|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2013 Broadcom Corporation | 
|  | * Copyright 2013 Linaro Limited | 
|  | */ | 
|  |  | 
|  | #include "clk-kona.h" | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/clk-provider.h> | 
|  | #include <linux/string_choices.h> | 
|  |  | 
|  | /* | 
|  | * "Policies" affect the frequencies of bus clocks provided by a | 
|  | * CCU.  (I believe these polices are named "Deep Sleep", "Economy", | 
|  | * "Normal", and "Turbo".)  A lower policy number has lower power | 
|  | * consumption, and policy 2 is the default. | 
|  | */ | 
|  | #define CCU_POLICY_COUNT	4 | 
|  |  | 
|  | #define CCU_ACCESS_PASSWORD      0xA5A500 | 
|  | #define CLK_GATE_DELAY_LOOP      2000 | 
|  |  | 
|  | /* Bitfield operations */ | 
|  |  | 
|  | /* Produces a mask of set bits covering a range of a 32-bit value */ | 
|  | static inline u32 bitfield_mask(u32 shift, u32 width) | 
|  | { | 
|  | return ((1 << width) - 1) << shift; | 
|  | } | 
|  |  | 
|  | /* Extract the value of a bitfield found within a given register value */ | 
|  | static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width) | 
|  | { | 
|  | return (reg_val & bitfield_mask(shift, width)) >> shift; | 
|  | } | 
|  |  | 
|  | /* Replace the value of a bitfield found within a given register value */ | 
|  | static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val) | 
|  | { | 
|  | u32 mask = bitfield_mask(shift, width); | 
|  |  | 
|  | return (reg_val & ~mask) | (val << shift); | 
|  | } | 
|  |  | 
|  | /* Divider and scaling helpers */ | 
|  |  | 
|  | /* Convert a divider into the scaled divisor value it represents. */ | 
|  | static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div) | 
|  | { | 
|  | return (u64)reg_div + ((u64)1 << div->u.s.frac_width); | 
|  | } | 
|  |  | 
|  | /* The scaled minimum divisor representable by a divider */ | 
|  | static inline u64 | 
|  | scaled_div_min(struct bcm_clk_div *div) | 
|  | { | 
|  | if (divider_is_fixed(div)) | 
|  | return (u64)div->u.fixed; | 
|  |  | 
|  | return scaled_div_value(div, 0); | 
|  | } | 
|  |  | 
|  | /* The scaled maximum divisor representable by a divider */ | 
|  | u64 scaled_div_max(struct bcm_clk_div *div) | 
|  | { | 
|  | u32 reg_div; | 
|  |  | 
|  | if (divider_is_fixed(div)) | 
|  | return (u64)div->u.fixed; | 
|  |  | 
|  | reg_div = ((u32)1 << div->u.s.width) - 1; | 
|  |  | 
|  | return scaled_div_value(div, reg_div); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert a scaled divisor into its divider representation as | 
|  | * stored in a divider register field. | 
|  | */ | 
|  | static inline u32 | 
|  | divider(struct bcm_clk_div *div, u64 scaled_div) | 
|  | { | 
|  | BUG_ON(scaled_div < scaled_div_min(div)); | 
|  | BUG_ON(scaled_div > scaled_div_max(div)); | 
|  |  | 
|  | return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width)); | 
|  | } | 
|  |  | 
|  | /* Return a rate scaled for use when dividing by a scaled divisor. */ | 
|  | static inline u64 | 
|  | scale_rate(struct bcm_clk_div *div, u32 rate) | 
|  | { | 
|  | if (divider_is_fixed(div)) | 
|  | return (u64)rate; | 
|  |  | 
|  | return (u64)rate << div->u.s.frac_width; | 
|  | } | 
|  |  | 
|  | /* CCU access */ | 
|  |  | 
|  | /* Read a 32-bit register value from a CCU's address space. */ | 
|  | static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset) | 
|  | { | 
|  | return readl(ccu->base + reg_offset); | 
|  | } | 
|  |  | 
|  | /* Write a 32-bit register value into a CCU's address space. */ | 
|  | static inline void | 
|  | __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val) | 
|  | { | 
|  | writel(reg_val, ccu->base + reg_offset); | 
|  | } | 
|  |  | 
|  | static inline unsigned long ccu_lock(struct ccu_data *ccu) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ccu->lock, flags); | 
|  |  | 
|  | return flags; | 
|  | } | 
|  | static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags) | 
|  | { | 
|  | spin_unlock_irqrestore(&ccu->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable/disable write access to CCU protected registers.  The | 
|  | * WR_ACCESS register for all CCUs is at offset 0. | 
|  | */ | 
|  | static inline void __ccu_write_enable(struct ccu_data *ccu) | 
|  | { | 
|  | if (ccu->write_enabled) { | 
|  | pr_err("%s: access already enabled for %s\n", __func__, | 
|  | ccu->name); | 
|  | return; | 
|  | } | 
|  | ccu->write_enabled = true; | 
|  | __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1); | 
|  | } | 
|  |  | 
|  | static inline void __ccu_write_disable(struct ccu_data *ccu) | 
|  | { | 
|  | if (!ccu->write_enabled) { | 
|  | pr_err("%s: access wasn't enabled for %s\n", __func__, | 
|  | ccu->name); | 
|  | return; | 
|  | } | 
|  |  | 
|  | __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD); | 
|  | ccu->write_enabled = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Poll a register in a CCU's address space, returning when the | 
|  | * specified bit in that register's value is set (or clear).  Delay | 
|  | * a microsecond after each read of the register.  Returns true if | 
