|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  linux/arch/arm/kernel/smp.c | 
|  | * | 
|  | *  Copyright (C) 2002 ARM Limited, All Rights Reserved. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/sched/hotplug.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/irq_work.h> | 
|  | #include <linux/kernel_stat.h> | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  | #include <asm/bugs.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/exception.h> | 
|  | #include <asm/idmap.h> | 
|  | #include <asm/topology.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/procinfo.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/smp_plat.h> | 
|  | #include <asm/virt.h> | 
|  | #include <asm/mach/arch.h> | 
|  | #include <asm/mpu.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/ipi.h> | 
|  |  | 
|  | /* | 
|  | * as from 2.5, kernels no longer have an init_tasks structure | 
|  | * so we need some other way of telling a new secondary core | 
|  | * where to place its SVC stack | 
|  | */ | 
|  | struct secondary_data secondary_data; | 
|  |  | 
|  | enum ipi_msg_type { | 
|  | IPI_WAKEUP, | 
|  | IPI_TIMER, | 
|  | IPI_RESCHEDULE, | 
|  | IPI_CALL_FUNC, | 
|  | IPI_CPU_STOP, | 
|  | IPI_IRQ_WORK, | 
|  | IPI_COMPLETION, | 
|  | NR_IPI, | 
|  | /* | 
|  | * CPU_BACKTRACE is special and not included in NR_IPI | 
|  | * or tracable with trace_ipi_* | 
|  | */ | 
|  | IPI_CPU_BACKTRACE = NR_IPI, | 
|  | /* | 
|  | * SGI8-15 can be reserved by secure firmware, and thus may | 
|  | * not be usable by the kernel. Please keep the above limited | 
|  | * to at most 8 entries. | 
|  | */ | 
|  | MAX_IPI | 
|  | }; | 
|  |  | 
|  | static int ipi_irq_base __read_mostly; | 
|  | static int nr_ipi __read_mostly = NR_IPI; | 
|  | static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly; | 
|  |  | 
|  | static void ipi_setup(int cpu); | 
|  |  | 
|  | static DECLARE_COMPLETION(cpu_running); | 
|  |  | 
|  | static struct smp_operations smp_ops __ro_after_init; | 
|  |  | 
|  | void __init smp_set_ops(const struct smp_operations *ops) | 
|  | { | 
|  | if (ops) | 
|  | smp_ops = *ops; | 
|  | }; | 
|  |  | 
|  | static unsigned long get_arch_pgd(pgd_t *pgd) | 
|  | { | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | return __phys_to_pfn(virt_to_phys(pgd)); | 
|  | #else | 
|  | return virt_to_phys(pgd); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) | 
|  | static int secondary_biglittle_prepare(unsigned int cpu) | 
|  | { | 
|  | if (!cpu_vtable[cpu]) | 
|  | cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); | 
|  |  | 
|  | return cpu_vtable[cpu] ? 0 : -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void secondary_biglittle_init(void) | 
|  | { | 
|  | init_proc_vtable(lookup_processor(read_cpuid_id())->proc); | 
|  | } | 
|  | #else | 
|  | static int secondary_biglittle_prepare(unsigned int cpu) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void secondary_biglittle_init(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int __cpu_up(unsigned int cpu, struct task_struct *idle) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!smp_ops.smp_boot_secondary) | 
|  | return -ENOSYS; | 
|  |  | 
|  | ret = secondary_biglittle_prepare(cpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * We need to tell the secondary core where to find | 
|  | * its stack and the page tables. | 
|  | */ | 
