| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ | 
 | #include <linux/mm.h> | 
 | #include <linux/llist.h> | 
 | #include <linux/bpf.h> | 
 | #include <linux/irq_work.h> | 
 | #include <linux/bpf_mem_alloc.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <asm/local.h> | 
 |  | 
 | /* Any context (including NMI) BPF specific memory allocator. | 
 |  * | 
 |  * Tracing BPF programs can attach to kprobe and fentry. Hence they | 
 |  * run in unknown context where calling plain kmalloc() might not be safe. | 
 |  * | 
 |  * Front-end kmalloc() with per-cpu per-bucket cache of free elements. | 
 |  * Refill this cache asynchronously from irq_work. | 
 |  * | 
 |  * CPU_0 buckets | 
 |  * 16 32 64 96 128 196 256 512 1024 2048 4096 | 
 |  * ... | 
 |  * CPU_N buckets | 
 |  * 16 32 64 96 128 196 256 512 1024 2048 4096 | 
 |  * | 
 |  * The buckets are prefilled at the start. | 
 |  * BPF programs always run with migration disabled. | 
 |  * It's safe to allocate from cache of the current cpu with irqs disabled. | 
 |  * Free-ing is always done into bucket of the current cpu as well. | 
 |  * irq_work trims extra free elements from buckets with kfree | 
 |  * and refills them with kmalloc, so global kmalloc logic takes care | 
 |  * of freeing objects allocated by one cpu and freed on another. | 
 |  * | 
 |  * Every allocated objected is padded with extra 8 bytes that contains | 
 |  * struct llist_node. | 
 |  */ | 
 | #define LLIST_NODE_SZ sizeof(struct llist_node) | 
 |  | 
 | #define BPF_MEM_ALLOC_SIZE_MAX 4096 | 
 |  | 
 | /* similar to kmalloc, but sizeof == 8 bucket is gone */ | 
 | static u8 size_index[24] __ro_after_init = { | 
 | 	3,	/* 8 */ | 
 | 	3,	/* 16 */ | 
 | 	4,	/* 24 */ | 
 | 	4,	/* 32 */ | 
 | 	5,	/* 40 */ | 
 | 	5,	/* 48 */ | 
 | 	5,	/* 56 */ | 
 | 	5,	/* 64 */ | 
 | 	1,	/* 72 */ | 
 | 	1,	/* 80 */ | 
 | 	1,	/* 88 */ | 
 | 	1,	/* 96 */ | 
 | 	6,	/* 104 */ | 
 | 	6,	/* 112 */ | 
 | 	6,	/* 120 */ | 
 | 	6,	/* 128 */ | 
 | 	2,	/* 136 */ | 
 | 	2,	/* 144 */ | 
 | 	2,	/* 152 */ | 
 | 	2,	/* 160 */ | 
 | 	2,	/* 168 */ | 
 | 	2,	/* 176 */ | 
 | 	2,	/* 184 */ | 
 | 	2	/* 192 */ | 
 | }; | 
 |  | 
 | static int bpf_mem_cache_idx(size_t size) | 
 | { | 
 | 	if (!size || size > BPF_MEM_ALLOC_SIZE_MAX) | 
 | 		return -1; | 
 |  | 
 | 	if (size <= 192) | 
 | 		return size_index[(size - 1) / 8] - 1; | 
 |  | 
 | 	return fls(size - 1) - 2; | 
 | } | 
 |  | 
 | #define NUM_CACHES 11 | 
 |  | 
 | struct bpf_mem_cache { | 
 | 	/* per-cpu list of free objects of size 'unit_size'. | 
 | 	 * All accesses are done with interrupts disabled and 'active' counter | 
 | 	 * protection with __llist_add() and __llist_del_first(). | 
 | 	 */ | 
 | 	struct llist_head free_llist; | 
 | 	local_t active; | 
 |  | 
 | 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill | 
 | 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot | 
 | 	 * fail. When 'active' is busy the unit_free() will add an object to | 
 | 	 * free_llist_extra. | 
 | 	 */ | 
 | 	struct llist_head free_llist_extra; | 
 |  | 
 | 	struct irq_work refill_work; | 
 | 	struct obj_cgroup *objcg; | 
 | 	int unit_size; | 
 | 	/* count of objects in free_llist */ | 
 | 	int free_cnt; | 
 | 	int low_watermark, high_watermark, batch; | 
 | 	int percpu_size; | 
 | 	bool draining; | 
 | 	struct bpf_mem_cache *tgt; | 
 |  | 
 | 	/* list of objects to be freed after RCU GP */ | 
 | 	struct llist_head free_by_rcu; | 
 | 	struct llist_node *free_by_rcu_tail; | 
 | 	struct llist_head waiting_for_gp; | 
 | 	struct llist_node *waiting_for_gp_tail; | 
 | 	struct rcu_head rcu; | 
 | 	atomic_t call_rcu_in_progress; | 
 | 	struct llist_head free_llist_extra_rcu; | 
 |  | 
 | 	/* list of objects to be freed after RCU tasks trace GP */ | 
 | 	struct llist_head free_by_rcu_ttrace; | 
 | 	struct llist_head waiting_for_gp_ttrace; | 
 | 	struct rcu_head rcu_ttrace; | 
 | 	atomic_t call_rcu_ttrace_in_progress; | 
 | }; | 
 |  | 
 | struct bpf_mem_caches { | 
 | 	struct bpf_mem_cache cache[NUM_CACHES]; | 
 | }; | 
 |  | 
