|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * | 
|  | * Copyright (c) 2009, Microsoft Corporation. | 
|  | * | 
|  | * Authors: | 
|  | *   Haiyang Zhang <haiyangz@microsoft.com> | 
|  | *   Hank Janssen  <hjanssen@microsoft.com> | 
|  | *   K. Y. Srinivasan <kys@microsoft.com> | 
|  | */ | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hyperv.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/io.h> | 
|  | #include <asm/mshyperv.h> | 
|  |  | 
|  | #include "hyperv_vmbus.h" | 
|  |  | 
|  | #define VMBUS_PKT_TRAILER	8 | 
|  |  | 
|  | /* | 
|  | * When we write to the ring buffer, check if the host needs to | 
|  | * be signaled. Here is the details of this protocol: | 
|  | * | 
|  | *	1. The host guarantees that while it is draining the | 
|  | *	   ring buffer, it will set the interrupt_mask to | 
|  | *	   indicate it does not need to be interrupted when | 
|  | *	   new data is placed. | 
|  | * | 
|  | *	2. The host guarantees that it will completely drain | 
|  | *	   the ring buffer before exiting the read loop. Further, | 
|  | *	   once the ring buffer is empty, it will clear the | 
|  | *	   interrupt_mask and re-check to see if new data has | 
|  | *	   arrived. | 
|  | * | 
|  | * KYS: Oct. 30, 2016: | 
|  | * It looks like Windows hosts have logic to deal with DOS attacks that | 
|  | * can be triggered if it receives interrupts when it is not expecting | 
|  | * the interrupt. The host expects interrupts only when the ring | 
|  | * transitions from empty to non-empty (or full to non full on the guest | 
|  | * to host ring). | 
|  | * So, base the signaling decision solely on the ring state until the | 
|  | * host logic is fixed. | 
|  | */ | 
|  |  | 
|  | static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel) | 
|  | { | 
|  | struct hv_ring_buffer_info *rbi = &channel->outbound; | 
|  |  | 
|  | virt_mb(); | 
|  | if (READ_ONCE(rbi->ring_buffer->interrupt_mask)) | 
|  | return; | 
|  |  | 
|  | /* check interrupt_mask before read_index */ | 
|  | virt_rmb(); | 
|  | /* | 
|  | * This is the only case we need to signal when the | 
|  | * ring transitions from being empty to non-empty. | 
|  | */ | 
|  | if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) { | 
|  | ++channel->intr_out_empty; | 
|  | vmbus_setevent(channel); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get the next write location for the specified ring buffer. */ | 
|  | static inline u32 | 
|  | hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) | 
|  | { | 
|  | u32 next = ring_info->ring_buffer->write_index; | 
|  |  | 
|  | return next; | 
|  | } | 
|  |  | 
|  | /* Set the next write location for the specified ring buffer. */ | 
|  | static inline void | 
|  | hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, | 
|  | u32 next_write_location) | 
|  | { | 
|  | ring_info->ring_buffer->write_index = next_write_location; | 
|  | } | 
|  |  | 
|  | /* Get the size of the ring buffer. */ | 
|  | static inline u32 | 
|  | hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info) | 
|  | { | 
|  | return ring_info->ring_datasize; | 
|  | } | 
|  |  | 
|  | /* Get the read and write indices as u64 of the specified ring buffer. */ | 
|  | static inline u64 | 
|  | hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) | 
|  | { | 
|  | return (u64)ring_info->ring_buffer->write_index << 32; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper routine to copy from source to ring buffer. | 
|  | * Assume there is enough room. Handles wrap-around in dest case only!! | 
|  | */ | 
|  | static u32 hv_copyto_ringbuffer( | 
|  | struct hv_ring_buffer_info	*ring_info, | 
|  | u32				start_write_offset, | 
|  | const void			*src, | 
|  | u32				srclen) | 
|  | { | 
|  | void *ring_buffer = hv_get_ring_buffer(ring_info); | 
|  | u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); | 
|  |  | 
|  | memcpy(ring_buffer + start_write_offset, src, srclen); | 