|  | * successful, or false if we gave up trying. | 
|  | * | 
|  | * Caller must ensure the CCU lock is held. | 
|  | */ | 
|  | static inline bool | 
|  | __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want) | 
|  | { | 
|  | unsigned int tries; | 
|  | u32 bit_mask = 1 << bit; | 
|  |  | 
|  | for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) { | 
|  | u32 val; | 
|  | bool bit_val; | 
|  |  | 
|  | val = __ccu_read(ccu, reg_offset); | 
|  | bit_val = (val & bit_mask) != 0; | 
|  | if (bit_val == want) | 
|  | return true; | 
|  | udelay(1); | 
|  | } | 
|  | pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__, | 
|  | ccu->name, reg_offset, bit, want ? "set" : "clear"); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Policy operations */ | 
|  |  | 
|  | static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync) | 
|  | { | 
|  | struct bcm_policy_ctl *control = &ccu->policy.control; | 
|  | u32 offset; | 
|  | u32 go_bit; | 
|  | u32 mask; | 
|  | bool ret; | 
|  |  | 
|  | /* If we don't need to control policy for this CCU, we're done. */ | 
|  | if (!policy_ctl_exists(control)) | 
|  | return true; | 
|  |  | 
|  | offset = control->offset; | 
|  | go_bit = control->go_bit; | 
|  |  | 
|  | /* Ensure we're not busy before we start */ | 
|  | ret = __ccu_wait_bit(ccu, offset, go_bit, false); | 
|  | if (!ret) { | 
|  | pr_err("%s: ccu %s policy engine wouldn't go idle\n", | 
|  | __func__, ccu->name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If it's a synchronous request, we'll wait for the voltage | 
|  | * and frequency of the active load to stabilize before | 
|  | * returning.  To do this we select the active load by | 
|  | * setting the ATL bit. | 
|  | * | 
|  | * An asynchronous request instead ramps the voltage in the | 
|  | * background, and when that process stabilizes, the target | 
|  | * load is copied to the active load and the CCU frequency | 
|  | * is switched.  We do this by selecting the target load | 
|  | * (ATL bit clear) and setting the request auto-copy (AC bit | 
|  | * set). | 
|  | * | 
|  | * Note, we do NOT read-modify-write this register. | 
|  | */ | 
|  | mask = (u32)1 << go_bit; | 
|  | if (sync) | 
|  | mask |= 1 << control->atl_bit; | 
|  | else | 
|  | mask |= 1 << control->ac_bit; | 
|  | __ccu_write(ccu, offset, mask); | 
|  |  | 
|  | /* Wait for indication that operation is complete. */ | 
|  | ret = __ccu_wait_bit(ccu, offset, go_bit, false); | 
|  | if (!ret) | 
|  | pr_err("%s: ccu %s policy engine never started\n", | 
|  | __func__, ccu->name); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool __ccu_policy_engine_stop(struct ccu_data *ccu) | 
|  | { | 
|  | struct bcm_lvm_en *enable = &ccu->policy.enable; | 
|  | u32 offset; | 
|  | u32 enable_bit; | 
|  | bool ret; | 
|  |  | 
|  | /* If we don't need to control policy for this CCU, we're done. */ | 
|  | if (!policy_lvm_en_exists(enable)) | 
|  | return true; | 
|  |  | 
|  | /* Ensure we're not busy before we start */ | 
|  | offset = enable->offset; | 
|  | enable_bit = enable->bit; | 
|  | ret = __ccu_wait_bit(ccu, offset, enable_bit, false); | 
|  | if (!ret) { | 
|  | pr_err("%s: ccu %s policy engine already stopped\n", | 
|  | __func__, ccu->name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Now set the bit to stop the engine (NO read-modify-write) */ | 
|  | __ccu_write(ccu, offset, (u32)1 << enable_bit); | 
|  |  | 
|  | /* Wait for indication that it has stopped. */ | 
|  | ret = __ccu_wait_bit(ccu, offset, enable_bit, false); | 
|  | if (!ret) | 
|  | pr_err("%s: ccu %s policy engine never stopped\n", | 
|  | __func__, ccu->name); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A CCU has four operating conditions ("policies"), and some clocks | 
|  | * can be disabled or enabled based on which policy is currently in | 
|  | * effect.  Such clocks have a bit in a "policy mask" register for | 
|  | * each policy indicating whether the clock is enabled for that | 
|  | * policy or not.  The bit position for a clock is the same for all | 
|  | * four registers, and the 32-bit registers are at consecutive | 
|  | * addresses. | 
|  | */ | 
|  | static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy) | 
|  | { | 
|  | u32 offset; | 
|  | u32 mask; | 
|  | int i; | 
|  | bool ret; | 
|  |  | 
|  | if (!policy_exists(policy)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * We need to stop the CCU policy engine to allow update | 
|  | * of our policy bits. | 
|  | */ | 
|  | if (!__ccu_policy_engine_stop(ccu)) { | 
|  | pr_err("%s: unable to stop CCU %s policy engine\n", | 
|  | __func__, ccu->name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For now, if a clock defines its policy bit we just mark | 
|  | * it "enabled" for all four policies. | 
|  | */ | 
|  | offset = policy->offset; | 
|  | mask = (u32)1 << policy->bit; | 
|  | for (i = 0; i < CCU_POLICY_COUNT; i++) { | 
|  | u32 reg_val; | 
|  |  | 
|  | reg_val = __ccu_read(ccu, offset); | 
|  | reg_val |= mask; | 
|  | __ccu_write(ccu, offset, reg_val); | 
|  | offset += sizeof(u32); | 
