfs entries */ | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | if (phb->has_dbgfs || !phb->dbgfs) | 
|  | continue; | 
|  |  | 
|  | phb->has_dbgfs = 1; | 
|  | debugfs_create_file("err_injct", 0200, | 
|  | phb->dbgfs, hose, | 
|  | &pnv_eeh_ei_fops); | 
|  |  | 
|  | debugfs_create_file("err_injct_outbound", 0600, | 
|  | phb->dbgfs, hose, | 
|  | &pnv_eeh_dbgfs_ops_outb); | 
|  | debugfs_create_file("err_injct_inboundA", 0600, | 
|  | phb->dbgfs, hose, | 
|  | &pnv_eeh_dbgfs_ops_inbA); | 
|  | debugfs_create_file("err_injct_inboundB", 0600, | 
|  | phb->dbgfs, hose, | 
|  | &pnv_eeh_dbgfs_ops_inbB); | 
|  | #endif /* CONFIG_DEBUG_FS */ | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap) | 
|  | { | 
|  | int pos = PCI_CAPABILITY_LIST; | 
|  | int cnt = 48;   /* Maximal number of capabilities */ | 
|  | u32 status, id; | 
|  |  | 
|  | if (!pdn) | 
|  | return 0; | 
|  |  | 
|  | /* Check if the device supports capabilities */ | 
|  | pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status); | 
|  | if (!(status & PCI_STATUS_CAP_LIST)) | 
|  | return 0; | 
|  |  | 
|  | while (cnt--) { | 
|  | pnv_pci_cfg_read(pdn, pos, 1, &pos); | 
|  | if (pos < 0x40) | 
|  | break; | 
|  |  | 
|  | pos &= ~3; | 
|  | pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id); | 
|  | if (id == 0xff) | 
|  | break; | 
|  |  | 
|  | /* Found */ | 
|  | if (id == cap) | 
|  | return pos; | 
|  |  | 
|  | /* Next one */ | 
|  | pos += PCI_CAP_LIST_NEXT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap) | 
|  | { | 
|  | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
|  | u32 header; | 
|  | int pos = 256, ttl = (4096 - 256) / 8; | 
|  |  | 
|  | if (!edev || !edev->pcie_cap) | 
|  | return 0; | 
|  | if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) | 
|  | return 0; | 
|  | else if (!header) | 
|  | return 0; | 
|  |  | 
|  | while (ttl-- > 0) { | 
|  | if (PCI_EXT_CAP_ID(header) == cap && pos) | 
|  | return pos; | 
|  |  | 
|  | pos = PCI_EXT_CAP_NEXT(header); | 
|  | if (pos < 256) | 
|  | break; | 
|  |  | 
|  | if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct eeh_pe *pnv_eeh_get_upstream_pe(struct pci_dev *pdev) | 
|  | { | 
|  | struct pci_controller *hose = pdev->bus->sysdata; | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  | struct pci_dev *parent = pdev->bus->self; | 
|  |  | 
|  | #ifdef CONFIG_PCI_IOV | 
|  | /* for VFs we use the PF's PE as the upstream PE */ | 
|  | if (pdev->is_virtfn) | 
|  | parent = pdev->physfn; | 
|  | #endif | 
|  |  | 
|  | /* otherwise use the PE of our parent bridge */ | 
|  | if (parent) { | 
|  | struct pnv_ioda_pe *ioda_pe = pnv_ioda_get_pe(parent); | 
|  |  | 
|  | return eeh_pe_get(phb->hose, ioda_pe->pe_number); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pnv_eeh_probe - Do probe on PCI device | 
|  | * @pdev: pci_dev to probe | 
|  | * | 
|  | * Create, or find the existing, eeh_dev for this pci_dev. | 
|  | */ | 
|  | static struct eeh_dev *pnv_eeh_probe(struct pci_dev *pdev) | 
|  | { | 
|  | struct pci_dn *pdn = pci_get_pdn(pdev); | 
|  | struct pci_controller *hose = pdn->phb; | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
|  | struct eeh_pe *upstream_pe; | 
|  | uint32_t pcie_flags; | 
|  | int ret; | 
|  | int config_addr = (pdn->busno << 8) | (pdn->devfn); | 
|  |  | 
|  | /* | 
|  | * When probing the root bridge, which doesn't have any | 
|  | * subordinate PCI devices. We don't have OF node for | 
|  | * the root bridge. So it's not reasonable to continue | 
|  | * the probing. | 
|  | */ | 
|  | if (!edev || edev->pe) | 
|  | return NULL; | 
|  |  | 
|  | /* already configured? */ | 
|  | if (edev->pdev) { | 
|  | pr_debug("%s: found existing edev for %04x:%02x:%02x.%01x\n", | 
|  | __func__, hose->global_number, config_addr >> 8, | 
|  | PCI_SLOT(config_addr), PCI_FUNC(config_addr)); | 
|  | return edev; | 
|  | } | 
|  |  | 
|  | /* Skip for PCI-ISA bridge */ | 
|  | if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) | 
|  | return NULL; | 
|  |  | 
|  | eeh_edev_dbg(edev, "Probing device\n"); | 
|  |  | 
|  | /* Initialize eeh device */ | 
|  | edev->mode	&= 0xFFFFFF00; | 
|  | edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); | 
|  | edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP); | 
|  | edev->af_cap   = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF); | 
|  | edev->aer_cap  = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); | 
|  | if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { | 
|  | edev->mode |= EEH_DEV_BRIDGE; | 
|  | if (edev->pcie_cap) { | 
|  | pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS, | 
|  | 2, &pcie_flags); | 
|  | pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; | 
|  | if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) | 
|  | edev->mode |= EEH_DEV_ROOT_PORT; | 
|  | else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) | 
|  | edev->mode |= EEH_DEV_DS_PORT; | 
|  | } | 
|  | } | 
|  |  | 
|  | edev->pe_config_addr = phb->ioda.pe_rmap[config_addr]; | 
|  |  | 
|  | upstream_pe = pnv_eeh_get_upstream_pe(pdev); | 
|  |  | 
|  | /* Create PE */ | 
|  | ret = eeh_pe_tree_insert(edev, upstream_pe); | 
|  | if (ret) { | 
|  | eeh_edev_warn(edev, "Failed to add device to PE (code %d)\n", ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the PE contains any one of following adapters, the | 
|  | * PCI config space can't be accessed when dumping EEH log. | 
|  | * Otherwise, we will run into fenced PHB caused by shortage | 
|  | * of outbound credits in the adapter. The PCI config access | 
|  | * should be blocked until PE reset. MMIO access is dropped | 
|  | * by hardware certainly. In order to drop PCI config requests, | 
|  | * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which | 
|  | * will be checked in the backend for PE state retrieval. If | 
|  | * the PE becomes frozen for the first time and the flag has | 