 | static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; | 
 |  | 
 | static struct llist_node notrace *__llist_del_first(struct llist_head *head) | 
 | { | 
 | 	struct llist_node *entry, *next; | 
 |  | 
 | 	entry = head->first; | 
 | 	if (!entry) | 
 | 		return NULL; | 
 | 	next = entry->next; | 
 | 	head->first = next; | 
 | 	return entry; | 
 | } | 
 |  | 
 | static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags) | 
 | { | 
 | 	if (c->percpu_size) { | 
 | 		void __percpu **obj = kmalloc_node(c->percpu_size, flags, node); | 
 | 		void __percpu *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); | 
 |  | 
 | 		if (!obj || !pptr) { | 
 | 			free_percpu(pptr); | 
 | 			kfree(obj); | 
 | 			return NULL; | 
 | 		} | 
 | 		obj[1] = pptr; | 
 | 		return obj; | 
 | 	} | 
 |  | 
 | 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node); | 
 | } | 
 |  | 
 | static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) | 
 | { | 
 | #ifdef CONFIG_MEMCG | 
 | 	if (c->objcg) | 
 | 		return get_mem_cgroup_from_objcg(c->objcg); | 
 | 	return root_mem_cgroup; | 
 | #else | 
 | 	return NULL; | 
 | #endif | 
 | } | 
 |  | 
 | static void inc_active(struct bpf_mem_cache *c, unsigned long *flags) | 
 | { | 
 | 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) | 
 | 		/* In RT irq_work runs in per-cpu kthread, so disable | 
 | 		 * interrupts to avoid preemption and interrupts and | 
 | 		 * reduce the chance of bpf prog executing on this cpu | 
 | 		 * when active counter is busy. | 
 | 		 */ | 
 | 		local_irq_save(*flags); | 
 | 	/* alloc_bulk runs from irq_work which will not preempt a bpf | 
 | 	 * program that does unit_alloc/unit_free since IRQs are | 
 | 	 * disabled there. There is no race to increment 'active' | 
 | 	 * counter. It protects free_llist from corruption in case NMI | 
 | 	 * bpf prog preempted this loop. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(local_inc_return(&c->active) != 1); | 
 | } | 
 |  | 
 | static void dec_active(struct bpf_mem_cache *c, unsigned long *flags) | 
 | { | 
 | 	local_dec(&c->active); | 
 | 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) | 
 | 		local_irq_restore(*flags); | 
 | } | 
 |  | 
 | static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	inc_active(c, &flags); | 
 | 	__llist_add(obj, &c->free_llist); | 
 | 	c->free_cnt++; | 
 | 	dec_active(c, &flags); | 
 | } | 
 |  | 
 | /* Mostly runs from irq_work except __init phase. */ | 
 | static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic) | 
 | { | 
 | 	struct mem_cgroup *memcg = NULL, *old_memcg; | 
 | 	gfp_t gfp; | 
 | 	void *obj; | 
 | 	int i; | 
 |  | 
 | 	gfp = __GFP_NOWARN | __GFP_ACCOUNT; | 
 | 	gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL; | 
 |  | 
 | 	for (i = 0; i < cnt; i++) { | 
 | 		/* | 
 | 		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is | 
 | 		 * done only by one CPU == current CPU. Other CPUs might | 
 | 		 * llist_add() and llist_del_all() in parallel. | 
 | 		 */ | 
 | 		obj = llist_del_first(&c->free_by_rcu_ttrace); | 
 | 		if (!obj) | 
 | 			break; | 
 | 		add_obj_to_free_list(c, obj); | 
 | 	} | 
 | 	if (i >= cnt) | 
 | 		return; | 
 |  | 
 | 	for (; i < cnt; i++) { | 
 | 		obj = llist_del_first(&c->waiting_for_gp_ttrace); | 
 | 		if (!obj) | 
 | 			break; | 
 | 		add_obj_to_free_list(c, obj); | 
 | 	} | 
 | 	if (i >= cnt) | 
 | 		return; | 
 |  | 
 | 	memcg = get_memcg(c); | 
 | 	old_memcg = set_active_memcg(memcg); | 
 | 	for (; i < cnt; i++) { | 
 | 		/* Allocate, but don't deplete atomic reserves that typical | 
 | 		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc | 
 | 		 * will allocate from the current numa node which is what we | 
 | 		 * want here. | 
 | 		 */ | 
 | 		obj = __alloc(c, node, gfp); | 
 | 		if (!obj) | 
 | 			break; | 
 | 		add_obj_to_free_list(c, obj); | 
 | 	} | 
 | 	set_active_memcg(old_memcg); | 
 | 	mem_cgroup_put(memcg); | 
 | } | 
 |  | 
 | static void free_one(void *obj, bool percpu) | 
 | { | 
 | 	if (percpu) | 
 | 		free_percpu(((void __percpu **)obj)[1]); | 
 |  | 
 | 	kfree(obj); | 