|  | } | 
|  |  | 
|  | /* We're done updating; fire up the policy engine again. */ | 
|  | ret = __ccu_policy_engine_start(ccu, true); | 
|  | if (!ret) | 
|  | pr_err("%s: unable to restart CCU %s policy engine\n", | 
|  | __func__, ccu->name); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Gate operations */ | 
|  |  | 
|  | /* Determine whether a clock is gated.  CCU lock must be held.  */ | 
|  | static bool | 
|  | __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) | 
|  | { | 
|  | u32 bit_mask; | 
|  | u32 reg_val; | 
|  |  | 
|  | /* If there is no gate we can assume it's enabled. */ | 
|  | if (!gate_exists(gate)) | 
|  | return true; | 
|  |  | 
|  | bit_mask = 1 << gate->status_bit; | 
|  | reg_val = __ccu_read(ccu, gate->offset); | 
|  |  | 
|  | return (reg_val & bit_mask) != 0; | 
|  | } | 
|  |  | 
|  | /* Determine whether a clock is gated. */ | 
|  | static bool | 
|  | is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) | 
|  | { | 
|  | long flags; | 
|  | bool ret; | 
|  |  | 
|  | /* Avoid taking the lock if we can */ | 
|  | if (!gate_exists(gate)) | 
|  | return true; | 
|  |  | 
|  | flags = ccu_lock(ccu); | 
|  | ret = __is_clk_gate_enabled(ccu, gate); | 
|  | ccu_unlock(ccu, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit our desired gate state to the hardware. | 
|  | * Returns true if successful, false otherwise. | 
|  | */ | 
|  | static bool | 
|  | __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate) | 
|  | { | 
|  | u32 reg_val; | 
|  | u32 mask; | 
|  | bool enabled = false; | 
|  |  | 
|  | BUG_ON(!gate_exists(gate)); | 
|  | if (!gate_is_sw_controllable(gate)) | 
|  | return true;		/* Nothing we can change */ | 
|  |  | 
|  | reg_val = __ccu_read(ccu, gate->offset); | 
|  |  | 
|  | /* For a hardware/software gate, set which is in control */ | 
|  | if (gate_is_hw_controllable(gate)) { | 
|  | mask = (u32)1 << gate->hw_sw_sel_bit; | 
|  | if (gate_is_sw_managed(gate)) | 
|  | reg_val |= mask; | 
|  | else | 
|  | reg_val &= ~mask; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If software is in control, enable or disable the gate. | 
|  | * If hardware is, clear the enabled bit for good measure. | 
|  | * If a software controlled gate can't be disabled, we're | 
|  | * required to write a 0 into the enable bit (but the gate | 
|  | * will be enabled). | 
|  | */ | 
|  | mask = (u32)1 << gate->en_bit; | 
|  | if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) && | 
|  | !gate_is_no_disable(gate)) | 
|  | reg_val |= mask; | 
|  | else | 
|  | reg_val &= ~mask; | 
|  |  | 
|  | __ccu_write(ccu, gate->offset, reg_val); | 
|  |  | 
|  | /* For a hardware controlled gate, we're done */ | 
|  | if (!gate_is_sw_managed(gate)) | 
|  | return true; | 
|  |  | 
|  | /* Otherwise wait for the gate to be in desired state */ | 
|  | return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a gate.  Our desired state (hardware/software select, | 
|  | * and if software, its enable state) is committed to hardware | 
|  | * without the usual checks to see if it's already set up that way. | 
|  | * Returns true if successful, false otherwise. | 
|  | */ | 
|  | static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate) | 
|  | { | 
|  | if (!gate_exists(gate)) | 
|  | return true; | 
|  | return __gate_commit(ccu, gate); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set a gate to enabled or disabled state.  Does nothing if the | 
|  | * gate is not currently under software control, or if it is already | 
|  | * in the requested state.  Returns true if successful, false | 
|  | * otherwise.  CCU lock must be held. | 
|  | */ | 
|  | static bool | 
|  | __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable) | 
|  | { | 
|  | bool ret; | 
|  |  | 
|  | if (!gate_exists(gate) || !gate_is_sw_managed(gate)) | 
|  | return true;	/* Nothing to do */ | 
|  |  | 
|  | if (!enable && gate_is_no_disable(gate)) { | 
|  | pr_warn("%s: invalid gate disable request (ignoring)\n", | 
|  | __func__); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (enable == gate_is_enabled(gate)) | 
|  | return true;	/* No change */ | 
|  |  | 
|  | gate_flip_enabled(gate); | 
|  | ret = __gate_commit(ccu, gate); | 
|  | if (!ret) | 
|  | gate_flip_enabled(gate);	/* Revert the change */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */ | 
|  | static int clk_gate(struct ccu_data *ccu, const char *name, | 
|  | struct bcm_clk_gate *gate, bool enable) | 
|  | { | 
|  | unsigned long flags; | 
|  | bool success; | 
|  |  | 
|  | /* | 
|  | * Avoid taking the lock if we can.  We quietly ignore | 
|  | * requests to change state that don't make sense. | 
|  | */ | 
|  | if (!gate_exists(gate) || !gate_is_sw_managed(gate)) | 
|  | return 0; | 
|  | if (!enable && gate_is_no_disable(gate)) | 
|  | return 0; | 
|  |  | 
|  | flags = ccu_lock(ccu); | 
|  | __ccu_write_enable(ccu); | 
|  |  | 
|  | success = __clk_gate(ccu, gate, enable); | 
|  |  | 
|  | __ccu_write_disable(ccu); | 
|  | ccu_unlock(ccu, flags); | 
|  |  | 
|  | if (success) | 
|  | return 0; | 
|  |  | 