|  | * been set for the PE, we will set EEH_PE_CFG_BLOCKED for | 
|  | * that PE to block its config space. | 
|  | * | 
|  | * Broadcom BCM5718 2-ports NICs (14e4:1656) | 
|  | * Broadcom Austin 4-ports NICs (14e4:1657) | 
|  | * Broadcom Shiner 4-ports 1G NICs (14e4:168a) | 
|  | * Broadcom Shiner 2-ports 10G NICs (14e4:168e) | 
|  | */ | 
|  | if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && | 
|  | pdn->device_id == 0x1656) || | 
|  | (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && | 
|  | pdn->device_id == 0x1657) || | 
|  | (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && | 
|  | pdn->device_id == 0x168a) || | 
|  | (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && | 
|  | pdn->device_id == 0x168e)) | 
|  | edev->pe->state |= EEH_PE_CFG_RESTRICTED; | 
|  |  | 
|  | /* | 
|  | * Cache the PE primary bus, which can't be fetched when | 
|  | * full hotplug is in progress. In that case, all child | 
|  | * PCI devices of the PE are expected to be removed prior | 
|  | * to PE reset. | 
|  | */ | 
|  | if (!(edev->pe->state & EEH_PE_PRI_BUS)) { | 
|  | edev->pe->bus = pci_find_bus(hose->global_number, | 
|  | pdn->busno); | 
|  | if (edev->pe->bus) | 
|  | edev->pe->state |= EEH_PE_PRI_BUS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable EEH explicitly so that we will do EEH check | 
|  | * while accessing I/O stuff | 
|  | */ | 
|  | if (!eeh_has_flag(EEH_ENABLED)) { | 
|  | enable_irq(eeh_event_irq); | 
|  | pnv_eeh_enable_phbs(); | 
|  | eeh_add_flag(EEH_ENABLED); | 
|  | } | 
|  |  | 
|  | /* Save memory bars */ | 
|  | eeh_save_bars(edev); | 
|  |  | 
|  | eeh_edev_dbg(edev, "EEH enabled on device\n"); | 
|  |  | 
|  | return edev; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable | 
|  | * @pe: EEH PE | 
|  | * @option: operation to be issued | 
|  | * | 
|  | * The function is used to control the EEH functionality globally. | 
|  | * Currently, following options are support according to PAPR: | 
|  | * Enable EEH, Disable EEH, Enable MMIO and Enable DMA | 
|  | */ | 
|  | static int pnv_eeh_set_option(struct eeh_pe *pe, int option) | 
|  | { | 
|  | struct pci_controller *hose = pe->phb; | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  | bool freeze_pe = false; | 
|  | int opt; | 
|  | s64 rc; | 
|  |  | 
|  | switch (option) { | 
|  | case EEH_OPT_DISABLE: | 
|  | return -EPERM; | 
|  | case EEH_OPT_ENABLE: | 
|  | return 0; | 
|  | case EEH_OPT_THAW_MMIO: | 
|  | opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO; | 
|  | break; | 
|  | case EEH_OPT_THAW_DMA: | 
|  | opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA; | 
|  | break; | 
|  | case EEH_OPT_FREEZE_PE: | 
|  | freeze_pe = true; | 
|  | opt = OPAL_EEH_ACTION_SET_FREEZE_ALL; | 
|  | break; | 
|  | default: | 
|  | pr_warn("%s: Invalid option %d\n", __func__, option); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Freeze master and slave PEs if PHB supports compound PEs */ | 
|  | if (freeze_pe) { | 
|  | if (phb->freeze_pe) { | 
|  | phb->freeze_pe(phb, pe->addr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt); | 
|  | if (rc != OPAL_SUCCESS) { | 
|  | pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", | 
|  | __func__, rc, phb->hose->global_number, | 
|  | pe->addr); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Unfreeze master and slave PEs if PHB supports */ | 
|  | if (phb->unfreeze_pe) | 
|  | return phb->unfreeze_pe(phb, pe->addr, opt); | 
|  |  | 
|  | rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt); | 
|  | if (rc != OPAL_SUCCESS) { | 
|  | pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n", | 
|  | __func__, rc, option, phb->hose->global_number, | 
|  | pe->addr); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pnv_eeh_get_phb_diag(struct eeh_pe *pe) | 
|  | { | 
|  | struct pnv_phb *phb = pe->phb->private_data; | 
|  | s64 rc; | 
|  |  | 
|  | rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data, | 
|  | phb->diag_data_size); | 
|  | if (rc != OPAL_SUCCESS) | 
|  | pr_warn("%s: Failure %lld getting PHB#%x diag-data\n", | 
|  | __func__, rc, pe->phb->global_number); | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_get_phb_state(struct eeh_pe *pe) | 
|  | { | 
|  | struct pnv_phb *phb = pe->phb->private_data; | 
|  | u8 fstate = 0; | 
|  | __be16 pcierr = 0; | 
|  | s64 rc; | 
|  | int result = 0; | 
|  |  | 
|  | rc = opal_pci_eeh_freeze_status(phb->opal_id, | 
|  | pe->addr, | 
|  | &fstate, | 
|  | &pcierr, | 
|  | NULL); | 
|  | if (rc != OPAL_SUCCESS) { | 
|  | pr_warn("%s: Failure %lld getting PHB#%x state\n", | 
|  | __func__, rc, phb->hose->global_number); | 
|  | return EEH_STATE_NOT_SUPPORT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check PHB state. If the PHB is frozen for the | 
|  | * first time, to dump the PHB diag-data. | 
|  | */ | 
|  | if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) { | 
|  | result = (EEH_STATE_MMIO_ACTIVE  | | 
|  | EEH_STATE_DMA_ACTIVE   | | 
|  | EEH_STATE_MMIO_ENABLED | | 
|  | EEH_STATE_DMA_ENABLED); | 
|  | } else if (!(pe->state & EEH_PE_ISOLATED)) { | 
|  | eeh_pe_mark_isolated(pe); | 
|  | pnv_eeh_get_phb_diag(pe); | 
|  |  | 
|  | if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) | 
|  | pnv_pci_dump_phb_diag_data(pe->phb, pe->data); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_get_pe_state(struct eeh_pe *pe) | 
|  | { | 
|  | struct pnv_phb *phb = pe->phb->private_data; | 
|  | u8 fstate = 0; | 
|  | __be16 pcierr = 0; | 
|  | s64 rc; | 
|  | int result; | 
|  |  | 
|  | /* | 
|  | * We don't clobber hardware frozen state until PE | 
|  | * reset is completed. In order to keep EEH core | 
|  | * moving forward, we have to return operational | 
|  | * state during PE reset. | 
|  | */ | 
|  | if (pe->state & EEH_PE_RESET) { | 
|  | result = (EEH_STATE_MMIO_ACTIVE  | | 
|  | EEH_STATE_DMA_ACTIVE   | | 
|  | EEH_STATE_MMIO_ENABLED | | 
|  | EEH_STATE_DMA_ENABLED); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch PE state from hardware. If the PHB | 