|  |  | 
|  | start_write_offset += srclen; | 
|  | if (start_write_offset >= ring_buffer_size) | 
|  | start_write_offset -= ring_buffer_size; | 
|  |  | 
|  | return start_write_offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * | 
|  | * hv_get_ringbuffer_availbytes() | 
|  | * | 
|  | * Get number of bytes available to read and to write to | 
|  | * for the specified ring buffer | 
|  | */ | 
|  | static void | 
|  | hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, | 
|  | u32 *read, u32 *write) | 
|  | { | 
|  | u32 read_loc, write_loc, dsize; | 
|  |  | 
|  | /* Capture the read/write indices before they changed */ | 
|  | read_loc = READ_ONCE(rbi->ring_buffer->read_index); | 
|  | write_loc = READ_ONCE(rbi->ring_buffer->write_index); | 
|  | dsize = rbi->ring_datasize; | 
|  |  | 
|  | *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : | 
|  | read_loc - write_loc; | 
|  | *read = dsize - *write; | 
|  | } | 
|  |  | 
|  | /* Get various debug metrics for the specified ring buffer. */ | 
|  | int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, | 
|  | struct hv_ring_buffer_debug_info *debug_info) | 
|  | { | 
|  | u32 bytes_avail_towrite; | 
|  | u32 bytes_avail_toread; | 
|  |  | 
|  | mutex_lock(&ring_info->ring_buffer_mutex); | 
|  |  | 
|  | if (!ring_info->ring_buffer) { | 
|  | mutex_unlock(&ring_info->ring_buffer_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | hv_get_ringbuffer_availbytes(ring_info, | 
|  | &bytes_avail_toread, | 
|  | &bytes_avail_towrite); | 
|  | debug_info->bytes_avail_toread = bytes_avail_toread; | 
|  | debug_info->bytes_avail_towrite = bytes_avail_towrite; | 
|  | debug_info->current_read_index = ring_info->ring_buffer->read_index; | 
|  | debug_info->current_write_index = ring_info->ring_buffer->write_index; | 
|  | debug_info->current_interrupt_mask | 
|  | = ring_info->ring_buffer->interrupt_mask; | 
|  | mutex_unlock(&ring_info->ring_buffer_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo); | 
|  |  | 
|  | /* Initialize a channel's ring buffer info mutex locks */ | 
|  | void hv_ringbuffer_pre_init(struct vmbus_channel *channel) | 
|  | { | 
|  | mutex_init(&channel->inbound.ring_buffer_mutex); | 
|  | mutex_init(&channel->outbound.ring_buffer_mutex); | 
|  | } | 
|  |  | 
|  | /* Initialize the ring buffer. */ | 
|  | int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, | 
|  | struct page *pages, u32 page_cnt, u32 max_pkt_size) | 
|  | { | 
|  | struct page **pages_wraparound; | 
|  | int i; | 
|  |  | 
|  | BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE)); | 
|  |  | 
|  | /* | 
|  | * First page holds struct hv_ring_buffer, do wraparound mapping for | 
|  | * the rest. | 
|  | */ | 
|  | pages_wraparound = kcalloc(page_cnt * 2 - 1, | 
|  | sizeof(struct page *), | 
|  | GFP_KERNEL); | 
|  | if (!pages_wraparound) | 
|  | return -ENOMEM; | 
|  |  | 
|  | pages_wraparound[0] = pages; | 
|  | for (i = 0; i < 2 * (page_cnt - 1); i++) | 
|  | pages_wraparound[i + 1] = | 
|  | &pages[i % (page_cnt - 1) + 1]; | 
|  |  | 
|  | ring_info->ring_buffer = (struct hv_ring_buffer *) | 
|  | vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, | 
|  | pgprot_decrypted(PAGE_KERNEL)); | 
|  |  | 
|  | kfree(pages_wraparound); | 
|  | if (!ring_info->ring_buffer) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Ensure the header page is zero'ed since | 
|  | * encryption status may have changed. | 
|  | */ | 
|  | memset(ring_info->ring_buffer, 0, HV_HYP_PAGE_SIZE); | 
|  |  | 
|  | ring_info->ring_buffer->read_index = | 
|  | ring_info->ring_buffer->write_index = 0; | 
|  |  | 
|  | /* Set the feature bit for enabling flow control. */ | 
|  | ring_info->ring_buffer->feature_bits.value = 1; | 
|  |  | 
|  | ring_info->ring_size = page_cnt << PAGE_SHIFT; | 
|  | ring_info->ring_size_div10_reciprocal = | 
|  | reciprocal_value(ring_info->ring_size / 10); | 