|  | pr_err("%s: failed to %s gate for %s\n", __func__, | 
|  | str_enable_disable(enable), name); | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Hysteresis operations */ | 
|  |  | 
|  | /* | 
|  | * If a clock gate requires a turn-off delay it will have | 
|  | * "hysteresis" register bits defined.  The first, if set, enables | 
|  | * the delay; and if enabled, the second bit determines whether the | 
|  | * delay is "low" or "high" (1 means high).  For now, if it's | 
|  | * defined for a clock, we set it. | 
|  | */ | 
|  | static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst) | 
|  | { | 
|  | u32 offset; | 
|  | u32 reg_val; | 
|  | u32 mask; | 
|  |  | 
|  | if (!hyst_exists(hyst)) | 
|  | return true; | 
|  |  | 
|  | offset = hyst->offset; | 
|  | mask = (u32)1 << hyst->en_bit; | 
|  | mask |= (u32)1 << hyst->val_bit; | 
|  |  | 
|  | reg_val = __ccu_read(ccu, offset); | 
|  | reg_val |= mask; | 
|  | __ccu_write(ccu, offset, reg_val); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Trigger operations */ | 
|  |  | 
|  | /* | 
|  | * Caller must ensure CCU lock is held and access is enabled. | 
|  | * Returns true if successful, false otherwise. | 
|  | */ | 
|  | static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig) | 
|  | { | 
|  | /* Trigger the clock and wait for it to finish */ | 
|  | __ccu_write(ccu, trig->offset, 1 << trig->bit); | 
|  |  | 
|  | return __ccu_wait_bit(ccu, trig->offset, trig->bit, false); | 
|  | } | 
|  |  | 
|  | /* Divider operations */ | 
|  |  | 
|  | /* Read a divider value and return the scaled divisor it represents. */ | 
|  | static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div) | 
|  | { | 
|  | unsigned long flags; | 
|  | u32 reg_val; | 
|  | u32 reg_div; | 
|  |  | 
|  | if (divider_is_fixed(div)) | 
|  | return (u64)div->u.fixed; | 
|  |  | 
|  | flags = ccu_lock(ccu); | 
|  | reg_val = __ccu_read(ccu, div->u.s.offset); | 
|  | ccu_unlock(ccu, flags); | 
|  |  | 
|  | /* Extract the full divider field from the register value */ | 
|  | reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width); | 
|  |  | 
|  | /* Return the scaled divisor value it represents */ | 
|  | return scaled_div_value(div, reg_div); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert a divider's scaled divisor value into its recorded form | 
|  | * and commit it into the hardware divider register. | 
|  | * | 
|  | * Returns 0 on success.  Returns -EINVAL for invalid arguments. | 
|  | * Returns -ENXIO if gating failed, and -EIO if a trigger failed. | 
|  | */ | 
|  | static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, | 
|  | struct bcm_clk_div *div, struct bcm_clk_trig *trig) | 
|  | { | 
|  | bool enabled; | 
|  | u32 reg_div; | 
|  | u32 reg_val; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(divider_is_fixed(div)); | 
|  |  | 
|  | /* | 
|  | * If we're just initializing the divider, and no initial | 
|  | * state was defined in the device tree, we just find out | 
|  | * what its current value is rather than updating it. | 
|  | */ | 
|  | if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) { | 
|  | reg_val = __ccu_read(ccu, div->u.s.offset); | 
|  | reg_div = bitfield_extract(reg_val, div->u.s.shift, | 
|  | div->u.s.width); | 
|  | div->u.s.scaled_div = scaled_div_value(div, reg_div); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Convert the scaled divisor to the value we need to record */ | 
|  | reg_div = divider(div, div->u.s.scaled_div); | 
|  |  | 
|  | /* Clock needs to be enabled before changing the rate */ | 
|  | enabled = __is_clk_gate_enabled(ccu, gate); | 
|  | if (!enabled && !__clk_gate(ccu, gate, true)) { | 
|  | ret = -ENXIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Replace the divider value and record the result */ | 
|  | reg_val = __ccu_read(ccu, div->u.s.offset); | 
|  | reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width, | 
|  | reg_div); | 
|  | __ccu_write(ccu, div->u.s.offset, reg_val); | 
|  |  | 
|  | /* If the trigger fails we still want to disable the gate */ | 
|  | if (!__clk_trigger(ccu, trig)) | 
|  | ret = -EIO; | 
|  |  | 
|  | /* Disable the clock again if it was disabled to begin with */ | 
|  | if (!enabled && !__clk_gate(ccu, gate, false)) | 
|  | ret = ret ? ret : -ENXIO;	/* return first error */ | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a divider by committing our desired state to hardware | 
|  | * without the usual checks to see if it's already set up that way. | 
|  | * Returns true if successful, false otherwise. | 
|  | */ | 
|  | static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, | 
|  | struct bcm_clk_div *div, struct bcm_clk_trig *trig) | 
|  | { | 
|  | if (!divider_exists(div) || divider_is_fixed(div)) | 
|  | return true; | 
|  | return !__div_commit(ccu, gate, div, trig); | 
|  | } | 
|  |  | 
|  | static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, | 
|  | struct bcm_clk_div *div, struct bcm_clk_trig *trig, | 
|  | u64 scaled_div) | 
|  | { | 
|  | unsigned long flags; | 
|  | u64 previous; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(divider_is_fixed(div)); | 