|  | * supports compound PE, let it handle that. | 
|  | */ | 
|  | if (phb->get_pe_state) { | 
|  | fstate = phb->get_pe_state(phb, pe->addr); | 
|  | } else { | 
|  | rc = opal_pci_eeh_freeze_status(phb->opal_id, | 
|  | pe->addr, | 
|  | &fstate, | 
|  | &pcierr, | 
|  | NULL); | 
|  | if (rc != OPAL_SUCCESS) { | 
|  | pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n", | 
|  | __func__, rc, phb->hose->global_number, | 
|  | pe->addr); | 
|  | return EEH_STATE_NOT_SUPPORT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Figure out state */ | 
|  | switch (fstate) { | 
|  | case OPAL_EEH_STOPPED_NOT_FROZEN: | 
|  | result = (EEH_STATE_MMIO_ACTIVE  | | 
|  | EEH_STATE_DMA_ACTIVE   | | 
|  | EEH_STATE_MMIO_ENABLED | | 
|  | EEH_STATE_DMA_ENABLED); | 
|  | break; | 
|  | case OPAL_EEH_STOPPED_MMIO_FREEZE: | 
|  | result = (EEH_STATE_DMA_ACTIVE | | 
|  | EEH_STATE_DMA_ENABLED); | 
|  | break; | 
|  | case OPAL_EEH_STOPPED_DMA_FREEZE: | 
|  | result = (EEH_STATE_MMIO_ACTIVE | | 
|  | EEH_STATE_MMIO_ENABLED); | 
|  | break; | 
|  | case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: | 
|  | result = 0; | 
|  | break; | 
|  | case OPAL_EEH_STOPPED_RESET: | 
|  | result = EEH_STATE_RESET_ACTIVE; | 
|  | break; | 
|  | case OPAL_EEH_STOPPED_TEMP_UNAVAIL: | 
|  | result = EEH_STATE_UNAVAILABLE; | 
|  | break; | 
|  | case OPAL_EEH_STOPPED_PERM_UNAVAIL: | 
|  | result = EEH_STATE_NOT_SUPPORT; | 
|  | break; | 
|  | default: | 
|  | result = EEH_STATE_NOT_SUPPORT; | 
|  | pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n", | 
|  | __func__, phb->hose->global_number, | 
|  | pe->addr, fstate); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If PHB supports compound PE, to freeze all | 
|  | * slave PEs for consistency. | 
|  | * | 
|  | * If the PE is switching to frozen state for the | 
|  | * first time, to dump the PHB diag-data. | 
|  | */ | 
|  | if (!(result & EEH_STATE_NOT_SUPPORT) && | 
|  | !(result & EEH_STATE_UNAVAILABLE) && | 
|  | !(result & EEH_STATE_MMIO_ACTIVE) && | 
|  | !(result & EEH_STATE_DMA_ACTIVE)  && | 
|  | !(pe->state & EEH_PE_ISOLATED)) { | 
|  | if (phb->freeze_pe) | 
|  | phb->freeze_pe(phb, pe->addr); | 
|  |  | 
|  | eeh_pe_mark_isolated(pe); | 
|  | pnv_eeh_get_phb_diag(pe); | 
|  |  | 
|  | if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) | 
|  | pnv_pci_dump_phb_diag_data(pe->phb, pe->data); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pnv_eeh_get_state - Retrieve PE state | 
|  | * @pe: EEH PE | 
|  | * @delay: delay while PE state is temporarily unavailable | 
|  | * | 
|  | * Retrieve the state of the specified PE. For IODA-compitable | 
|  | * platform, it should be retrieved from IODA table. Therefore, | 
|  | * we prefer passing down to hardware implementation to handle | 
|  | * it. | 
|  | */ | 
|  | static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (pe->type & EEH_PE_PHB) | 
|  | ret = pnv_eeh_get_phb_state(pe); | 
|  | else | 
|  | ret = pnv_eeh_get_pe_state(pe); | 
|  |  | 
|  | if (!delay) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If the PE state is temporarily unavailable, | 
|  | * to inform the EEH core delay for default | 
|  | * period (1 second) | 
|  | */ | 
|  | *delay = 0; | 
|  | if (ret & EEH_STATE_UNAVAILABLE) | 
|  | *delay = 1000; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static s64 pnv_eeh_poll(unsigned long id) | 
|  | { | 
|  | s64 rc = OPAL_HARDWARE; | 
|  |  | 
|  | while (1) { | 
|  | rc = opal_pci_poll(id); | 
|  | if (rc <= 0) | 
|  | break; | 
|  |  | 
|  | if (system_state < SYSTEM_RUNNING) | 
|  | udelay(1000 * rc); | 
|  | else | 
|  | msleep(rc); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int pnv_eeh_phb_reset(struct pci_controller *hose, int option) | 
|  | { | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  | s64 rc = OPAL_HARDWARE; | 
|  |  | 
|  | pr_debug("%s: Reset PHB#%x, option=%d\n", | 
|  | __func__, hose->global_number, option); | 
|  |  | 
|  | /* Issue PHB complete reset request */ | 
|  | if (option == EEH_RESET_FUNDAMENTAL || | 
|  | option == EEH_RESET_HOT) | 
|  | rc = opal_pci_reset(phb->opal_id, | 
|  | OPAL_RESET_PHB_COMPLETE, | 
|  | OPAL_ASSERT_RESET); | 
|  | else if (option == EEH_RESET_DEACTIVATE) | 
|  | rc = opal_pci_reset(phb->opal_id, | 
|  | OPAL_RESET_PHB_COMPLETE, | 
|  | OPAL_DEASSERT_RESET); | 
|  | if (rc < 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Poll state of the PHB until the request is done | 
|  | * successfully. The PHB reset is usually PHB complete | 
|  | * reset followed by hot reset on root bus. So we also | 
|  | * need the PCI bus settlement delay. | 
|  | */ | 
|  | if (rc > 0) | 
|  | rc = pnv_eeh_poll(phb->opal_id); | 
|  | if (option == EEH_RESET_DEACTIVATE) { | 
|  | if (system_state < SYSTEM_RUNNING) | 
|  | udelay(1000 * EEH_PE_RST_SETTLE_TIME); | 
|  | else | 
|  | msleep(EEH_PE_RST_SETTLE_TIME); | 
|  | } | 
|  | out: | 
|  | if (rc != OPAL_SUCCESS) | 
|  | return -EIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_root_reset(struct pci_controller *hose, int option) | 
|  | { | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  | s64 rc = OPAL_HARDWARE; | 
|  |  | 
|  | pr_debug("%s: Reset PHB#%x, option=%d\n", | 
|  | __func__, hose->global_number, option); | 
|  |  | 
|  | /* | 
|  | * During the reset deassert time, we needn't care | 
|  | * the reset scope because the firmware does nothing | 
|  | * for fundamental or hot reset during deassert phase. | 
|  | */ | 
|  | if (option == EEH_RESET_FUNDAMENTAL) | 
|  | rc = opal_pci_reset(phb->opal_id, | 
|  | OPAL_RESET_PCI_FUNDAMENTAL, | 
|  | OPAL_ASSERT_RESET); | 
|  | else if (option == EEH_RESET_HOT) | 
|  | rc = opal_pci_reset(phb->opal_id, | 
|  | OPAL_RESET_PCI_HOT, | 
|  | OPAL_ASSERT_RESET); | 
|  | else if (option == EEH_RESET_DEACTIVATE) | 
|  | rc = opal_pci_reset(phb->opal_id, | 
|  | OPAL_RESET_PCI_HOT, | 