 | } | 
 |  | 
 | static int free_all(struct llist_node *llnode, bool percpu) | 
 | { | 
 | 	struct llist_node *pos, *t; | 
 | 	int cnt = 0; | 
 |  | 
 | 	llist_for_each_safe(pos, t, llnode) { | 
 | 		free_one(pos, percpu); | 
 | 		cnt++; | 
 | 	} | 
 | 	return cnt; | 
 | } | 
 |  | 
 | static void __free_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace); | 
 |  | 
 | 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size); | 
 | 	atomic_set(&c->call_rcu_ttrace_in_progress, 0); | 
 | } | 
 |  | 
 | static void __free_rcu_tasks_trace(struct rcu_head *head) | 
 | { | 
 | 	/* If RCU Tasks Trace grace period implies RCU grace period, | 
 | 	 * there is no need to invoke call_rcu(). | 
 | 	 */ | 
 | 	if (rcu_trace_implies_rcu_gp()) | 
 | 		__free_rcu(head); | 
 | 	else | 
 | 		call_rcu(head, __free_rcu); | 
 | } | 
 |  | 
 | static void enque_to_free(struct bpf_mem_cache *c, void *obj) | 
 | { | 
 | 	struct llist_node *llnode = obj; | 
 |  | 
 | 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. | 
 | 	 * Nothing races to add to free_by_rcu_ttrace list. | 
 | 	 */ | 
 | 	llist_add(llnode, &c->free_by_rcu_ttrace); | 
 | } | 
 |  | 
 | static void do_call_rcu_ttrace(struct bpf_mem_cache *c) | 
 | { | 
 | 	struct llist_node *llnode, *t; | 
 |  | 
 | 	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) { | 
 | 		if (unlikely(READ_ONCE(c->draining))) { | 
 | 			llnode = llist_del_all(&c->free_by_rcu_ttrace); | 
 | 			free_all(llnode, !!c->percpu_size); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); | 
 | 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace)) | 
 | 		llist_add(llnode, &c->waiting_for_gp_ttrace); | 
 |  | 
 | 	if (unlikely(READ_ONCE(c->draining))) { | 
 | 		__free_rcu(&c->rcu_ttrace); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. | 
 | 	 * If RCU Tasks Trace grace period implies RCU grace period, free | 
 | 	 * these elements directly, else use call_rcu() to wait for normal | 
 | 	 * progs to finish and finally do free_one() on each element. | 
 | 	 */ | 
 | 	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace); | 
 | } | 
 |  | 
 | static void free_bulk(struct bpf_mem_cache *c) | 
 | { | 
 | 	struct bpf_mem_cache *tgt = c->tgt; | 
 | 	struct llist_node *llnode, *t; | 
 | 	unsigned long flags; | 
 | 	int cnt; | 
 |  | 
 | 	WARN_ON_ONCE(tgt->unit_size != c->unit_size); | 
 | 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); | 
 |  | 
 | 	do { | 
 | 		inc_active(c, &flags); | 
 | 		llnode = __llist_del_first(&c->free_llist); | 
 | 		if (llnode) | 
 | 			cnt = --c->free_cnt; | 
 | 		else | 
 | 			cnt = 0; | 
 | 		dec_active(c, &flags); | 
 | 		if (llnode) | 
 | 			enque_to_free(tgt, llnode); | 
 | 	} while (cnt > (c->high_watermark + c->low_watermark) / 2); | 
 |  | 
 | 	/* and drain free_llist_extra */ | 
 | 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) | 
 | 		enque_to_free(tgt, llnode); | 
 | 	do_call_rcu_ttrace(tgt); | 
 | } | 
 |  | 
 | static void __free_by_rcu(struct rcu_head *head) | 
 | { | 
 | 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); | 
 | 	struct bpf_mem_cache *tgt = c->tgt; | 
 | 	struct llist_node *llnode; | 
 |  | 
 | 	WARN_ON_ONCE(tgt->unit_size != c->unit_size); | 
 | 	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size); | 
 |  | 
 | 	llnode = llist_del_all(&c->waiting_for_gp); | 
 | 	if (!llnode) | 
 | 		goto out; | 
 |  | 
 | 	llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace); | 
 |  | 
 | 	/* Objects went through regular RCU GP. Send them to RCU tasks trace */ | 
 | 	do_call_rcu_ttrace(tgt); | 
 | out: | 
 | 	atomic_set(&c->call_rcu_in_progress, 0); | 
 | } | 
 |  | 
 | static void check_free_by_rcu(struct bpf_mem_cache *c) | 
 | { | 
 | 	struct llist_node *llnode, *t; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* drain free_llist_extra_rcu */ | 
 | 	if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) { | 
 | 		inc_active(c, &flags); | 
 | 		llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu)) | 
 | 			if (__llist_add(llnode, &c->free_by_rcu)) | 