|  |  | 
|  | previous = div->u.s.scaled_div; | 
|  | if (previous == scaled_div) | 
|  | return 0;	/* No change */ | 
|  |  | 
|  | div->u.s.scaled_div = scaled_div; | 
|  |  | 
|  | flags = ccu_lock(ccu); | 
|  | __ccu_write_enable(ccu); | 
|  |  | 
|  | ret = __div_commit(ccu, gate, div, trig); | 
|  |  | 
|  | __ccu_write_disable(ccu); | 
|  | ccu_unlock(ccu, flags); | 
|  |  | 
|  | if (ret) | 
|  | div->u.s.scaled_div = previous;		/* Revert the change */ | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Common clock rate helpers */ | 
|  |  | 
|  | /* | 
|  | * Implement the common clock framework recalc_rate method, taking | 
|  | * into account a divider and an optional pre-divider.  The | 
|  | * pre-divider register pointer may be NULL. | 
|  | */ | 
|  | static unsigned long clk_recalc_rate(struct ccu_data *ccu, | 
|  | struct bcm_clk_div *div, struct bcm_clk_div *pre_div, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | u64 scaled_parent_rate; | 
|  | u64 scaled_div; | 
|  | u64 result; | 
|  |  | 
|  | if (!divider_exists(div)) | 
|  | return parent_rate; | 
|  |  | 
|  | if (parent_rate > (unsigned long)LONG_MAX) | 
|  | return 0;	/* actually this would be a caller bug */ | 
|  |  | 
|  | /* | 
|  | * If there is a pre-divider, divide the scaled parent rate | 
|  | * by the pre-divider value first.  In this case--to improve | 
|  | * accuracy--scale the parent rate by *both* the pre-divider | 
|  | * value and the divider before actually computing the | 
|  | * result of the pre-divider. | 
|  | * | 
|  | * If there's only one divider, just scale the parent rate. | 
|  | */ | 
|  | if (pre_div && divider_exists(pre_div)) { | 
|  | u64 scaled_rate; | 
|  |  | 
|  | scaled_rate = scale_rate(pre_div, parent_rate); | 
|  | scaled_rate = scale_rate(div, scaled_rate); | 
|  | scaled_div = divider_read_scaled(ccu, pre_div); | 
|  | scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate, | 
|  | scaled_div); | 
|  | } else  { | 
|  | scaled_parent_rate = scale_rate(div, parent_rate); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the scaled divisor value, and divide the scaled | 
|  | * parent rate by that to determine this clock's resulting | 
|  | * rate. | 
|  | */ | 
|  | scaled_div = divider_read_scaled(ccu, div); | 
|  | result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div); | 
|  |  | 
|  | return (unsigned long)result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the output rate produced when a given parent rate is fed | 
|  | * into two dividers.  The pre-divider can be NULL, and even if it's | 
|  | * non-null it may be nonexistent.  It's also OK for the divider to | 
|  | * be nonexistent, and in that case the pre-divider is also ignored. | 
|  | * | 
|  | * If scaled_div is non-null, it is used to return the scaled divisor | 
|  | * value used by the (downstream) divider to produce that rate. | 
|  | */ | 
|  | static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div, | 
|  | struct bcm_clk_div *pre_div, | 
|  | unsigned long rate, unsigned long parent_rate, | 
|  | u64 *scaled_div) | 
|  | { | 
|  | u64 scaled_parent_rate; | 
|  | u64 min_scaled_div; | 
|  | u64 max_scaled_div; | 
|  | u64 best_scaled_div; | 
|  | u64 result; | 
|  |  | 
|  | BUG_ON(!divider_exists(div)); | 
|  | BUG_ON(!rate); | 
|  | BUG_ON(parent_rate > (u64)LONG_MAX); | 
|  |  | 
|  | /* | 
|  | * If there is a pre-divider, divide the scaled parent rate | 
|  | * by the pre-divider value first.  In this case--to improve | 
|  | * accuracy--scale the parent rate by *both* the pre-divider | 
|  | * value and the divider before actually computing the | 
|  | * result of the pre-divider. | 
|  | * | 
|  | * If there's only one divider, just scale the parent rate. | 
|  | * | 
|  | * For simplicity we treat the pre-divider as fixed (for now). | 
|  | */ | 
|  | if (divider_exists(pre_div)) { | 
|  | u64 scaled_rate; | 
|  | u64 scaled_pre_div; | 
|  |  | 
|  | scaled_rate = scale_rate(pre_div, parent_rate); | 
|  | scaled_rate = scale_rate(div, scaled_rate); | 
|  | scaled_pre_div = divider_read_scaled(ccu, pre_div); | 
|  | scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate, | 
|  | scaled_pre_div); | 
|  | } else { | 
|  | scaled_parent_rate = scale_rate(div, parent_rate); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the best possible divider and ensure it is in | 
|  | * range.  A fixed divider can't be changed, so just report | 
|  | * the best we can do. | 
|  | */ | 
|  | if (!divider_is_fixed(div)) { | 
|  | best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, | 
|  | rate); | 
|  | min_scaled_div = scaled_div_min(div); | 
|  | max_scaled_div = scaled_div_max(div); | 
|  | if (best_scaled_div > max_scaled_div) | 
|  | best_scaled_div = max_scaled_div; | 
|  | else if (best_scaled_div < min_scaled_div) | 
|  | best_scaled_div = min_scaled_div; | 
|  | } else { | 
|  | best_scaled_div = divider_read_scaled(ccu, div); | 
|  | } | 
|  |  | 
|  | /* OK, figure out the resulting rate */ | 
|  | result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div); | 