|  | OPAL_DEASSERT_RESET); | 
|  | if (rc < 0) | 
|  | goto out; | 
|  |  | 
|  | /* Poll state of the PHB until the request is done */ | 
|  | if (rc > 0) | 
|  | rc = pnv_eeh_poll(phb->opal_id); | 
|  | if (option == EEH_RESET_DEACTIVATE) | 
|  | msleep(EEH_PE_RST_SETTLE_TIME); | 
|  | out: | 
|  | if (rc != OPAL_SUCCESS) | 
|  | return -EIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option) | 
|  | { | 
|  | struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); | 
|  | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
|  | int aer = edev ? edev->aer_cap : 0; | 
|  | u32 ctrl; | 
|  |  | 
|  | pr_debug("%s: Secondary Reset PCI bus %04x:%02x with option %d\n", | 
|  | __func__, pci_domain_nr(dev->bus), | 
|  | dev->bus->number, option); | 
|  |  | 
|  | switch (option) { | 
|  | case EEH_RESET_FUNDAMENTAL: | 
|  | case EEH_RESET_HOT: | 
|  | /* Don't report linkDown event */ | 
|  | if (aer) { | 
|  | eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK, | 
|  | 4, &ctrl); | 
|  | ctrl |= PCI_ERR_UNC_SURPDN; | 
|  | eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK, | 
|  | 4, ctrl); | 
|  | } | 
|  |  | 
|  | eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl); | 
|  | ctrl |= PCI_BRIDGE_CTL_BUS_RESET; | 
|  | eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl); | 
|  |  | 
|  | msleep(EEH_PE_RST_HOLD_TIME); | 
|  | break; | 
|  | case EEH_RESET_DEACTIVATE: | 
|  | eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl); | 
|  | ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; | 
|  | eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl); | 
|  |  | 
|  | msleep(EEH_PE_RST_SETTLE_TIME); | 
|  |  | 
|  | /* Continue reporting linkDown event */ | 
|  | if (aer) { | 
|  | eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK, | 
|  | 4, &ctrl); | 
|  | ctrl &= ~PCI_ERR_UNC_SURPDN; | 
|  | eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK, | 
|  | 4, ctrl); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option) | 
|  | { | 
|  | struct pci_controller *hose = pci_bus_to_host(pdev->bus); | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  | struct device_node *dn = pci_device_to_OF_node(pdev); | 
|  | uint64_t id = PCI_SLOT_ID(phb->opal_id, pci_dev_id(pdev)); | 
|  | uint8_t scope; | 
|  | int64_t rc; | 
|  |  | 
|  | /* Hot reset to the bus if firmware cannot handle */ | 
|  | if (!dn || !of_property_present(dn, "ibm,reset-by-firmware")) | 
|  | return __pnv_eeh_bridge_reset(pdev, option); | 
|  |  | 
|  | pr_debug("%s: FW reset PCI bus %04x:%02x with option %d\n", | 
|  | __func__, pci_domain_nr(pdev->bus), | 
|  | pdev->bus->number, option); | 
|  |  | 
|  | switch (option) { | 
|  | case EEH_RESET_FUNDAMENTAL: | 
|  | scope = OPAL_RESET_PCI_FUNDAMENTAL; | 
|  | break; | 
|  | case EEH_RESET_HOT: | 
|  | scope = OPAL_RESET_PCI_HOT; | 
|  | break; | 
|  | case EEH_RESET_DEACTIVATE: | 
|  | return 0; | 
|  | default: | 
|  | dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n", | 
|  | __func__, option); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET); | 
|  | if (rc <= OPAL_SUCCESS) | 
|  | goto out; | 
|  |  | 
|  | rc = pnv_eeh_poll(id); | 
|  | out: | 
|  | return (rc == OPAL_SUCCESS) ? 0 : -EIO; | 
|  | } | 
|  |  | 
|  | void pnv_pci_reset_secondary_bus(struct pci_dev *dev) | 
|  | { | 
|  | struct pci_controller *hose; | 
|  |  | 
|  | if (pci_is_root_bus(dev->bus)) { | 
|  | hose = pci_bus_to_host(dev->bus); | 
|  | pnv_eeh_root_reset(hose, EEH_RESET_HOT); | 
|  | pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE); | 
|  | } else { | 
|  | pnv_eeh_bridge_reset(dev, EEH_RESET_HOT); | 
|  | pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type, | 
|  | int pos, u16 mask) | 
|  | { | 
|  | struct eeh_dev *edev = pdn->edev; | 
|  | int i, status = 0; | 
|  |  | 
|  | /* Wait for Transaction Pending bit to be cleared */ | 
|  | for (i = 0; i < 4; i++) { | 
|  | eeh_ops->read_config(edev, pos, 2, &status); | 
|  | if (!(status & mask)) | 
|  | return; | 
|  |  | 
|  | msleep((1 << i) * 100); | 
|  | } | 
|  |  | 
|  | pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n", | 
|  | __func__, type, | 
|  | pdn->phb->global_number, pdn->busno, | 
|  | PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_do_flr(struct pci_dn *pdn, int option) | 
|  | { | 
|  | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
|  | u32 reg = 0; | 
|  |  | 
|  | if (WARN_ON(!edev->pcie_cap)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCAP, 4, ®); | 
|  | if (!(reg & PCI_EXP_DEVCAP_FLR)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | switch (option) { | 
|  | case EEH_RESET_HOT: | 
|  | case EEH_RESET_FUNDAMENTAL: | 
|  | pnv_eeh_wait_for_pending(pdn, "", | 
|  | edev->pcie_cap + PCI_EXP_DEVSTA, | 
|  | PCI_EXP_DEVSTA_TRPND); | 
|  | eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, | 
|  | 4, ®); | 
|  | reg |= PCI_EXP_DEVCTL_BCR_FLR; | 
|  | eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, | 
|  | 4, reg); | 
|  | msleep(EEH_PE_RST_HOLD_TIME); | 
|  | break; | 
|  | case EEH_RESET_DEACTIVATE: | 
|  | eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, | 
|  | 4, ®); | 
|  | reg &= ~PCI_EXP_DEVCTL_BCR_FLR; | 
|  | eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL, | 
|  | 4, reg); | 
|  | msleep(EEH_PE_RST_SETTLE_TIME); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option) | 
|  | { | 
|  | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
|  | u32 cap = 0; | 
|  |  | 
|  | if (WARN_ON(!edev->af_cap)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | eeh_ops->read_config(edev, edev->af_cap + PCI_AF_CAP, 1, &cap); | 
|  | if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | switch (option) { | 
|  | case EEH_RESET_HOT: | 
|  | case EEH_RESET_FUNDAMENTAL: | 
|  | /* | 
|  | * Wait for Transaction Pending bit to clear. A word-aligned | 
|  | * test is used, so we use the control offset rather than status | 
|  | * and shift the test bit to match. | 