|  | ring_info->ring_datasize = ring_info->ring_size - | 
|  | sizeof(struct hv_ring_buffer); | 
|  | ring_info->priv_read_index = 0; | 
|  |  | 
|  | /* Initialize buffer that holds copies of incoming packets */ | 
|  | if (max_pkt_size) { | 
|  | ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL); | 
|  | if (!ring_info->pkt_buffer) | 
|  | return -ENOMEM; | 
|  | ring_info->pkt_buffer_size = max_pkt_size; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&ring_info->ring_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Cleanup the ring buffer. */ | 
|  | void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) | 
|  | { | 
|  | mutex_lock(&ring_info->ring_buffer_mutex); | 
|  | vunmap(ring_info->ring_buffer); | 
|  | ring_info->ring_buffer = NULL; | 
|  | mutex_unlock(&ring_info->ring_buffer_mutex); | 
|  |  | 
|  | kfree(ring_info->pkt_buffer); | 
|  | ring_info->pkt_buffer = NULL; | 
|  | ring_info->pkt_buffer_size = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the ring buffer spinlock is available to take or not; used on | 
|  | * atomic contexts, like panic path (see the Hyper-V framebuffer driver). | 
|  | */ | 
|  |  | 
|  | bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel) | 
|  | { | 
|  | struct hv_ring_buffer_info *rinfo = &channel->outbound; | 
|  |  | 
|  | return spin_is_locked(&rinfo->ring_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hv_ringbuffer_spinlock_busy); | 
|  |  | 
|  | /* Write to the ring buffer. */ | 
|  | int hv_ringbuffer_write(struct vmbus_channel *channel, | 
|  | const struct kvec *kv_list, u32 kv_count, | 
|  | u64 requestid, u64 *trans_id) | 
|  | { | 
|  | int i; | 
|  | u32 bytes_avail_towrite; | 
|  | u32 totalbytes_towrite = sizeof(u64); | 
|  | u32 next_write_location; | 
|  | u32 old_write; | 
|  | u64 prev_indices; | 
|  | unsigned long flags; | 
|  | struct hv_ring_buffer_info *outring_info = &channel->outbound; | 
|  | struct vmpacket_descriptor *desc = kv_list[0].iov_base; | 
|  | u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR; | 
|  |  | 
|  | if (channel->rescind) | 
|  | return -ENODEV; | 
|  |  | 
|  | for (i = 0; i < kv_count; i++) | 
|  | totalbytes_towrite += kv_list[i].iov_len; | 
|  |  | 
|  | spin_lock_irqsave(&outring_info->ring_lock, flags); | 
|  |  | 
|  | bytes_avail_towrite = hv_get_bytes_to_write(outring_info); | 
|  |  | 
|  | /* | 
|  | * If there is only room for the packet, assume it is full. | 
|  | * Otherwise, the next time around, we think the ring buffer | 
|  | * is empty since the read index == write index. | 
|  | */ | 
|  | if (bytes_avail_towrite <= totalbytes_towrite) { | 
|  | ++channel->out_full_total; | 
|  |  | 
|  | if (!channel->out_full_flag) { | 
|  | ++channel->out_full_first; | 
|  | channel->out_full_flag = true; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&outring_info->ring_lock, flags); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | channel->out_full_flag = false; | 
|  |  | 
|  | /* Write to the ring buffer */ | 
|  | next_write_location = hv_get_next_write_location(outring_info); | 
|  |  | 
|  | old_write = next_write_location; | 
|  |  | 
|  | for (i = 0; i < kv_count; i++) { | 
|  | next_write_location = hv_copyto_ringbuffer(outring_info, | 
|  | next_write_location, | 
|  | kv_list[i].iov_base, | 
|  | kv_list[i].iov_len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate the request ID after the data has been copied into the | 
|  | * ring buffer.  Once this request ID is allocated, the completion | 
|  | * path could find the data and free it. | 
|  | */ | 
|  |  | 
|  | if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) { | 
|  | if (channel->next_request_id_callback != NULL) { | 
|  | rqst_id = channel->next_request_id_callback(channel, requestid); | 
|  | if (rqst_id == VMBUS_RQST_ERROR) { | 
|  | spin_unlock_irqrestore(&outring_info->ring_lock, flags); | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  | } | 