 | 				c->free_by_rcu_tail = llnode; | 
 | 		dec_active(c, &flags); | 
 | 	} | 
 |  | 
 | 	if (llist_empty(&c->free_by_rcu)) | 
 | 		return; | 
 |  | 
 | 	if (atomic_xchg(&c->call_rcu_in_progress, 1)) { | 
 | 		/* | 
 | 		 * Instead of kmalloc-ing new rcu_head and triggering 10k | 
 | 		 * call_rcu() to hit rcutree.qhimark and force RCU to notice | 
 | 		 * the overload just ask RCU to hurry up. There could be many | 
 | 		 * objects in free_by_rcu list. | 
 | 		 * This hint reduces memory consumption for an artificial | 
 | 		 * benchmark from 2 Gbyte to 150 Mbyte. | 
 | 		 */ | 
 | 		rcu_request_urgent_qs_task(current); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); | 
 |  | 
 | 	inc_active(c, &flags); | 
 | 	WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu)); | 
 | 	c->waiting_for_gp_tail = c->free_by_rcu_tail; | 
 | 	dec_active(c, &flags); | 
 |  | 
 | 	if (unlikely(READ_ONCE(c->draining))) { | 
 | 		free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size); | 
 | 		atomic_set(&c->call_rcu_in_progress, 0); | 
 | 	} else { | 
 | 		call_rcu_hurry(&c->rcu, __free_by_rcu); | 
 | 	} | 
 | } | 
 |  | 
 | static void bpf_mem_refill(struct irq_work *work) | 
 | { | 
 | 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); | 
 | 	int cnt; | 
 |  | 
 | 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */ | 
 | 	cnt = c->free_cnt; | 
 | 	if (cnt < c->low_watermark) | 
 | 		/* irq_work runs on this cpu and kmalloc will allocate | 
 | 		 * from the current numa node which is what we want here. | 
 | 		 */ | 
 | 		alloc_bulk(c, c->batch, NUMA_NO_NODE, true); | 
 | 	else if (cnt > c->high_watermark) | 
 | 		free_bulk(c); | 
 |  | 
 | 	check_free_by_rcu(c); | 
 | } | 
 |  | 
 | static void notrace irq_work_raise(struct bpf_mem_cache *c) | 
 | { | 
 | 	irq_work_queue(&c->refill_work); | 
 | } | 
 |  | 
 | /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket | 
 |  * the freelist cache will be elem_size * 64 (or less) on each cpu. | 
 |  * | 
 |  * For bpf programs that don't have statically known allocation sizes and | 
 |  * assuming (low_mark + high_mark) / 2 as an average number of elements per | 
 |  * bucket and all buckets are used the total amount of memory in freelists | 
 |  * on each cpu will be: | 
 |  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 | 
 |  * == ~ 116 Kbyte using below heuristic. | 
 |  * Initialized, but unused bpf allocator (not bpf map specific one) will | 
 |  * consume ~ 11 Kbyte per cpu. | 
 |  * Typical case will be between 11K and 116K closer to 11K. | 
 |  * bpf progs can and should share bpf_mem_cache when possible. | 
 |  * | 
 |  * Percpu allocation is typically rare. To avoid potential unnecessary large | 
 |  * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1. | 
 |  */ | 
 | static void init_refill_work(struct bpf_mem_cache *c) | 
 | { | 
 | 	init_irq_work(&c->refill_work, bpf_mem_refill); | 
 | 	if (c->percpu_size) { | 
 | 		c->low_watermark = 1; | 
 | 		c->high_watermark = 3; | 
 | 	} else if (c->unit_size <= 256) { | 
 | 		c->low_watermark = 32; | 
 | 		c->high_watermark = 96; | 
 | 	} else { | 
 | 		/* When page_size == 4k, order-0 cache will have low_mark == 2 | 
 | 		 * and high_mark == 6 with batch alloc of 3 individual pages at | 
 | 		 * a time. | 
 | 		 * 8k allocs and above low == 1, high == 3, batch == 1. | 
 | 		 */ | 
 | 		c->low_watermark = max(32 * 256 / c->unit_size, 1); | 
 | 		c->high_watermark = max(96 * 256 / c->unit_size, 3); | 
 | 	} | 
 | 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); | 
 | } | 
 |  | 
 | static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) | 
 | { | 
 | 	int cnt = 1; | 
 |  | 
 | 	/* To avoid consuming memory, for non-percpu allocation, assume that | 
 | 	 * 1st run of bpf prog won't be doing more than 4 map_update_elem from | 
 | 	 * irq disabled region if unit size is less than or equal to 256. | 
 | 	 * For all other cases, let us just do one allocation. | 
 | 	 */ | 
 | 	if (!c->percpu_size && c->unit_size <= 256) | 
 | 		cnt = 4; | 