|  | secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; | 
|  | #ifdef CONFIG_ARM_MPU | 
|  | secondary_data.mpu_rgn_info = &mpu_rgn_info; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | secondary_data.pgdir = virt_to_phys(idmap_pgd); | 
|  | secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); | 
|  | #endif | 
|  | secondary_data.task = idle; | 
|  | sync_cache_w(&secondary_data); | 
|  |  | 
|  | /* | 
|  | * Now bring the CPU into our world. | 
|  | */ | 
|  | ret = smp_ops.smp_boot_secondary(cpu, idle); | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * CPU was successfully started, wait for it | 
|  | * to come online or time out. | 
|  | */ | 
|  | wait_for_completion_timeout(&cpu_running, | 
|  | msecs_to_jiffies(1000)); | 
|  |  | 
|  | if (!cpu_online(cpu)) { | 
|  | pr_crit("CPU%u: failed to come online\n", cpu); | 
|  | ret = -EIO; | 
|  | } | 
|  | } else { | 
|  | pr_err("CPU%u: failed to boot: %d\n", cpu, ret); | 
|  | } | 
|  |  | 
|  |  | 
|  | memset(&secondary_data, 0, sizeof(secondary_data)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* platform specific SMP operations */ | 
|  | void __init smp_init_cpus(void) | 
|  | { | 
|  | if (smp_ops.smp_init_cpus) | 
|  | smp_ops.smp_init_cpus(); | 
|  | } | 
|  |  | 
|  | int platform_can_secondary_boot(void) | 
|  | { | 
|  | return !!smp_ops.smp_boot_secondary; | 
|  | } | 
|  |  | 
|  | int platform_can_cpu_hotplug(void) | 
|  | { | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | if (smp_ops.cpu_kill) | 
|  | return 1; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static int platform_cpu_kill(unsigned int cpu) | 
|  | { | 
|  | if (smp_ops.cpu_kill) | 
|  | return smp_ops.cpu_kill(cpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int platform_cpu_disable(unsigned int cpu) | 
|  | { | 
|  | if (smp_ops.cpu_disable) | 
|  | return smp_ops.cpu_disable(cpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int platform_can_hotplug_cpu(unsigned int cpu) | 
|  | { | 
|  | /* cpu_die must be specified to support hotplug */ | 
|  | if (!smp_ops.cpu_die) | 
|  | return 0; | 
|  |  | 
|  | if (smp_ops.cpu_can_disable) | 
|  | return smp_ops.cpu_can_disable(cpu); | 
|  |  | 
|  | /* | 
|  | * By default, allow disabling all CPUs except the first one, | 
|  | * since this is special on a lot of platforms, e.g. because | 
|  | * of clock tick interrupts. | 
|  | */ | 
|  | return cpu != 0; | 
|  | } | 
|  |  | 
|  | static void ipi_teardown(int cpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (WARN_ON_ONCE(!ipi_irq_base)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < nr_ipi; i++) | 
|  | disable_percpu_irq(ipi_irq_base + i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __cpu_disable runs on the processor to be shutdown. | 
|  | */ | 
|  | int __cpu_disable(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | int ret; | 
|  |  | 
|  | ret = platform_cpu_disable(cpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY | 
|  | remove_cpu_topology(cpu); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Take this CPU offline.  Once we clear this, we can't return, | 
|  | * and we must not schedule until we're ready to give up the cpu. | 
|  | */ | 
|  | set_cpu_online(cpu, false); | 
|  | ipi_teardown(cpu); | 
|  |  | 
|  | /* | 
|  | * OK - migrate IRQs away from this CPU | 
|  | */ | 
|  | irq_migrate_all_off_this_cpu(); | 
|  |  | 
|  | /* | 