|  | */ | 
|  | pnv_eeh_wait_for_pending(pdn, "AF", | 
|  | edev->af_cap + PCI_AF_CTRL, | 
|  | PCI_AF_STATUS_TP << 8); | 
|  | eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, | 
|  | 1, PCI_AF_CTRL_FLR); | 
|  | msleep(EEH_PE_RST_HOLD_TIME); | 
|  | break; | 
|  | case EEH_RESET_DEACTIVATE: | 
|  | eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, 1, 0); | 
|  | msleep(EEH_PE_RST_SETTLE_TIME); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option) | 
|  | { | 
|  | struct eeh_dev *edev; | 
|  | struct pci_dn *pdn; | 
|  | int ret; | 
|  |  | 
|  | /* The VF PE should have only one child device */ | 
|  | edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry); | 
|  | pdn = eeh_dev_to_pdn(edev); | 
|  | if (!pdn) | 
|  | return -ENXIO; | 
|  |  | 
|  | ret = pnv_eeh_do_flr(pdn, option); | 
|  | if (!ret) | 
|  | return ret; | 
|  |  | 
|  | return pnv_eeh_do_af_flr(pdn, option); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pnv_eeh_reset - Reset the specified PE | 
|  | * @pe: EEH PE | 
|  | * @option: reset option | 
|  | * | 
|  | * Do reset on the indicated PE. For PCI bus sensitive PE, | 
|  | * we need to reset the parent p2p bridge. The PHB has to | 
|  | * be reinitialized if the p2p bridge is root bridge. For | 
|  | * PCI device sensitive PE, we will try to reset the device | 
|  | * through FLR. For now, we don't have OPAL APIs to do HARD | 
|  | * reset yet, so all reset would be SOFT (HOT) reset. | 
|  | */ | 
|  | static int pnv_eeh_reset(struct eeh_pe *pe, int option) | 
|  | { | 
|  | struct pci_controller *hose = pe->phb; | 
|  | struct pnv_phb *phb; | 
|  | struct pci_bus *bus; | 
|  | int64_t rc; | 
|  |  | 
|  | /* | 
|  | * For PHB reset, we always have complete reset. For those PEs whose | 
|  | * primary bus derived from root complex (root bus) or root port | 
|  | * (usually bus#1), we apply hot or fundamental reset on the root port. | 
|  | * For other PEs, we always have hot reset on the PE primary bus. | 
|  | * | 
|  | * Here, we have different design to pHyp, which always clear the | 
|  | * frozen state during PE reset. However, the good idea here from | 
|  | * benh is to keep frozen state before we get PE reset done completely | 
|  | * (until BAR restore). With the frozen state, HW drops illegal IO | 
|  | * or MMIO access, which can incur recursive frozen PE during PE | 
|  | * reset. The side effect is that EEH core has to clear the frozen | 
|  | * state explicitly after BAR restore. | 
|  | */ | 
|  | if (pe->type & EEH_PE_PHB) | 
|  | return pnv_eeh_phb_reset(hose, option); | 
|  |  | 
|  | /* | 
|  | * The frozen PE might be caused by PAPR error injection | 
|  | * registers, which are expected to be cleared after hitting | 
|  | * frozen PE as stated in the hardware spec. Unfortunately, | 
|  | * that's not true on P7IOC. So we have to clear it manually | 
|  | * to avoid recursive EEH errors during recovery. | 
|  | */ | 
|  | phb = hose->private_data; | 
|  | if (phb->model == PNV_PHB_MODEL_P7IOC && | 
|  | (option == EEH_RESET_HOT || | 
|  | option == EEH_RESET_FUNDAMENTAL)) { | 
|  | rc = opal_pci_reset(phb->opal_id, | 
|  | OPAL_RESET_PHB_ERROR, | 
|  | OPAL_ASSERT_RESET); | 
|  | if (rc != OPAL_SUCCESS) { | 
|  | pr_warn("%s: Failure %lld clearing error injection registers\n", | 
|  | __func__, rc); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pe->type & EEH_PE_VF) | 
|  | return pnv_eeh_reset_vf_pe(pe, option); | 
|  |  | 
|  | bus = eeh_pe_bus_get(pe); | 
|  | if (!bus) { | 
|  | pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n", | 
|  | __func__, pe->phb->global_number, pe->addr); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (pci_is_root_bus(bus)) | 
|  | return pnv_eeh_root_reset(hose, option); | 
|  |  | 
|  | /* | 
|  | * For hot resets try use the generic PCI error recovery reset | 
|  | * functions. These correctly handles the case where the secondary | 
|  | * bus is behind a hotplug slot and it will use the slot provided | 
|  | * reset methods to prevent spurious hotplug events during the reset. | 
|  | * | 
|  | * Fundamental resets need to be handled internally to EEH since the | 
|  | * PCI core doesn't really have a concept of a fundamental reset, | 
|  | * mainly because there's no standard way to generate one. Only a | 
|  | * few devices require an FRESET so it should be fine. | 
|  | */ | 
|  | if (option != EEH_RESET_FUNDAMENTAL) { | 
|  | /* | 
|  | * NB: Skiboot and pnv_eeh_bridge_reset() also no-op the | 
|  | *     de-assert step. It's like the OPAL reset API was | 
|  | *     poorly designed or something... | 
|  | */ | 
|  | if (option == EEH_RESET_DEACTIVATE) | 
|  | return 0; | 
|  |  | 
|  | rc = pci_bus_error_reset(bus->self); | 
|  | if (!rc) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* otherwise, use the generic bridge reset. this might call into FW */ | 
|  | if (pci_is_root_bus(bus->parent)) | 
|  | return pnv_eeh_root_reset(hose, option); | 
|  | return pnv_eeh_bridge_reset(bus->self, option); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pnv_eeh_get_log - Retrieve error log | 
|  | * @pe: EEH PE | 
|  | * @severity: temporary or permanent error log | 
|  | * @drv_log: driver log to be combined with retrieved error log | 
|  | * @len: length of driver log | 
|  | * | 
|  | * Retrieve the temporary or permanent error from the PE. | 
|  | */ | 
|  | static int pnv_eeh_get_log(struct eeh_pe *pe, int severity, | 
|  | char *drv_log, unsigned long len) | 
|  | { | 
|  | if (!eeh_has_flag(EEH_EARLY_DUMP_LOG)) | 
|  | pnv_pci_dump_phb_diag_data(pe->phb, pe->data); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE | 
|  | * @pe: EEH PE | 
|  | * | 
|  | * The function will be called to reconfigure the bridges included | 
|  | * in the specified PE so that the mulfunctional PE would be recovered | 
|  | * again. | 
|  | */ | 