 | 	alloc_bulk(c, cnt, cpu_to_node(cpu), false); | 
 | } | 
 |  | 
 | /* When size != 0 bpf_mem_cache for each cpu. | 
 |  * This is typical bpf hash map use case when all elements have equal size. | 
 |  * | 
 |  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on | 
 |  * kmalloc/kfree. Max allocation size is 4096 in this case. | 
 |  * This is bpf_dynptr and bpf_kptr use case. | 
 |  */ | 
 | int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) | 
 | { | 
 | 	struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc; | 
 | 	struct bpf_mem_cache *c; struct bpf_mem_cache __percpu *pc; | 
 | 	struct obj_cgroup *objcg = NULL; | 
 | 	int cpu, i, unit_size, percpu_size = 0; | 
 |  | 
 | 	if (percpu && size == 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* room for llist_node and per-cpu pointer */ | 
 | 	if (percpu) | 
 | 		percpu_size = LLIST_NODE_SZ + sizeof(void *); | 
 | 	ma->percpu = percpu; | 
 |  | 
 | 	if (size) { | 
 | 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); | 
 | 		if (!pc) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		if (!percpu) | 
 | 			size += LLIST_NODE_SZ; /* room for llist_node */ | 
 | 		unit_size = size; | 
 |  | 
 | #ifdef CONFIG_MEMCG | 
 | 		if (memcg_bpf_enabled()) | 
 | 			objcg = get_obj_cgroup_from_current(); | 
 | #endif | 
 | 		ma->objcg = objcg; | 
 |  | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			c = per_cpu_ptr(pc, cpu); | 
 | 			c->unit_size = unit_size; | 
 | 			c->objcg = objcg; | 
 | 			c->percpu_size = percpu_size; | 
 | 			c->tgt = c; | 
 | 			init_refill_work(c); | 
 | 			prefill_mem_cache(c, cpu); | 
 | 		} | 
 | 		ma->cache = pc; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); | 
 | 	if (!pcc) | 
 | 		return -ENOMEM; | 
 | #ifdef CONFIG_MEMCG | 
 | 	objcg = get_obj_cgroup_from_current(); | 
 | #endif | 
 | 	ma->objcg = objcg; | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		cc = per_cpu_ptr(pcc, cpu); | 
 | 		for (i = 0; i < NUM_CACHES; i++) { | 
 | 			c = &cc->cache[i]; | 
 | 			c->unit_size = sizes[i]; | 
 | 			c->objcg = objcg; | 
 | 			c->percpu_size = percpu_size; | 
 | 			c->tgt = c; | 
 |  | 
 | 			init_refill_work(c); | 
 | 			prefill_mem_cache(c, cpu); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ma->caches = pcc; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg) | 
 | { | 
 | 	struct bpf_mem_caches __percpu *pcc; | 
 |  | 
 | 	pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL); | 
 | 	if (!pcc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ma->caches = pcc; | 
 | 	ma->objcg = objcg; | 
 | 	ma->percpu = true; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size) | 
 | { | 
 | 	struct bpf_mem_caches *cc; struct bpf_mem_caches __percpu *pcc; | 
 | 	int cpu, i, unit_size, percpu_size; | 
 | 	struct obj_cgroup *objcg; | 
 | 	struct bpf_mem_cache *c; | 
 |  | 
 | 	i = bpf_mem_cache_idx(size); | 
 | 	if (i < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* room for llist_node and per-cpu pointer */ | 
 | 	percpu_size = LLIST_NODE_SZ + sizeof(void *); | 
 |  | 
 | 	unit_size = sizes[i]; | 
 | 	objcg = ma->objcg; | 
 | 	pcc = ma->caches; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		cc = per_cpu_ptr(pcc, cpu); | 
 | 		c = &cc->cache[i]; | 
 | 		if (c->unit_size) | 
 | 			break; | 
 |  | 
 | 		c->unit_size = unit_size; | 
 | 		c->objcg = objcg; | 
 | 		c->percpu_size = percpu_size; | 
 | 		c->tgt = c; | 
 |  | 
 | 		init_refill_work(c); | 
 | 		prefill_mem_cache(c, cpu); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void drain_mem_cache(struct bpf_mem_cache *c) | 
 | { | 
 | 	bool percpu = !!c->percpu_size; | 
 |  | 
 | 	/* No progs are using this bpf_mem_cache, but htab_map_free() called | 
 | 	 * bpf_mem_cache_free() for all remaining elements and they can be in | 
 | 	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now. | 
 | 	 * | 
 | 	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations | 
 | 	 * on these lists, so it is safe to use __llist_del_all(). | 
 | 	 */ | 
 | 	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu); | 