|  | * Flush user cache and TLB mappings, and then remove this CPU | 
|  | * from the vm mask set of all processes. | 
|  | * | 
|  | * Caches are flushed to the Level of Unification Inner Shareable | 
|  | * to write-back dirty lines to unified caches shared by all CPUs. | 
|  | */ | 
|  | flush_cache_louis(); | 
|  | local_flush_tlb_all(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called on the thread which is asking for a CPU to be shutdown - | 
|  | * waits until shutdown has completed, or it is timed out. | 
|  | */ | 
|  | void __cpu_die(unsigned int cpu) | 
|  | { | 
|  | if (!cpu_wait_death(cpu, 5)) { | 
|  | pr_err("CPU%u: cpu didn't die\n", cpu); | 
|  | return; | 
|  | } | 
|  | pr_debug("CPU%u: shutdown\n", cpu); | 
|  |  | 
|  | clear_tasks_mm_cpumask(cpu); | 
|  | /* | 
|  | * platform_cpu_kill() is generally expected to do the powering off | 
|  | * and/or cutting of clocks to the dying CPU.  Optionally, this may | 
|  | * be done by the CPU which is dying in preference to supporting | 
|  | * this call, but that means there is _no_ synchronisation between | 
|  | * the requesting CPU and the dying CPU actually losing power. | 
|  | */ | 
|  | if (!platform_cpu_kill(cpu)) | 
|  | pr_err("CPU%u: unable to kill\n", cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from the idle thread for the CPU which has been shutdown. | 
|  | * | 
|  | * Note that we disable IRQs here, but do not re-enable them | 
|  | * before returning to the caller. This is also the behaviour | 
|  | * of the other hotplug-cpu capable cores, so presumably coming | 
|  | * out of idle fixes this. | 
|  | */ | 
|  | void arch_cpu_idle_dead(void) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | idle_task_exit(); | 
|  |  | 
|  | local_irq_disable(); | 
|  |  | 
|  | /* | 
|  | * Flush the data out of the L1 cache for this CPU.  This must be | 
|  | * before the completion to ensure that data is safely written out | 
|  | * before platform_cpu_kill() gets called - which may disable | 
|  | * *this* CPU and power down its cache. | 
|  | */ | 
|  | flush_cache_louis(); | 
|  |  | 
|  | /* | 
|  | * Tell __cpu_die() that this CPU is now safe to dispose of.  Once | 
|  | * this returns, power and/or clocks can be removed at any point | 
|  | * from this CPU and its cache by platform_cpu_kill(). | 
|  | */ | 
|  | (void)cpu_report_death(); | 
|  |  | 
|  | /* | 
|  | * Ensure that the cache lines associated with that completion are | 
|  | * written out.  This covers the case where _this_ CPU is doing the | 
|  | * powering down, to ensure that the completion is visible to the | 
|  | * CPU waiting for this one. | 
|  | */ | 
|  | flush_cache_louis(); | 
|  |  | 
|  | /* | 
|  | * The actual CPU shutdown procedure is at least platform (if not | 
|  | * CPU) specific.  This may remove power, or it may simply spin. | 
|  | * | 
|  | * Platforms are generally expected *NOT* to return from this call, | 
|  | * although there are some which do because they have no way to | 
|  | * power down the CPU.  These platforms are the _only_ reason we | 
|  | * have a return path which uses the fragment of assembly below. | 
|  | * | 
|  | * The return path should not be used for platforms which can | 
|  | * power off the CPU. | 
|  | */ | 
|  | if (smp_ops.cpu_die) | 
|  | smp_ops.cpu_die(cpu); | 
|  |  | 
|  | pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", | 
|  | cpu); | 
|  |  | 
|  | /* | 