|  | desc = hv_get_ring_buffer(outring_info) + old_write; | 
|  | __trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id; | 
|  | /* | 
|  | * Ensure the compiler doesn't generate code that reads the value of | 
|  | * the transaction ID from the ring buffer, which is shared with the | 
|  | * Hyper-V host and subject to being changed at any time. | 
|  | */ | 
|  | WRITE_ONCE(desc->trans_id, __trans_id); | 
|  | if (trans_id) | 
|  | *trans_id = __trans_id; | 
|  |  | 
|  | /* Set previous packet start */ | 
|  | prev_indices = hv_get_ring_bufferindices(outring_info); | 
|  |  | 
|  | next_write_location = hv_copyto_ringbuffer(outring_info, | 
|  | next_write_location, | 
|  | &prev_indices, | 
|  | sizeof(u64)); | 
|  |  | 
|  | /* Issue a full memory barrier before updating the write index */ | 
|  | virt_mb(); | 
|  |  | 
|  | /* Now, update the write location */ | 
|  | hv_set_next_write_location(outring_info, next_write_location); | 
|  |  | 
|  |  | 
|  | spin_unlock_irqrestore(&outring_info->ring_lock, flags); | 
|  |  | 
|  | hv_signal_on_write(old_write, channel); | 
|  |  | 
|  | if (channel->rescind) { | 
|  | if (rqst_id != VMBUS_NO_RQSTOR) { | 
|  | /* Reclaim request ID to avoid leak of IDs */ | 
|  | if (channel->request_addr_callback != NULL) | 
|  | channel->request_addr_callback(channel, rqst_id); | 
|  | } | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int hv_ringbuffer_read(struct vmbus_channel *channel, | 
|  | void *buffer, u32 buflen, u32 *buffer_actual_len, | 
|  | u64 *requestid, bool raw) | 
|  | { | 
|  | struct vmpacket_descriptor *desc; | 
|  | u32 packetlen, offset; | 
|  |  | 
|  | if (unlikely(buflen == 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | *buffer_actual_len = 0; | 
|  | *requestid = 0; | 
|  |  | 
|  | /* Make sure there is something to read */ | 
|  | desc = hv_pkt_iter_first(channel); | 
|  | if (desc == NULL) { | 
|  | /* | 
|  | * No error is set when there is even no header, drivers are | 
|  | * supposed to analyze buffer_actual_len. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | offset = raw ? 0 : (desc->offset8 << 3); | 
|  | packetlen = (desc->len8 << 3) - offset; | 
|  | *buffer_actual_len = packetlen; | 
|  | *requestid = desc->trans_id; | 
|  |  | 
|  | if (unlikely(packetlen > buflen)) | 
|  | return -ENOBUFS; | 
|  |  | 
|  | /* since ring is double mapped, only one copy is necessary */ | 
|  | memcpy(buffer, (const char *)desc + offset, packetlen); | 
|  |  | 
|  | /* Advance ring index to next packet descriptor */ | 
|  | __hv_pkt_iter_next(channel, desc); | 
|  |  | 
|  | /* Notify host of update */ | 
|  | hv_pkt_iter_close(channel); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine number of bytes available in ring buffer after | 
|  | * the current iterator (priv_read_index) location. | 
|  | * | 
|  | * This is similar to hv_get_bytes_to_read but with private | 
|  | * read index instead. | 
|  | */ | 
|  | static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi) | 
|  | { | 
|  | u32 priv_read_loc = rbi->priv_read_index; | 
|  | u32 write_loc; | 
|  |  | 
|  | /* | 
|  | * The Hyper-V host writes the packet data, then uses | 
|  | * store_release() to update the write_index.  Use load_acquire() | 
|  | * here to prevent loads of the packet data from being re-ordered | 
|  | * before the read of the write_index and potentially getting | 
|  | * stale data. | 
|  | */ | 
|  | write_loc = virt_load_acquire(&rbi->ring_buffer->write_index); | 
|  |  | 
|  | if (write_loc >= priv_read_loc) | 
|  | return write_loc - priv_read_loc; | 
|  | else | 
|  | return (rbi->ring_datasize - priv_read_loc) + write_loc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get first vmbus packet from ring buffer after read_index | 
|  | * | 
|  | * If ring buffer is empty, returns NULL and no other action needed. | 
|  | */ | 