 | 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu); | 
 | 	free_all(__llist_del_all(&c->free_llist), percpu); | 
 | 	free_all(__llist_del_all(&c->free_llist_extra), percpu); | 
 | 	free_all(__llist_del_all(&c->free_by_rcu), percpu); | 
 | 	free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu); | 
 | 	free_all(llist_del_all(&c->waiting_for_gp), percpu); | 
 | } | 
 |  | 
 | static void check_mem_cache(struct bpf_mem_cache *c) | 
 | { | 
 | 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace)); | 
 | 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); | 
 | 	WARN_ON_ONCE(!llist_empty(&c->free_llist)); | 
 | 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra)); | 
 | 	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu)); | 
 | 	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu)); | 
 | 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); | 
 | } | 
 |  | 
 | static void check_leaked_objs(struct bpf_mem_alloc *ma) | 
 | { | 
 | 	struct bpf_mem_caches *cc; | 
 | 	struct bpf_mem_cache *c; | 
 | 	int cpu, i; | 
 |  | 
 | 	if (ma->cache) { | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			c = per_cpu_ptr(ma->cache, cpu); | 
 | 			check_mem_cache(c); | 
 | 		} | 
 | 	} | 
 | 	if (ma->caches) { | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			cc = per_cpu_ptr(ma->caches, cpu); | 
 | 			for (i = 0; i < NUM_CACHES; i++) { | 
 | 				c = &cc->cache[i]; | 
 | 				check_mem_cache(c); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) | 
 | { | 
 | 	check_leaked_objs(ma); | 
 | 	free_percpu(ma->cache); | 
 | 	free_percpu(ma->caches); | 
 | 	ma->cache = NULL; | 
 | 	ma->caches = NULL; | 
 | } | 
 |  | 
 | static void free_mem_alloc(struct bpf_mem_alloc *ma) | 
 | { | 
 | 	/* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks | 
 | 	 * might still execute. Wait for them. | 
 | 	 * | 
 | 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(), | 
 | 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used | 
 | 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(), | 
 | 	 * so if call_rcu(head, __free_rcu) is skipped due to | 
 | 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by | 
 | 	 * using rcu_trace_implies_rcu_gp() as well. | 
 | 	 */ | 
 | 	rcu_barrier(); /* wait for __free_by_rcu */ | 
 | 	rcu_barrier_tasks_trace(); /* wait for __free_rcu */ | 
 | 	if (!rcu_trace_implies_rcu_gp()) | 
 | 		rcu_barrier(); | 
 | 	free_mem_alloc_no_barrier(ma); | 
 | } | 
 |  | 
 | static void free_mem_alloc_deferred(struct work_struct *work) | 
 | { | 
 | 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); | 
 |  | 
 | 	free_mem_alloc(ma); | 
 | 	kfree(ma); | 
 | } | 
 |  | 
 | static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) | 
 | { | 
 | 	struct bpf_mem_alloc *copy; | 
 |  | 
 | 	if (!rcu_in_progress) { | 
 | 		/* Fast path. No callbacks are pending, hence no need to do | 
 | 		 * rcu_barrier-s. | 
 | 		 */ | 
 | 		free_mem_alloc_no_barrier(ma); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL); | 
 | 	if (!copy) { | 
 | 		/* Slow path with inline barrier-s */ | 
 | 		free_mem_alloc(ma); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Defer barriers into worker to let the rest of map memory to be freed */ | 
 | 	memset(ma, 0, sizeof(*ma)); | 
 | 	INIT_WORK(©->work, free_mem_alloc_deferred); | 
 | 	queue_work(system_unbound_wq, ©->work); | 
 | } | 
 |  | 
 | void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) | 
 | { | 
 | 	struct bpf_mem_caches *cc; | 
 | 	struct bpf_mem_cache *c; | 
 | 	int cpu, i, rcu_in_progress; | 
 |  | 
 | 	if (ma->cache) { | 
 | 		rcu_in_progress = 0; | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			c = per_cpu_ptr(ma->cache, cpu); | 
 | 			WRITE_ONCE(c->draining, true); | 
 | 			irq_work_sync(&c->refill_work); | 
 | 			drain_mem_cache(c); | 
 | 			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); | 
 | 			rcu_in_progress += atomic_read(&c->call_rcu_in_progress); | 
 | 		} | 
 | 		obj_cgroup_put(ma->objcg); | 
 | 		destroy_mem_alloc(ma, rcu_in_progress); | 
 | 	} | 
 | 	if (ma->caches) { | 