|  |  | 
|  | if (scaled_div) | 
|  | *scaled_div = best_scaled_div; | 
|  |  | 
|  | return (long)result; | 
|  | } | 
|  |  | 
|  | /* Common clock parent helpers */ | 
|  |  | 
|  | /* | 
|  | * For a given parent selector (register field) value, find the | 
|  | * index into a selector's parent_sel array that contains it. | 
|  | * Returns the index, or BAD_CLK_INDEX if it's not found. | 
|  | */ | 
|  | static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel) | 
|  | { | 
|  | u8 i; | 
|  |  | 
|  | BUG_ON(sel->parent_count > (u32)U8_MAX); | 
|  | for (i = 0; i < sel->parent_count; i++) | 
|  | if (sel->parent_sel[i] == parent_sel) | 
|  | return i; | 
|  | return BAD_CLK_INDEX; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch the current value of the selector, and translate that into | 
|  | * its corresponding index in the parent array we registered with | 
|  | * the clock framework. | 
|  | * | 
|  | * Returns parent array index that corresponds with the value found, | 
|  | * or BAD_CLK_INDEX if the found value is out of range. | 
|  | */ | 
|  | static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel) | 
|  | { | 
|  | unsigned long flags; | 
|  | u32 reg_val; | 
|  | u32 parent_sel; | 
|  | u8 index; | 
|  |  | 
|  | /* If there's no selector, there's only one parent */ | 
|  | if (!selector_exists(sel)) | 
|  | return 0; | 
|  |  | 
|  | /* Get the value in the selector register */ | 
|  | flags = ccu_lock(ccu); | 
|  | reg_val = __ccu_read(ccu, sel->offset); | 
|  | ccu_unlock(ccu, flags); | 
|  |  | 
|  | parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); | 
|  |  | 
|  | /* Look up that selector's parent array index and return it */ | 
|  | index = parent_index(sel, parent_sel); | 
|  | if (index == BAD_CLK_INDEX) | 
|  | pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n", | 
|  | __func__, parent_sel, ccu->name, sel->offset); | 
|  |  | 
|  | return index; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit our desired selector value to the hardware. | 
|  | * | 
|  | * Returns 0 on success.  Returns -EINVAL for invalid arguments. | 
|  | * Returns -ENXIO if gating failed, and -EIO if a trigger failed. | 
|  | */ | 
|  | static int | 
|  | __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, | 
|  | struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) | 
|  | { | 
|  | u32 parent_sel; | 
|  | u32 reg_val; | 
|  | bool enabled; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!selector_exists(sel)); | 
|  |  | 
|  | /* | 
|  | * If we're just initializing the selector, and no initial | 
|  | * state was defined in the device tree, we just find out | 
|  | * what its current value is rather than updating it. | 
|  | */ | 
|  | if (sel->clk_index == BAD_CLK_INDEX) { | 
|  | u8 index; | 
|  |  | 
|  | reg_val = __ccu_read(ccu, sel->offset); | 
|  | parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); | 
|  | index = parent_index(sel, parent_sel); | 
|  | if (index == BAD_CLK_INDEX) | 
|  | return -EINVAL; | 
|  | sel->clk_index = index; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BUG_ON((u32)sel->clk_index >= sel->parent_count); | 
|  | parent_sel = sel->parent_sel[sel->clk_index]; | 
|  |  | 
|  | /* Clock needs to be enabled before changing the parent */ | 
|  | enabled = __is_clk_gate_enabled(ccu, gate); | 
|  | if (!enabled && !__clk_gate(ccu, gate, true)) | 
|  | return -ENXIO; | 
|  |  | 
|  | /* Replace the selector value and record the result */ | 
|  | reg_val = __ccu_read(ccu, sel->offset); | 
|  | reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel); | 
|  | __ccu_write(ccu, sel->offset, reg_val); | 
|  |  | 
|  | /* If the trigger fails we still want to disable the gate */ | 
|  | if (!__clk_trigger(ccu, trig)) | 
|  | ret = -EIO; | 
|  |  | 
|  | /* Disable the clock again if it was disabled to begin with */ | 
|  | if (!enabled && !__clk_gate(ccu, gate, false)) | 
|  | ret = ret ? ret : -ENXIO;	/* return first error */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize a selector by committing our desired state to hardware | 
|  | * without the usual checks to see if it's already set up that way. | 
|  | * Returns true if successful, false otherwise. | 
|  | */ | 
|  | static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, | 
|  | struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) | 
|  | { | 
|  | if (!selector_exists(sel)) | 
|  | return true; | 
|  | return !__sel_commit(ccu, gate, sel, trig); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write a new value into a selector register to switch to a | 
|  | * different parent clock.  Returns 0 on success, or an error code | 
|  | * (from __sel_commit()) otherwise. | 
|  | */ | 
|  | static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, | 
|  | struct bcm_clk_sel *sel, struct bcm_clk_trig *trig, | 
|  | u8 index) | 
|  | { | 
|  | unsigned long flags; | 
|  | u8 previous; | 
|  | int ret; | 
|  |  | 
|  | previous = sel->clk_index; | 
|  | if (previous == index) | 
|  | return 0;	/* No change */ | 
|  |  | 
|  | sel->clk_index = index; | 