|  | * Do not return to the idle loop - jump back to the secondary | 
|  | * cpu initialisation.  There's some initialisation which needs | 
|  | * to be repeated to undo the effects of taking the CPU offline. | 
|  | */ | 
|  | __asm__("mov	sp, %0\n" | 
|  | "	mov	fp, #0\n" | 
|  | "	mov	r0, %1\n" | 
|  | "	b	secondary_start_kernel" | 
|  | : | 
|  | : "r" (task_stack_page(current) + THREAD_SIZE - 8), | 
|  | "r" (current) | 
|  | : "r0"); | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * Called by both boot and secondaries to move global data into | 
|  | * per-processor storage. | 
|  | */ | 
|  | static void smp_store_cpu_info(unsigned int cpuid) | 
|  | { | 
|  | struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); | 
|  |  | 
|  | cpu_info->loops_per_jiffy = loops_per_jiffy; | 
|  | cpu_info->cpuid = read_cpuid_id(); | 
|  |  | 
|  | store_cpu_topology(cpuid); | 
|  | check_cpu_icache_size(cpuid); | 
|  | } | 
|  |  | 
|  | static void set_current(struct task_struct *cur) | 
|  | { | 
|  | /* Set TPIDRURO */ | 
|  | asm("mcr p15, 0, %0, c13, c0, 3" :: "r"(cur) : "memory"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the secondary CPU boot entry.  We're using this CPUs | 
|  | * idle thread stack, but a set of temporary page tables. | 
|  | */ | 
|  | asmlinkage void secondary_start_kernel(struct task_struct *task) | 
|  | { | 
|  | struct mm_struct *mm = &init_mm; | 
|  | unsigned int cpu; | 
|  |  | 
|  | set_current(task); | 
|  |  | 
|  | secondary_biglittle_init(); | 
|  |  | 
|  | /* | 
|  | * The identity mapping is uncached (strongly ordered), so | 
|  | * switch away from it before attempting any exclusive accesses. | 
|  | */ | 
|  | cpu_switch_mm(mm->pgd, mm); | 
|  | local_flush_bp_all(); | 
|  | enter_lazy_tlb(mm, current); | 
|  | local_flush_tlb_all(); | 
|  |  | 
|  | /* | 
|  | * All kernel threads share the same mm context; grab a | 
|  | * reference and switch to it. | 
|  | */ | 
|  | cpu = smp_processor_id(); | 
|  | mmgrab(mm); | 
|  | current->active_mm = mm; | 
|  | cpumask_set_cpu(cpu, mm_cpumask(mm)); | 
|  |  | 
|  | cpu_init(); | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | setup_vectors_base(); | 
|  | #endif | 
|  | pr_debug("CPU%u: Booted secondary processor\n", cpu); | 
|  |  | 
|  | trace_hardirqs_off(); | 
|  |  | 
|  | /* | 
|  | * Give the platform a chance to do its own initialisation. | 
|  | */ | 
|  | if (smp_ops.smp_secondary_init) | 
|  | smp_ops.smp_secondary_init(cpu); | 
|  |  | 
|  | notify_cpu_starting(cpu); | 
|  |  | 
|  | ipi_setup(cpu); | 
|  |  | 
|  | calibrate_delay(); | 
|  |  | 
|  | smp_store_cpu_info(cpu); | 
|  |  | 
|  | /* | 
|  | * OK, now it's safe to let the boot CPU continue.  Wait for | 
|  | * the CPU migration code to notice that the CPU is online | 
|  | * before we continue - which happens after __cpu_up returns. | 
|  | */ | 
|  | set_cpu_online(cpu, true); | 
|  |  | 
|  | check_other_bugs(); | 
|  |  | 
|  | complete(&cpu_running); | 
|  |  | 
|  | local_irq_enable(); | 
|  | local_fiq_enable(); | 
|  | local_abt_enable(); | 
|  |  | 
|  | /* | 
|  | * OK, it's off to the idle thread for us | 
|  | */ | 
|  | cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); | 
|  | } | 
|  |  | 
|  | void __init smp_cpus_done(unsigned int max_cpus) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long bogosum = 0; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; | 