 | 		rcu_in_progress = 0; | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			cc = per_cpu_ptr(ma->caches, cpu); | 
 | 			for (i = 0; i < NUM_CACHES; i++) { | 
 | 				c = &cc->cache[i]; | 
 | 				WRITE_ONCE(c->draining, true); | 
 | 				irq_work_sync(&c->refill_work); | 
 | 				drain_mem_cache(c); | 
 | 				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); | 
 | 				rcu_in_progress += atomic_read(&c->call_rcu_in_progress); | 
 | 			} | 
 | 		} | 
 | 		obj_cgroup_put(ma->objcg); | 
 | 		destroy_mem_alloc(ma, rcu_in_progress); | 
 | 	} | 
 | } | 
 |  | 
 | /* notrace is necessary here and in other functions to make sure | 
 |  * bpf programs cannot attach to them and cause llist corruptions. | 
 |  */ | 
 | static void notrace *unit_alloc(struct bpf_mem_cache *c) | 
 | { | 
 | 	struct llist_node *llnode = NULL; | 
 | 	unsigned long flags; | 
 | 	int cnt = 0; | 
 |  | 
 | 	/* Disable irqs to prevent the following race for majority of prog types: | 
 | 	 * prog_A | 
 | 	 *   bpf_mem_alloc | 
 | 	 *      preemption or irq -> prog_B | 
 | 	 *        bpf_mem_alloc | 
 | 	 * | 
 | 	 * but prog_B could be a perf_event NMI prog. | 
 | 	 * Use per-cpu 'active' counter to order free_list access between | 
 | 	 * unit_alloc/unit_free/bpf_mem_refill. | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 | 	if (local_inc_return(&c->active) == 1) { | 
 | 		llnode = __llist_del_first(&c->free_llist); | 
 | 		if (llnode) { | 
 | 			cnt = --c->free_cnt; | 
 | 			*(struct bpf_mem_cache **)llnode = c; | 
 | 		} | 
 | 	} | 
 | 	local_dec(&c->active); | 
 |  | 
 | 	WARN_ON(cnt < 0); | 
 |  | 
 | 	if (cnt < c->low_watermark) | 
 | 		irq_work_raise(c); | 
 | 	/* Enable IRQ after the enqueue of irq work completes, so irq work | 
 | 	 * will run after IRQ is enabled and free_llist may be refilled by | 
 | 	 * irq work before other task preempts current task. | 
 | 	 */ | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return llnode; | 
 | } | 
 |  | 
 | /* Though 'ptr' object could have been allocated on a different cpu | 
 |  * add it to the free_llist of the current cpu. | 
 |  * Let kfree() logic deal with it when it's later called from irq_work. | 
 |  */ | 
 | static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) | 
 | { | 
 | 	struct llist_node *llnode = ptr - LLIST_NODE_SZ; | 
 | 	unsigned long flags; | 
 | 	int cnt = 0; | 
 |  | 
 | 	BUILD_BUG_ON(LLIST_NODE_SZ > 8); | 
 |  | 
 | 	/* | 
 | 	 * Remember bpf_mem_cache that allocated this object. | 
 | 	 * The hint is not accurate. | 
 | 	 */ | 
 | 	c->tgt = *(struct bpf_mem_cache **)llnode; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	if (local_inc_return(&c->active) == 1) { | 
 | 		__llist_add(llnode, &c->free_llist); | 
 | 		cnt = ++c->free_cnt; | 
 | 	} else { | 
 | 		/* unit_free() cannot fail. Therefore add an object to atomic | 
 | 		 * llist. free_bulk() will drain it. Though free_llist_extra is | 
 | 		 * a per-cpu list we have to use atomic llist_add here, since | 
 | 		 * it also can be interrupted by bpf nmi prog that does another | 
 | 		 * unit_free() into the same free_llist_extra. | 
 | 		 */ | 
 | 		llist_add(llnode, &c->free_llist_extra); | 
 | 	} | 
 | 	local_dec(&c->active); | 
 |  | 
 | 	if (cnt > c->high_watermark) | 
 | 		/* free few objects from current cpu into global kmalloc pool */ | 
 | 		irq_work_raise(c); | 
 | 	/* Enable IRQ after irq_work_raise() completes, otherwise when current | 
 | 	 * task is preempted by task which does unit_alloc(), unit_alloc() may | 
 | 	 * return NULL unexpectedly because irq work is already pending but can | 
 | 	 * not been triggered and free_llist can not be refilled timely. | 
 | 	 */ | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr) | 
 | { | 
 | 	struct llist_node *llnode = ptr - LLIST_NODE_SZ; | 
 | 	unsigned long flags; | 
 |  | 
 | 	c->tgt = *(struct bpf_mem_cache **)llnode; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	if (local_inc_return(&c->active) == 1) { | 
 | 		if (__llist_add(llnode, &c->free_by_rcu)) | 
 | 			c->free_by_rcu_tail = llnode; | 