|  |  | 
|  | flags = ccu_lock(ccu); | 
|  | __ccu_write_enable(ccu); | 
|  |  | 
|  | ret = __sel_commit(ccu, gate, sel, trig); | 
|  |  | 
|  | __ccu_write_disable(ccu); | 
|  | ccu_unlock(ccu, flags); | 
|  |  | 
|  | if (ret) | 
|  | sel->clk_index = previous;	/* Revert the change */ | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Clock operations */ | 
|  |  | 
|  | static int kona_peri_clk_enable(struct clk_hw *hw) | 
|  | { | 
|  | struct kona_clk *bcm_clk = to_kona_clk(hw); | 
|  | struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; | 
|  |  | 
|  | return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true); | 
|  | } | 
|  |  | 
|  | static void kona_peri_clk_disable(struct clk_hw *hw) | 
|  | { | 
|  | struct kona_clk *bcm_clk = to_kona_clk(hw); | 
|  | struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; | 
|  |  | 
|  | (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false); | 
|  | } | 
|  |  | 
|  | static int kona_peri_clk_is_enabled(struct clk_hw *hw) | 
|  | { | 
|  | struct kona_clk *bcm_clk = to_kona_clk(hw); | 
|  | struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; | 
|  |  | 
|  | return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | struct kona_clk *bcm_clk = to_kona_clk(hw); | 
|  | struct peri_clk_data *data = bcm_clk->u.peri; | 
|  |  | 
|  | return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div, | 
|  | parent_rate); | 
|  | } | 
|  |  | 
|  | static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate, | 
|  | unsigned long *parent_rate) | 
|  | { | 
|  | struct kona_clk *bcm_clk = to_kona_clk(hw); | 
|  | struct bcm_clk_div *div = &bcm_clk->u.peri->div; | 
|  |  | 
|  | if (!divider_exists(div)) | 
|  | return clk_hw_get_rate(hw); | 
|  |  | 
|  | /* Quietly avoid a zero rate */ | 
|  | return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div, | 
|  | rate ? rate : 1, *parent_rate, NULL); | 
|  | } | 
|  |  | 
|  | static int kona_peri_clk_determine_rate(struct clk_hw *hw, | 
|  | struct clk_rate_request *req) | 
|  | { | 
|  | struct kona_clk *bcm_clk = to_kona_clk(hw); | 
|  | struct clk_hw *current_parent; | 
|  | unsigned long parent_rate; | 
|  | unsigned long best_delta; | 
|  | unsigned long best_rate; | 
|  | u32 parent_count; | 
|  | long rate; | 
|  | u32 which; | 
|  |  | 
|  | /* | 
|  | * If there is no other parent to choose, use the current one. | 
|  | * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT. | 
|  | */ | 
|  | WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT); | 
|  | parent_count = (u32)bcm_clk->init_data.num_parents; | 
|  | if (parent_count < 2) { | 
|  | rate = kona_peri_clk_round_rate(hw, req->rate, | 
|  | &req->best_parent_rate); | 
|  | if (rate < 0) | 
|  | return rate; | 
|  |  | 
|  | req->rate = rate; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Unless we can do better, stick with current parent */ | 
|  | current_parent = clk_hw_get_parent(hw); | 
|  | parent_rate = clk_hw_get_rate(current_parent); | 
|  | best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate); | 
|  | best_delta = abs(best_rate - req->rate); | 
|  |  | 
|  | /* Check whether any other parent clock can produce a better result */ | 
|  | for (which = 0; which < parent_count; which++) { | 
|  | struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which); | 
|  | unsigned long delta; | 
|  | unsigned long other_rate; | 
|  |  | 
|  | BUG_ON(!parent); | 
|  | if (parent == current_parent) | 
|  | continue; | 
|  |  | 
|  | /* We don't support CLK_SET_RATE_PARENT */ | 
|  | parent_rate = clk_hw_get_rate(parent); | 
|  | other_rate = kona_peri_clk_round_rate(hw, req->rate, | 
|  | &parent_rate); | 
|  | delta = abs(other_rate - req->rate); | 
|  | if (delta < best_delta) { | 
|  | best_delta = delta; | 
|  | best_rate = other_rate; | 
|  | req->best_parent_hw = parent; | 
|  | req->best_parent_rate = parent_rate; | 
|  | } | 
|  | } | 
|  |  | 
|  | req->rate = best_rate; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index) | 
|  | { | 
|  | struct kona_clk *bcm_clk = to_kona_clk(hw); | 
|  | struct peri_clk_data *data = bcm_clk->u.peri; | 
|  | struct bcm_clk_sel *sel = &data->sel; | 
|  | struct bcm_clk_trig *trig; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(index >= sel->parent_count); | 
|  |  | 
|  | /* If there's only one parent we don't require a selector */ | 
|  | if (!selector_exists(sel)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The regular trigger is used by default, but if there's a | 
|  | * pre-trigger we want to use that instead. | 
|  | */ | 
|  | trig = trigger_exists(&data->pre_trig) ? &data->pre_trig | 
|  | : &data->trig; | 
|  |  | 
|  | ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index); | 
|  | if (ret == -ENXIO) { | 
|  | pr_err("%s: gating failure for %s\n", __func__, | 
|  | bcm_clk->init_data.name); | 
|  | ret = -EIO;	/* Don't proliferate weird errors */ | 
|  | } else if (ret == -EIO) { | 
|  | pr_err("%s: %strigger failed for %s\n", __func__, | 
|  | trig == &data->pre_trig ? "pre-" : "", | 