|  | struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel) | 
|  | { | 
|  | struct hv_ring_buffer_info *rbi = &channel->inbound; | 
|  | struct vmpacket_descriptor *desc, *desc_copy; | 
|  | u32 bytes_avail, pkt_len, pkt_offset; | 
|  |  | 
|  | hv_debug_delay_test(channel, MESSAGE_DELAY); | 
|  |  | 
|  | bytes_avail = hv_pkt_iter_avail(rbi); | 
|  | if (bytes_avail < sizeof(struct vmpacket_descriptor)) | 
|  | return NULL; | 
|  | bytes_avail = min(rbi->pkt_buffer_size, bytes_avail); | 
|  |  | 
|  | desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index); | 
|  |  | 
|  | /* | 
|  | * Ensure the compiler does not use references to incoming Hyper-V values (which | 
|  | * could change at any moment) when reading local variables later in the code | 
|  | */ | 
|  | pkt_len = READ_ONCE(desc->len8) << 3; | 
|  | pkt_offset = READ_ONCE(desc->offset8) << 3; | 
|  |  | 
|  | /* | 
|  | * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and | 
|  | * rbi->pkt_buffer_size | 
|  | */ | 
|  | if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail) | 
|  | pkt_len = bytes_avail; | 
|  |  | 
|  | /* | 
|  | * If pkt_offset is invalid, arbitrarily set it to | 
|  | * the size of vmpacket_descriptor | 
|  | */ | 
|  | if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len) | 
|  | pkt_offset = sizeof(struct vmpacket_descriptor); | 
|  |  | 
|  | /* Copy the Hyper-V packet out of the ring buffer */ | 
|  | desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer; | 
|  | memcpy(desc_copy, desc, pkt_len); | 
|  |  | 
|  | /* | 
|  | * Hyper-V could still change len8 and offset8 after the earlier read. | 
|  | * Ensure that desc_copy has legal values for len8 and offset8 that | 
|  | * are consistent with the copy we just made | 
|  | */ | 
|  | desc_copy->len8 = pkt_len >> 3; | 
|  | desc_copy->offset8 = pkt_offset >> 3; | 
|  |  | 
|  | return desc_copy; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hv_pkt_iter_first); | 
|  |  | 
|  | /* | 
|  | * Get next vmbus packet from ring buffer. | 
|  | * | 
|  | * Advances the current location (priv_read_index) and checks for more | 
|  | * data. If the end of the ring buffer is reached, then return NULL. | 
|  | */ | 
|  | struct vmpacket_descriptor * | 
|  | __hv_pkt_iter_next(struct vmbus_channel *channel, | 
|  | const struct vmpacket_descriptor *desc) | 
|  | { | 
|  | struct hv_ring_buffer_info *rbi = &channel->inbound; | 
|  | u32 packetlen = desc->len8 << 3; | 
|  | u32 dsize = rbi->ring_datasize; | 
|  |  | 
|  | hv_debug_delay_test(channel, MESSAGE_DELAY); | 
|  | /* bump offset to next potential packet */ | 
|  | rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER; | 
|  | if (rbi->priv_read_index >= dsize) | 
|  | rbi->priv_read_index -= dsize; | 
|  |  | 
|  | /* more data? */ | 
|  | return hv_pkt_iter_first(channel); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__hv_pkt_iter_next); | 
|  |  | 
|  | /* How many bytes were read in this iterator cycle */ | 
|  | static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi, | 
|  | u32 start_read_index) | 
|  | { | 
|  | if (rbi->priv_read_index >= start_read_index) | 
|  | return rbi->priv_read_index - start_read_index; | 
|  | else | 
|  | return rbi->ring_datasize - start_read_index + | 
|  | rbi->priv_read_index; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update host ring buffer after iterating over packets. If the host has | 
|  | * stopped queuing new entries because it found the ring buffer full, and | 
|  | * sufficient space is being freed up, signal the host. But be careful to | 
|  | * only signal the host when necessary, both for performance reasons and | 
|  | * because Hyper-V protects itself by throttling guests that signal | 
|  | * inappropriately. | 
|  | * | 
|  | * Determining when to signal is tricky. There are three key data inputs | 
|  | * that must be handled in this order to avoid race conditions: | 