|  | static int pnv_eeh_configure_bridge(struct eeh_pe *pe) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pnv_pe_err_inject - Inject specified error to the indicated PE | 
|  | * @pe: the indicated PE | 
|  | * @type: error type | 
|  | * @func: specific error type | 
|  | * @addr: address | 
|  | * @mask: address mask | 
|  | * | 
|  | * The routine is called to inject specified error, which is | 
|  | * determined by @type and @func, to the indicated PE for | 
|  | * testing purpose. | 
|  | */ | 
|  | static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func, | 
|  | unsigned long addr, unsigned long mask) | 
|  | { | 
|  | struct pci_controller *hose = pe->phb; | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  | s64 rc; | 
|  |  | 
|  | if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR && | 
|  | type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) { | 
|  | pr_warn("%s: Invalid error type %d\n", | 
|  | __func__, type); | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR || | 
|  | func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) { | 
|  | pr_warn("%s: Invalid error function %d\n", | 
|  | __func__, func); | 
|  | return -ERANGE; | 
|  | } | 
|  |  | 
|  | /* Firmware supports error injection ? */ | 
|  | if (!opal_check_token(OPAL_PCI_ERR_INJECT)) { | 
|  | pr_warn("%s: Firmware doesn't support error injection\n", | 
|  | __func__); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* Do error injection */ | 
|  | rc = opal_pci_err_inject(phb->opal_id, pe->addr, | 
|  | type, func, addr, mask); | 
|  | if (rc != OPAL_SUCCESS) { | 
|  | pr_warn("%s: Failure %lld injecting error " | 
|  | "%d-%d to PHB#%x-PE#%x\n", | 
|  | __func__, rc, type, func, | 
|  | hose->global_number, pe->addr); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn) | 
|  | { | 
|  | struct eeh_dev *edev = pdn_to_eeh_dev(pdn); | 
|  |  | 
|  | if (!edev || !edev->pe) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * We will issue FLR or AF FLR to all VFs, which are contained | 
|  | * in VF PE. It relies on the EEH PCI config accessors. So we | 
|  | * can't block them during the window. | 
|  | */ | 
|  | if (edev->physfn && (edev->pe->state & EEH_PE_RESET)) | 
|  | return false; | 
|  |  | 
|  | if (edev->pe->state & EEH_PE_CFG_BLOCKED) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_read_config(struct eeh_dev *edev, | 
|  | int where, int size, u32 *val) | 
|  | { | 
|  | struct pci_dn *pdn = eeh_dev_to_pdn(edev); | 
|  |  | 
|  | if (!pdn) | 
|  | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  |  | 
|  | if (pnv_eeh_cfg_blocked(pdn)) { | 
|  | *val = 0xFFFFFFFF; | 
|  | return PCIBIOS_SET_FAILED; | 
|  | } | 
|  |  | 
|  | return pnv_pci_cfg_read(pdn, where, size, val); | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_write_config(struct eeh_dev *edev, | 
|  | int where, int size, u32 val) | 
|  | { | 
|  | struct pci_dn *pdn = eeh_dev_to_pdn(edev); | 
|  |  | 
|  | if (!pdn) | 
|  | return PCIBIOS_DEVICE_NOT_FOUND; | 
|  |  | 
|  | if (pnv_eeh_cfg_blocked(pdn)) | 
|  | return PCIBIOS_SET_FAILED; | 
|  |  | 
|  | return pnv_pci_cfg_write(pdn, where, size, val); | 
|  | } | 
|  |  | 
|  | static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data) | 
|  | { | 
|  | /* GEM */ | 
|  | if (data->gemXfir || data->gemRfir || | 
|  | data->gemRirqfir || data->gemMask || data->gemRwof) | 
|  | pr_info("  GEM: %016llx %016llx %016llx %016llx %016llx\n", | 
|  | be64_to_cpu(data->gemXfir), | 
|  | be64_to_cpu(data->gemRfir), | 
|  | be64_to_cpu(data->gemRirqfir), | 
|  | be64_to_cpu(data->gemMask), | 
|  | be64_to_cpu(data->gemRwof)); | 
|  |  | 
|  | /* LEM */ | 
|  | if (data->lemFir || data->lemErrMask || | 
|  | data->lemAction0 || data->lemAction1 || data->lemWof) | 
|  | pr_info("  LEM: %016llx %016llx %016llx %016llx %016llx\n", | 
|  | be64_to_cpu(data->lemFir), | 
|  | be64_to_cpu(data->lemErrMask), | 
|  | be64_to_cpu(data->lemAction0), | 
|  | be64_to_cpu(data->lemAction1), | 
|  | be64_to_cpu(data->lemWof)); | 
|  | } | 
|  |  | 
|  | static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose) | 
|  | { | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  | struct OpalIoP7IOCErrorData *data = | 
|  | (struct OpalIoP7IOCErrorData*)phb->diag_data; | 
|  | long rc; | 
|  |  | 
|  | rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); | 
|  | if (rc != OPAL_SUCCESS) { | 
|  | pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n", | 
|  | __func__, phb->hub_id, rc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (be16_to_cpu(data->type)) { | 
|  | case OPAL_P7IOC_DIAG_TYPE_RGC: | 
|  | pr_info("P7IOC diag-data for RGC\n\n"); | 
|  | pnv_eeh_dump_hub_diag_common(data); | 
|  | if (data->rgc.rgcStatus || data->rgc.rgcLdcp) | 
|  | pr_info("  RGC: %016llx %016llx\n", | 
|  | be64_to_cpu(data->rgc.rgcStatus), | 
|  | be64_to_cpu(data->rgc.rgcLdcp)); | 
|  | break; | 
|  | case OPAL_P7IOC_DIAG_TYPE_BI: | 
|  | pr_info("P7IOC diag-data for BI %s\n\n", | 
|  | data->bi.biDownbound ? "Downbound" : "Upbound"); | 
|  | pnv_eeh_dump_hub_diag_common(data); | 
|  | if (data->bi.biLdcp0 || data->bi.biLdcp1 || | 
|  | data->bi.biLdcp2 || data->bi.biFenceStatus) | 
|  | pr_info("  BI:  %016llx %016llx %016llx %016llx\n", | 
|  | be64_to_cpu(data->bi.biLdcp0), | 
|  | be64_to_cpu(data->bi.biLdcp1), | 
|  | be64_to_cpu(data->bi.biLdcp2), | 
|  | be64_to_cpu(data->bi.biFenceStatus)); | 
|  | break; | 
|  | case OPAL_P7IOC_DIAG_TYPE_CI: | 
|  | pr_info("P7IOC diag-data for CI Port %d\n\n", | 
|  | data->ci.ciPort); | 
|  | pnv_eeh_dump_hub_diag_common(data); | 
|  | if (data->ci.ciPortStatus || data->ci.ciPortLdcp) | 
|  | pr_info("  CI:  %016llx %016llx\n", | 
|  | be64_to_cpu(data->ci.ciPortStatus), | 
|  | be64_to_cpu(data->ci.ciPortLdcp)); | 
|  | break; | 
|  | case OPAL_P7IOC_DIAG_TYPE_MISC: | 
|  | pr_info("P7IOC diag-data for MISC\n\n"); | 
|  | pnv_eeh_dump_hub_diag_common(data); | 
|  | break; | 
|  | case OPAL_P7IOC_DIAG_TYPE_I2C: | 
|  | pr_info("P7IOC diag-data for I2C\n\n"); | 