|  |  | 
|  | printk(KERN_INFO "SMP: Total of %d processors activated " | 
|  | "(%lu.%02lu BogoMIPS).\n", | 
|  | num_online_cpus(), | 
|  | bogosum / (500000/HZ), | 
|  | (bogosum / (5000/HZ)) % 100); | 
|  |  | 
|  | hyp_mode_check(); | 
|  | } | 
|  |  | 
|  | void __init smp_prepare_boot_cpu(void) | 
|  | { | 
|  | set_my_cpu_offset(per_cpu_offset(smp_processor_id())); | 
|  | } | 
|  |  | 
|  | void __init smp_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | unsigned int ncores = num_possible_cpus(); | 
|  |  | 
|  | init_cpu_topology(); | 
|  |  | 
|  | smp_store_cpu_info(smp_processor_id()); | 
|  |  | 
|  | /* | 
|  | * are we trying to boot more cores than exist? | 
|  | */ | 
|  | if (max_cpus > ncores) | 
|  | max_cpus = ncores; | 
|  | if (ncores > 1 && max_cpus) { | 
|  | /* | 
|  | * Initialise the present map, which describes the set of CPUs | 
|  | * actually populated at the present time. A platform should | 
|  | * re-initialize the map in the platforms smp_prepare_cpus() | 
|  | * if present != possible (e.g. physical hotplug). | 
|  | */ | 
|  | init_cpu_present(cpu_possible_mask); | 
|  |  | 
|  | /* | 
|  | * Initialise the SCU if there are more than one CPU | 
|  | * and let them know where to start. | 
|  | */ | 
|  | if (smp_ops.smp_prepare_cpus) | 
|  | smp_ops.smp_prepare_cpus(max_cpus); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *ipi_types[NR_IPI] __tracepoint_string = { | 
|  | [IPI_WAKEUP]		= "CPU wakeup interrupts", | 
|  | [IPI_TIMER]		= "Timer broadcast interrupts", | 
|  | [IPI_RESCHEDULE]	= "Rescheduling interrupts", | 
|  | [IPI_CALL_FUNC]		= "Function call interrupts", | 
|  | [IPI_CPU_STOP]		= "CPU stop interrupts", | 
|  | [IPI_IRQ_WORK]		= "IRQ work interrupts", | 
|  | [IPI_COMPLETION]	= "completion interrupts", | 
|  | }; | 
|  |  | 
|  | static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); | 
|  |  | 
|  | void show_ipi_list(struct seq_file *p, int prec) | 
|  | { | 
|  | unsigned int cpu, i; | 
|  |  | 
|  | for (i = 0; i < NR_IPI; i++) { | 
|  | if (!ipi_desc[i]) | 
|  | continue; | 
|  |  | 
|  | seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); | 
|  |  | 
|  | seq_printf(p, " %s\n", ipi_types[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void arch_send_call_function_ipi_mask(const struct cpumask *mask) | 
|  | { | 
|  | smp_cross_call(mask, IPI_CALL_FUNC); | 
|  | } | 
|  |  | 
|  | void arch_send_wakeup_ipi_mask(const struct cpumask *mask) | 
|  | { | 
|  | smp_cross_call(mask, IPI_WAKEUP); | 
|  | } | 
|  |  | 
|  | void arch_send_call_function_single_ipi(int cpu) | 
|  | { | 
|  | smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IRQ_WORK | 
|  | void arch_irq_work_raise(void) | 
|  | { | 
|  | if (arch_irq_work_has_interrupt()) | 
|  | smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST | 
|  | void tick_broadcast(const struct cpumask *mask) | 
|  | { | 
|  | smp_cross_call(mask, IPI_TIMER); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static DEFINE_RAW_SPINLOCK(stop_lock); | 
|  |  | 
|  | /* | 
|  | * ipi_cpu_stop - handle IPI from smp_send_stop() | 
|  | */ | 
|  | static void ipi_cpu_stop(unsigned int cpu) | 
|  | { | 
|  | local_fiq_disable(); | 
|  |  | 
|  | if (system_state <= SYSTEM_RUNNING) { | 
|  | raw_spin_lock(&stop_lock); | 
|  | pr_crit("CPU%u: stopping\n", cpu); | 
|  | dump_stack(); | 
|  | raw_spin_unlock(&stop_lock); | 
|  | } | 
|  |  | 