|  | * | 
|  | * 1. Update the read_index | 
|  | * 2. Read the pending_send_sz | 
|  | * 3. Read the current write_index | 
|  | * | 
|  | * The interrupt_mask is not used to determine when to signal. The | 
|  | * interrupt_mask is used only on the guest->host ring buffer when | 
|  | * sending requests to the host. The host does not use it on the host-> | 
|  | * guest ring buffer to indicate whether it should be signaled. | 
|  | */ | 
|  | void hv_pkt_iter_close(struct vmbus_channel *channel) | 
|  | { | 
|  | struct hv_ring_buffer_info *rbi = &channel->inbound; | 
|  | u32 curr_write_sz, pending_sz, bytes_read, start_read_index; | 
|  |  | 
|  | /* | 
|  | * Make sure all reads are done before we update the read index since | 
|  | * the writer may start writing to the read area once the read index | 
|  | * is updated. | 
|  | */ | 
|  | virt_rmb(); | 
|  | start_read_index = rbi->ring_buffer->read_index; | 
|  | rbi->ring_buffer->read_index = rbi->priv_read_index; | 
|  |  | 
|  | /* | 
|  | * Older versions of Hyper-V (before WS2102 and Win8) do not | 
|  | * implement pending_send_sz and simply poll if the host->guest | 
|  | * ring buffer is full.  No signaling is needed or expected. | 
|  | */ | 
|  | if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Issue a full memory barrier before making the signaling decision. | 
|  | * If reading pending_send_sz were to be reordered and happen | 
|  | * before we commit the new read_index, a race could occur.  If the | 
|  | * host were to set the pending_send_sz after we have sampled | 
|  | * pending_send_sz, and the ring buffer blocks before we commit the | 
|  | * read index, we could miss sending the interrupt. Issue a full | 
|  | * memory barrier to address this. | 
|  | */ | 
|  | virt_mb(); | 
|  |  | 
|  | /* | 
|  | * If the pending_send_sz is zero, then the ring buffer is not | 
|  | * blocked and there is no need to signal.  This is far by the | 
|  | * most common case, so exit quickly for best performance. | 
|  | */ | 
|  | pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); | 
|  | if (!pending_sz) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Ensure the read of write_index in hv_get_bytes_to_write() | 
|  | * happens after the read of pending_send_sz. | 
|  | */ | 
|  | virt_rmb(); | 
|  | curr_write_sz = hv_get_bytes_to_write(rbi); | 
|  | bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index); | 
|  |  | 
|  | /* | 
|  | * We want to signal the host only if we're transitioning | 
|  | * from a "not enough free space" state to a "enough free | 
|  | * space" state.  For example, it's possible that this function | 
|  | * could run and free up enough space to signal the host, and then | 
|  | * run again and free up additional space before the host has a | 
|  | * chance to clear the pending_send_sz.  The 2nd invocation would | 
|  | * be a null transition from "enough free space" to "enough free | 
|  | * space", which doesn't warrant a signal. | 
|  | * | 
|  | * Exactly filling the ring buffer is treated as "not enough | 
|  | * space". The ring buffer always must have at least one byte | 
|  | * empty so the empty and full conditions are distinguishable. | 
|  | * hv_get_bytes_to_write() doesn't fully tell the truth in | 
|  | * this regard. | 
|  | * | 
|  | * So first check if we were in the "enough free space" state | 
|  | * before we began the iteration. If so, the host was not | 
|  | * blocked, and there's no need to signal. | 
|  | */ | 
|  | if (curr_write_sz - bytes_read > pending_sz) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Similarly, if the new state is "not enough space", then | 
|  | * there's no need to signal. | 
|  | */ | 
|  | if (curr_write_sz <= pending_sz) | 
|  | return; | 
|  |  | 
|  | ++channel->intr_in_full; | 
|  | vmbus_setevent(channel); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hv_pkt_iter_close); |