|  | pnv_eeh_dump_hub_diag_common(data); | 
|  | break; | 
|  | default: | 
|  | pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n", | 
|  | __func__, phb->hub_id, data->type); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_get_pe(struct pci_controller *hose, | 
|  | u16 pe_no, struct eeh_pe **pe) | 
|  | { | 
|  | struct pnv_phb *phb = hose->private_data; | 
|  | struct pnv_ioda_pe *pnv_pe; | 
|  | struct eeh_pe *dev_pe; | 
|  |  | 
|  | /* | 
|  | * If PHB supports compound PE, to fetch | 
|  | * the master PE because slave PE is invisible | 
|  | * to EEH core. | 
|  | */ | 
|  | pnv_pe = &phb->ioda.pe_array[pe_no]; | 
|  | if (pnv_pe->flags & PNV_IODA_PE_SLAVE) { | 
|  | pnv_pe = pnv_pe->master; | 
|  | WARN_ON(!pnv_pe || | 
|  | !(pnv_pe->flags & PNV_IODA_PE_MASTER)); | 
|  | pe_no = pnv_pe->pe_number; | 
|  | } | 
|  |  | 
|  | /* Find the PE according to PE# */ | 
|  | dev_pe = eeh_pe_get(hose, pe_no); | 
|  | if (!dev_pe) | 
|  | return -EEXIST; | 
|  |  | 
|  | /* Freeze the (compound) PE */ | 
|  | *pe = dev_pe; | 
|  | if (!(dev_pe->state & EEH_PE_ISOLATED)) | 
|  | phb->freeze_pe(phb, pe_no); | 
|  |  | 
|  | /* | 
|  | * At this point, we're sure the (compound) PE should | 
|  | * have been frozen. However, we still need poke until | 
|  | * hitting the frozen PE on top level. | 
|  | */ | 
|  | dev_pe = dev_pe->parent; | 
|  | while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) { | 
|  | int ret; | 
|  | ret = eeh_ops->get_state(dev_pe, NULL); | 
|  | if (ret <= 0 || eeh_state_active(ret)) { | 
|  | dev_pe = dev_pe->parent; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Frozen parent PE */ | 
|  | *pe = dev_pe; | 
|  | if (!(dev_pe->state & EEH_PE_ISOLATED)) | 
|  | phb->freeze_pe(phb, dev_pe->addr); | 
|  |  | 
|  | /* Next one */ | 
|  | dev_pe = dev_pe->parent; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pnv_eeh_next_error - Retrieve next EEH error to handle | 
|  | * @pe: Affected PE | 
|  | * | 
|  | * The function is expected to be called by EEH core while it gets | 
|  | * special EEH event (without binding PE). The function calls to | 
|  | * OPAL APIs for next error to handle. The informational error is | 
|  | * handled internally by platform. However, the dead IOC, dead PHB, | 
|  | * fenced PHB and frozen PE should be handled by EEH core eventually. | 
|  | */ | 
|  | static int pnv_eeh_next_error(struct eeh_pe **pe) | 
|  | { | 
|  | struct pci_controller *hose; | 
|  | struct pnv_phb *phb; | 
|  | struct eeh_pe *phb_pe, *parent_pe; | 
|  | __be64 frozen_pe_no; | 
|  | __be16 err_type, severity; | 
|  | long rc; | 
|  | int state, ret = EEH_NEXT_ERR_NONE; | 
|  |  | 
|  | /* | 
|  | * While running here, it's safe to purge the event queue. The | 
|  | * event should still be masked. | 
|  | */ | 
|  | eeh_remove_event(NULL, false); | 
|  |  | 
|  | list_for_each_entry(hose, &hose_list, list_node) { | 
|  | /* | 
|  | * If the subordinate PCI buses of the PHB has been | 
|  | * removed or is exactly under error recovery, we | 
|  | * needn't take care of it any more. | 
|  | */ | 
|  | phb = hose->private_data; | 
|  | phb_pe = eeh_phb_pe_get(hose); | 
|  | if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) | 
|  | continue; | 
|  |  | 
|  | rc = opal_pci_next_error(phb->opal_id, | 
|  | &frozen_pe_no, &err_type, &severity); | 
|  | if (rc != OPAL_SUCCESS) { | 
|  | pr_devel("%s: Invalid return value on " | 
|  | "PHB#%x (0x%lx) from opal_pci_next_error", | 
|  | __func__, hose->global_number, rc); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* If the PHB doesn't have error, stop processing */ | 
|  | if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR || | 
|  | be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) { | 
|  | pr_devel("%s: No error found on PHB#%x\n", | 
|  | __func__, hose->global_number); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Processing the error. We're expecting the error with | 
|  | * highest priority reported upon multiple errors on the | 
|  | * specific PHB. | 
|  | */ | 
|  | pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n", | 
|  | __func__, be16_to_cpu(err_type), | 
|  | be16_to_cpu(severity), be64_to_cpu(frozen_pe_no), | 
|  | hose->global_number); | 
|  | switch (be16_to_cpu(err_type)) { | 
|  | case OPAL_EEH_IOC_ERROR: | 
|  | if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) { | 
|  | pr_err("EEH: dead IOC detected\n"); | 
|  | ret = EEH_NEXT_ERR_DEAD_IOC; | 
|  | } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { | 
|  | pr_info("EEH: IOC informative error " | 
|  | "detected\n"); | 
|  | pnv_eeh_get_and_dump_hub_diag(hose); | 
|  | ret = EEH_NEXT_ERR_NONE; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case OPAL_EEH_PHB_ERROR: | 
|  | if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) { | 
|  | *pe = phb_pe; | 
|  | pr_err("EEH: dead PHB#%x detected, " | 
|  | "location: %s\n", | 
|  | hose->global_number, | 
|  | eeh_pe_loc_get(phb_pe)); | 
|  | ret = EEH_NEXT_ERR_DEAD_PHB; | 
|  | } else if (be16_to_cpu(severity) == | 
|  | OPAL_EEH_SEV_PHB_FENCED) { | 
|  | *pe = phb_pe; | 
|  | pr_err("EEH: Fenced PHB#%x detected, " | 
|  | "location: %s\n", | 
|  | hose->global_number, | 
|  | eeh_pe_loc_get(phb_pe)); | 
|  | ret = EEH_NEXT_ERR_FENCED_PHB; | 
|  | } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { | 
|  | pr_info("EEH: PHB#%x informative error " | 
|  | "detected, location: %s\n", | 
|  | hose->global_number, | 
|  | eeh_pe_loc_get(phb_pe)); | 
|  | pnv_eeh_get_phb_diag(phb_pe); | 
|  | pnv_pci_dump_phb_diag_data(hose, phb_pe->data); | 
|  | ret = EEH_NEXT_ERR_NONE; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case OPAL_EEH_PE_ERROR: | 
|  | /* | 
|  | * If we can't find the corresponding PE, we | 
|  | * just try to unfreeze. | 
|  | */ | 
|  | if (pnv_eeh_get_pe(hose, | 
|  | be64_to_cpu(frozen_pe_no), pe)) { | 
|  | pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n", | 