 | 	} else { | 
 | 		llist_add(llnode, &c->free_llist_extra_rcu); | 
 | 	} | 
 | 	local_dec(&c->active); | 
 |  | 
 | 	if (!atomic_read(&c->call_rcu_in_progress)) | 
 | 		irq_work_raise(c); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* Called from BPF program or from sys_bpf syscall. | 
 |  * In both cases migration is disabled. | 
 |  */ | 
 | void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) | 
 | { | 
 | 	int idx; | 
 | 	void *ret; | 
 |  | 
 | 	if (!size) | 
 | 		return NULL; | 
 |  | 
 | 	if (!ma->percpu) | 
 | 		size += LLIST_NODE_SZ; | 
 | 	idx = bpf_mem_cache_idx(size); | 
 | 	if (idx < 0) | 
 | 		return NULL; | 
 |  | 
 | 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); | 
 | 	return !ret ? NULL : ret + LLIST_NODE_SZ; | 
 | } | 
 |  | 
 | void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) | 
 | { | 
 | 	struct bpf_mem_cache *c; | 
 | 	int idx; | 
 |  | 
 | 	if (!ptr) | 
 | 		return; | 
 |  | 
 | 	c = *(void **)(ptr - LLIST_NODE_SZ); | 
 | 	idx = bpf_mem_cache_idx(c->unit_size); | 
 | 	if (WARN_ON_ONCE(idx < 0)) | 
 | 		return; | 
 |  | 
 | 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); | 
 | } | 
 |  | 
 | void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr) | 
 | { | 
 | 	struct bpf_mem_cache *c; | 
 | 	int idx; | 
 |  | 
 | 	if (!ptr) | 
 | 		return; | 
 |  | 
 | 	c = *(void **)(ptr - LLIST_NODE_SZ); | 
 | 	idx = bpf_mem_cache_idx(c->unit_size); | 
 | 	if (WARN_ON_ONCE(idx < 0)) | 
 | 		return; | 
 |  | 
 | 	unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr); | 
 | } | 
 |  | 
 | void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) | 
 | { | 
 | 	void *ret; | 
 |  | 
 | 	ret = unit_alloc(this_cpu_ptr(ma->cache)); | 
 | 	return !ret ? NULL : ret + LLIST_NODE_SZ; | 
 | } | 
 |  | 
 | void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) | 
 | { | 
 | 	if (!ptr) | 
 | 		return; | 
 |  | 
 | 	unit_free(this_cpu_ptr(ma->cache), ptr); | 
 | } | 
 |  | 
 | void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr) | 
 | { | 
 | 	if (!ptr) | 
 | 		return; | 
 |  | 
 | 	unit_free_rcu(this_cpu_ptr(ma->cache), ptr); | 
 | } | 
 |  | 
 | /* Directly does a kfree() without putting 'ptr' back to the free_llist | 
 |  * for reuse and without waiting for a rcu_tasks_trace gp. | 
 |  * The caller must first go through the rcu_tasks_trace gp for 'ptr' | 
 |  * before calling bpf_mem_cache_raw_free(). | 
 |  * It could be used when the rcu_tasks_trace callback does not have | 
 |  * a hold on the original bpf_mem_alloc object that allocated the | 
 |  * 'ptr'. This should only be used in the uncommon code path. | 
 |  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled | 
 |  * and may affect performance. | 
 |  */ | 
 | void bpf_mem_cache_raw_free(void *ptr) | 
 | { | 
 | 	if (!ptr) | 
 | 		return; | 
 |  | 
 | 	kfree(ptr - LLIST_NODE_SZ); | 
 | } | 
 |  | 
 | /* When flags == GFP_KERNEL, it signals that the caller will not cause | 
 |  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use | 
 |  * kmalloc if the free_llist is empty. | 
 |  */ | 
 | void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags) | 
 | { | 
 | 	struct bpf_mem_cache *c; | 
 | 	void *ret; | 
 |  | 
 | 	c = this_cpu_ptr(ma->cache); | 
 |  | 
 | 	ret = unit_alloc(c); | 
 | 	if (!ret && flags == GFP_KERNEL) { | 
 | 		struct mem_cgroup *memcg, *old_memcg; | 
 |  | 
 | 		memcg = get_memcg(c); | 
 | 		old_memcg = set_active_memcg(memcg); | 
 | 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT); | 
 | 		if (ret) | 
 | 			*(struct bpf_mem_cache **)ret = c; | 
 | 		set_active_memcg(old_memcg); | 
 | 		mem_cgroup_put(memcg); | 
 | 	} | 
 |  | 
 | 	return !ret ? NULL : ret + LLIST_NODE_SZ; | 
 | } | 
 |  | 
 | int bpf_mem_alloc_check_size(bool percpu, size_t size) | 
 | { | 
 | 	/* The size of percpu allocation doesn't have LLIST_NODE_SZ overhead */ | 
 | 	if ((percpu && size > BPF_MEM_ALLOC_SIZE_MAX) || | 
 | 	    (!percpu && size > BPF_MEM_ALLOC_SIZE_MAX - LLIST_NODE_SZ)) | 
 | 		return -E2BIG; | 
 |  | 
 | 	return 0; | 
 | } |