|  | set_cpu_online(cpu, false); | 
|  |  | 
|  | while (1) { | 
|  | cpu_relax(); | 
|  | wfe(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(struct completion *, cpu_completion); | 
|  |  | 
|  | int register_ipi_completion(struct completion *completion, int cpu) | 
|  | { | 
|  | per_cpu(cpu_completion, cpu) = completion; | 
|  | return IPI_COMPLETION; | 
|  | } | 
|  |  | 
|  | static void ipi_complete(unsigned int cpu) | 
|  | { | 
|  | complete(per_cpu(cpu_completion, cpu)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Main handler for inter-processor interrupts | 
|  | */ | 
|  | static void do_handle_IPI(int ipinr) | 
|  | { | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | if ((unsigned)ipinr < NR_IPI) | 
|  | trace_ipi_entry(ipi_types[ipinr]); | 
|  |  | 
|  | switch (ipinr) { | 
|  | case IPI_WAKEUP: | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST | 
|  | case IPI_TIMER: | 
|  | tick_receive_broadcast(); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case IPI_RESCHEDULE: | 
|  | scheduler_ipi(); | 
|  | break; | 
|  |  | 
|  | case IPI_CALL_FUNC: | 
|  | generic_smp_call_function_interrupt(); | 
|  | break; | 
|  |  | 
|  | case IPI_CPU_STOP: | 
|  | ipi_cpu_stop(cpu); | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_IRQ_WORK | 
|  | case IPI_IRQ_WORK: | 
|  | irq_work_run(); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case IPI_COMPLETION: | 
|  | ipi_complete(cpu); | 
|  | break; | 
|  |  | 
|  | case IPI_CPU_BACKTRACE: | 
|  | printk_deferred_enter(); | 
|  | nmi_cpu_backtrace(get_irq_regs()); | 
|  | printk_deferred_exit(); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | pr_crit("CPU%u: Unknown IPI message 0x%x\n", | 
|  | cpu, ipinr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((unsigned)ipinr < NR_IPI) | 
|  | trace_ipi_exit(ipi_types[ipinr]); | 
|  | } | 
|  |  | 
|  | /* Legacy version, should go away once all irqchips have been converted */ | 
|  | void handle_IPI(int ipinr, struct pt_regs *regs) | 
|  | { | 
|  | struct pt_regs *old_regs = set_irq_regs(regs); | 
|  |  | 
|  | irq_enter(); | 
|  | do_handle_IPI(ipinr); | 
|  | irq_exit(); | 
|  |  | 
|  | set_irq_regs(old_regs); | 
|  | } | 
|  |  | 
|  | static irqreturn_t ipi_handler(int irq, void *data) | 
|  | { | 
|  | do_handle_IPI(irq - ipi_irq_base); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) | 
|  | { | 
|  | trace_ipi_raise(target, ipi_types[ipinr]); | 
|  | __ipi_send_mask(ipi_desc[ipinr], target); | 
|  | } | 
|  |  | 
|  | static void ipi_setup(int cpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (WARN_ON_ONCE(!ipi_irq_base)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < nr_ipi; i++) | 
|  | enable_percpu_irq(ipi_irq_base + i, 0); | 
|  | } | 
|  |  | 
|  | void __init set_smp_ipi_range(int ipi_base, int n) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | WARN_ON(n < MAX_IPI); | 
|  | nr_ipi = min(n, MAX_IPI); | 
|  |  | 
|  | for (i = 0; i < nr_ipi; i++) { | 
|  | int err; | 
|  |  | 
|  | err = request_percpu_irq(ipi_base + i, ipi_handler, | 
|  | "IPI", &irq_stat); | 
|  | WARN_ON(err); | 
|  |  | 
|  | ipi_desc[i] = irq_to_desc(ipi_base + i); | 
|  | irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); | 
|  | } | 
|  |  | 
|  | ipi_irq_base = ipi_base; | 
|  |  | 
|  | /* Setup the boot CPU immediately */ | 
|  | ipi_setup(smp_processor_id()); | 
|  | } | 
|  |  | 