|  | bcm_clk->init_data.name); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u8 kona_peri_clk_get_parent(struct clk_hw *hw) | 
|  | { | 
|  | struct kona_clk *bcm_clk = to_kona_clk(hw); | 
|  | struct peri_clk_data *data = bcm_clk->u.peri; | 
|  | u8 index; | 
|  |  | 
|  | index = selector_read_index(bcm_clk->ccu, &data->sel); | 
|  |  | 
|  | /* Not all callers would handle an out-of-range value gracefully */ | 
|  | return index == BAD_CLK_INDEX ? 0 : index; | 
|  | } | 
|  |  | 
|  | static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | struct kona_clk *bcm_clk = to_kona_clk(hw); | 
|  | struct peri_clk_data *data = bcm_clk->u.peri; | 
|  | struct bcm_clk_div *div = &data->div; | 
|  | u64 scaled_div = 0; | 
|  | int ret; | 
|  |  | 
|  | if (parent_rate > (unsigned long)LONG_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (rate == clk_hw_get_rate(hw)) | 
|  | return 0; | 
|  |  | 
|  | if (!divider_exists(div)) | 
|  | return rate == parent_rate ? 0 : -EINVAL; | 
|  |  | 
|  | /* | 
|  | * A fixed divider can't be changed.  (Nor can a fixed | 
|  | * pre-divider be, but for now we never actually try to | 
|  | * change that.)  Tolerate a request for a no-op change. | 
|  | */ | 
|  | if (divider_is_fixed(&data->div)) | 
|  | return rate == parent_rate ? 0 : -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Get the scaled divisor value needed to achieve a clock | 
|  | * rate as close as possible to what was requested, given | 
|  | * the parent clock rate supplied. | 
|  | */ | 
|  | (void)round_rate(bcm_clk->ccu, div, &data->pre_div, | 
|  | rate ? rate : 1, parent_rate, &scaled_div); | 
|  |  | 
|  | /* | 
|  | * We aren't updating any pre-divider at this point, so | 
|  | * we'll use the regular trigger. | 
|  | */ | 
|  | ret = divider_write(bcm_clk->ccu, &data->gate, &data->div, | 
|  | &data->trig, scaled_div); | 
|  | if (ret == -ENXIO) { | 
|  | pr_err("%s: gating failure for %s\n", __func__, | 
|  | bcm_clk->init_data.name); | 
|  | ret = -EIO;	/* Don't proliferate weird errors */ | 
|  | } else if (ret == -EIO) { | 
|  | pr_err("%s: trigger failed for %s\n", __func__, | 
|  | bcm_clk->init_data.name); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct clk_ops kona_peri_clk_ops = { | 
|  | .enable = kona_peri_clk_enable, | 
|  | .disable = kona_peri_clk_disable, | 
|  | .is_enabled = kona_peri_clk_is_enabled, | 
|  | .recalc_rate = kona_peri_clk_recalc_rate, | 
|  | .determine_rate = kona_peri_clk_determine_rate, | 
|  | .set_parent = kona_peri_clk_set_parent, | 
|  | .get_parent = kona_peri_clk_get_parent, | 
|  | .set_rate = kona_peri_clk_set_rate, | 
|  | }; | 
|  |  | 
|  | /* Put a peripheral clock into its initial state */ | 
|  | static bool __peri_clk_init(struct kona_clk *bcm_clk) | 
|  | { | 
|  | struct ccu_data *ccu = bcm_clk->ccu; | 
|  | struct peri_clk_data *peri = bcm_clk->u.peri; | 
|  | const char *name = bcm_clk->init_data.name; | 
|  | struct bcm_clk_trig *trig; | 
|  |  | 
|  | BUG_ON(bcm_clk->type != bcm_clk_peri); | 
|  |  | 
|  | if (!policy_init(ccu, &peri->policy)) { | 
|  | pr_err("%s: error initializing policy for %s\n", | 
|  | __func__, name); | 
|  | return false; | 
|  | } | 
|  | if (!gate_init(ccu, &peri->gate)) { | 
|  | pr_err("%s: error initializing gate for %s\n", __func__, name); | 
|  | return false; | 
|  | } | 
|  | if (!hyst_init(ccu, &peri->hyst)) { | 
|  | pr_err("%s: error initializing hyst for %s\n", __func__, name); | 
|  | return false; | 
|  | } | 
|  | if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) { | 
|  | pr_err("%s: error initializing divider for %s\n", __func__, | 
|  | name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For the pre-divider and selector, the pre-trigger is used | 
|  | * if it's present, otherwise we just use the regular trigger. | 
|  | */ | 
|  | trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig | 
|  | : &peri->trig; | 
|  |  | 
|  | if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) { | 
|  | pr_err("%s: error initializing pre-divider for %s\n", __func__, | 
|  | name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) { | 
|  | pr_err("%s: error initializing selector for %s\n", __func__, | 
|  | name); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool __kona_clk_init(struct kona_clk *bcm_clk) | 
|  | { | 
|  | switch (bcm_clk->type) { | 
|  | case bcm_clk_peri: | 
|  | return __peri_clk_init(bcm_clk); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Set a CCU and all its clocks into their desired initial state */ | 
|  | bool __init kona_ccu_init(struct ccu_data *ccu) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int which; | 
|  | struct kona_clk *kona_clks = ccu->kona_clks; | 
|  | bool success = true; | 
|  |  | 
|  | flags = ccu_lock(ccu); | 
|  | __ccu_write_enable(ccu); | 
|  |  | 
|  | for (which = 0; which < ccu->clk_num; which++) { | 
|  | struct kona_clk *bcm_clk = &kona_clks[which]; | 
|  |  | 
|  | if (!bcm_clk->ccu) | 
|  | continue; | 
|  |  | 
|  | success &= __kona_clk_init(bcm_clk); | 
|  | } | 
|  |  | 
|  | __ccu_write_disable(ccu); | 
|  | ccu_unlock(ccu, flags); | 
|  | return success; | 
|  | } |