|  | hose->global_number, be64_to_cpu(frozen_pe_no)); | 
|  | pr_info("EEH: PHB location: %s\n", | 
|  | eeh_pe_loc_get(phb_pe)); | 
|  |  | 
|  | /* Dump PHB diag-data */ | 
|  | rc = opal_pci_get_phb_diag_data2(phb->opal_id, | 
|  | phb->diag_data, phb->diag_data_size); | 
|  | if (rc == OPAL_SUCCESS) | 
|  | pnv_pci_dump_phb_diag_data(hose, | 
|  | phb->diag_data); | 
|  |  | 
|  | /* Try best to clear it */ | 
|  | opal_pci_eeh_freeze_clear(phb->opal_id, | 
|  | be64_to_cpu(frozen_pe_no), | 
|  | OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); | 
|  | ret = EEH_NEXT_ERR_NONE; | 
|  | } else if ((*pe)->state & EEH_PE_ISOLATED || | 
|  | eeh_pe_passed(*pe)) { | 
|  | ret = EEH_NEXT_ERR_NONE; | 
|  | } else { | 
|  | pr_err("EEH: Frozen PE#%x " | 
|  | "on PHB#%x detected\n", | 
|  | (*pe)->addr, | 
|  | (*pe)->phb->global_number); | 
|  | pr_err("EEH: PE location: %s, " | 
|  | "PHB location: %s\n", | 
|  | eeh_pe_loc_get(*pe), | 
|  | eeh_pe_loc_get(phb_pe)); | 
|  | ret = EEH_NEXT_ERR_FROZEN_PE; | 
|  | } | 
|  |  | 
|  | break; | 
|  | default: | 
|  | pr_warn("%s: Unexpected error type %d\n", | 
|  | __func__, be16_to_cpu(err_type)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * EEH core will try recover from fenced PHB or | 
|  | * frozen PE. In the time for frozen PE, EEH core | 
|  | * enable IO path for that before collecting logs, | 
|  | * but it ruins the site. So we have to dump the | 
|  | * log in advance here. | 
|  | */ | 
|  | if ((ret == EEH_NEXT_ERR_FROZEN_PE  || | 
|  | ret == EEH_NEXT_ERR_FENCED_PHB) && | 
|  | !((*pe)->state & EEH_PE_ISOLATED)) { | 
|  | eeh_pe_mark_isolated(*pe); | 
|  | pnv_eeh_get_phb_diag(*pe); | 
|  |  | 
|  | if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) | 
|  | pnv_pci_dump_phb_diag_data((*pe)->phb, | 
|  | (*pe)->data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We probably have the frozen parent PE out there and | 
|  | * we need have to handle frozen parent PE firstly. | 
|  | */ | 
|  | if (ret == EEH_NEXT_ERR_FROZEN_PE) { | 
|  | parent_pe = (*pe)->parent; | 
|  | while (parent_pe) { | 
|  | /* Hit the ceiling ? */ | 
|  | if (parent_pe->type & EEH_PE_PHB) | 
|  | break; | 
|  |  | 
|  | /* Frozen parent PE ? */ | 
|  | state = eeh_ops->get_state(parent_pe, NULL); | 
|  | if (state > 0 && !eeh_state_active(state)) | 
|  | *pe = parent_pe; | 
|  |  | 
|  | /* Next parent level */ | 
|  | parent_pe = parent_pe->parent; | 
|  | } | 
|  |  | 
|  | /* We possibly migrate to another PE */ | 
|  | eeh_pe_mark_isolated(*pe); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have no errors on the specific PHB or only | 
|  | * informative error there, we continue poking it. | 
|  | * Otherwise, we need actions to be taken by upper | 
|  | * layer. | 
|  | */ | 
|  | if (ret > EEH_NEXT_ERR_INF) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Unmask the event */ | 
|  | if (ret == EEH_NEXT_ERR_NONE && eeh_enabled()) | 
|  | enable_irq(eeh_event_irq); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pnv_eeh_restore_config(struct eeh_dev *edev) | 
|  | { | 
|  | struct pnv_phb *phb; | 
|  | s64 ret = 0; | 
|  |  | 
|  | if (!edev) | 
|  | return -EEXIST; | 
|  |  | 
|  | if (edev->physfn) | 
|  | return 0; | 
|  |  | 
|  | phb = edev->controller->private_data; | 
|  | ret = opal_pci_reinit(phb->opal_id, | 
|  | OPAL_REINIT_PCI_DEV, edev->bdfn); | 
|  |  | 
|  | if (ret) { | 
|  | pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n", | 
|  | __func__, edev->bdfn, ret); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct eeh_ops pnv_eeh_ops = { | 
|  | .name                   = "powernv", | 
|  | .probe			= pnv_eeh_probe, | 
|  | .set_option             = pnv_eeh_set_option, | 
|  | .get_state              = pnv_eeh_get_state, | 
|  | .reset                  = pnv_eeh_reset, | 
|  | .get_log                = pnv_eeh_get_log, | 
|  | .configure_bridge       = pnv_eeh_configure_bridge, | 
|  | .err_inject		= pnv_eeh_err_inject, | 
|  | .read_config            = pnv_eeh_read_config, | 
|  | .write_config           = pnv_eeh_write_config, | 
|  | .next_error		= pnv_eeh_next_error, | 
|  | .restore_config		= pnv_eeh_restore_config, | 
|  | .notify_resume		= NULL | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * eeh_powernv_init - Register platform dependent EEH operations | 
|  | * | 
|  | * EEH initialization on powernv platform. This function should be | 
|  | * called before any EEH related functions. | 
|  | */ | 
|  | static int __init eeh_powernv_init(void) | 
|  | { | 
|  | int max_diag_size = PNV_PCI_DIAG_BUF_SIZE; | 
|  | struct pci_controller *hose; | 
|  | struct pnv_phb *phb; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (!firmware_has_feature(FW_FEATURE_OPAL)) { | 
|  | pr_warn("%s: OPAL is required !\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Set probe mode */ | 
|  | eeh_add_flag(EEH_PROBE_MODE_DEV); | 
|  |  | 
|  | /* | 
|  | * P7IOC blocks PCI config access to frozen PE, but PHB3 | 
|  | * doesn't do that. So we have to selectively enable I/O | 
|  | * prior to collecting error log. | 
|  | */ | 
|  | list_for_each_entry(hose, &hose_list, list_node) { | 
|  | phb = hose->private_data; | 
|  |  | 
|  | if (phb->model == PNV_PHB_MODEL_P7IOC) | 
|  | eeh_add_flag(EEH_ENABLE_IO_FOR_LOG); | 
|  |  | 
|  | if (phb->diag_data_size > max_diag_size) | 
|  | max_diag_size = phb->diag_data_size; | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * eeh_init() allocates the eeh_pe and its aux data buf so the | 
|  | * size needs to be set before calling eeh_init(). | 
|  | */ | 
|  | eeh_set_pe_aux_size(max_diag_size); | 
|  | ppc_md.pcibios_bus_add_device = pnv_pcibios_bus_add_device; | 
|  |  | 
|  | ret = eeh_init(&pnv_eeh_ops); | 
|  | if (!ret) | 
|  | pr_info("EEH: PowerNV platform initialized\n"); | 
|  | else | 
|  | pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | machine_arch_initcall(powernv, eeh_powernv_init); |