|  | void smp_send_reschedule(int cpu) | 
|  | { | 
|  | smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); | 
|  | } | 
|  |  | 
|  | void smp_send_stop(void) | 
|  | { | 
|  | unsigned long timeout; | 
|  | struct cpumask mask; | 
|  |  | 
|  | cpumask_copy(&mask, cpu_online_mask); | 
|  | cpumask_clear_cpu(smp_processor_id(), &mask); | 
|  | if (!cpumask_empty(&mask)) | 
|  | smp_cross_call(&mask, IPI_CPU_STOP); | 
|  |  | 
|  | /* Wait up to one second for other CPUs to stop */ | 
|  | timeout = USEC_PER_SEC; | 
|  | while (num_online_cpus() > 1 && timeout--) | 
|  | udelay(1); | 
|  |  | 
|  | if (num_online_cpus() > 1) | 
|  | pr_warn("SMP: failed to stop secondary CPUs\n"); | 
|  | } | 
|  |  | 
|  | /* In case panic() and panic() called at the same time on CPU1 and CPU2, | 
|  | * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() | 
|  | * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, | 
|  | * kdump fails. So split out the panic_smp_self_stop() and add | 
|  | * set_cpu_online(smp_processor_id(), false). | 
|  | */ | 
|  | void panic_smp_self_stop(void) | 
|  | { | 
|  | pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", | 
|  | smp_processor_id()); | 
|  | set_cpu_online(smp_processor_id(), false); | 
|  | while (1) | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_FREQ | 
|  |  | 
|  | static DEFINE_PER_CPU(unsigned long, l_p_j_ref); | 
|  | static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); | 
|  | static unsigned long global_l_p_j_ref; | 
|  | static unsigned long global_l_p_j_ref_freq; | 
|  |  | 
|  | static int cpufreq_callback(struct notifier_block *nb, | 
|  | unsigned long val, void *data) | 
|  | { | 
|  | struct cpufreq_freqs *freq = data; | 
|  | struct cpumask *cpus = freq->policy->cpus; | 
|  | int cpu, first = cpumask_first(cpus); | 
|  | unsigned int lpj; | 
|  |  | 
|  | if (freq->flags & CPUFREQ_CONST_LOOPS) | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | if (!per_cpu(l_p_j_ref, first)) { | 
|  | for_each_cpu(cpu, cpus) { | 
|  | per_cpu(l_p_j_ref, cpu) = | 
|  | per_cpu(cpu_data, cpu).loops_per_jiffy; | 
|  | per_cpu(l_p_j_ref_freq, cpu) = freq->old; | 
|  | } | 
|  |  | 
|  | if (!global_l_p_j_ref) { | 
|  | global_l_p_j_ref = loops_per_jiffy; | 
|  | global_l_p_j_ref_freq = freq->old; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) || | 
|  | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { | 
|  | loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, | 
|  | global_l_p_j_ref_freq, | 
|  | freq->new); | 
|  |  | 
|  | lpj = cpufreq_scale(per_cpu(l_p_j_ref, first), | 
|  | per_cpu(l_p_j_ref_freq, first), freq->new); | 
|  | for_each_cpu(cpu, cpus) | 
|  | per_cpu(cpu_data, cpu).loops_per_jiffy = lpj; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block cpufreq_notifier = { | 
|  | .notifier_call  = cpufreq_callback, | 
|  | }; | 
|  |  | 
|  | static int __init register_cpufreq_notifier(void) | 
|  | { | 
|  | return cpufreq_register_notifier(&cpufreq_notifier, | 
|  | CPUFREQ_TRANSITION_NOTIFIER); | 
|  | } | 
|  | core_initcall(register_cpufreq_notifier); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void raise_nmi(cpumask_t *mask) | 
|  | { | 
|  | __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask); | 
|  | } | 
|  |  | 
|  | void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) | 
|  | { | 
|  | nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); | 
|  | } |