|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | *	x86 SMP booting functions | 
|  | * | 
|  | *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk> | 
|  | *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> | 
|  | *	Copyright 2001 Andi Kleen, SuSE Labs. | 
|  | * | 
|  | *	Much of the core SMP work is based on previous work by Thomas Radke, to | 
|  | *	whom a great many thanks are extended. | 
|  | * | 
|  | *	Thanks to Intel for making available several different Pentium, | 
|  | *	Pentium Pro and Pentium-II/Xeon MP machines. | 
|  | *	Original development of Linux SMP code supported by Caldera. | 
|  | * | 
|  | *	Fixes | 
|  | *		Felix Koop	:	NR_CPUS used properly | 
|  | *		Jose Renau	:	Handle single CPU case. | 
|  | *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report. | 
|  | *		Greg Wright	:	Fix for kernel stacks panic. | 
|  | *		Erich Boleyn	:	MP v1.4 and additional changes. | 
|  | *	Matthias Sattler	:	Changes for 2.1 kernel map. | 
|  | *	Michel Lespinasse	:	Changes for 2.1 kernel map. | 
|  | *	Michael Chastain	:	Change trampoline.S to gnu as. | 
|  | *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine | 
|  | *		Ingo Molnar	:	Added APIC timers, based on code | 
|  | *					from Jose Renau | 
|  | *		Ingo Molnar	:	various cleanups and rewrites | 
|  | *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug. | 
|  | *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs | 
|  | *	Andi Kleen		:	Changed for SMP boot into long mode. | 
|  | *		Martin J. Bligh	: 	Added support for multi-quad systems | 
|  | *		Dave Jones	:	Report invalid combinations of Athlon CPUs. | 
|  | *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process. | 
|  | *      Andi Kleen              :       Converted to new state machine. | 
|  | *	Ashok Raj		: 	CPU hotplug support | 
|  | *	Glauber Costa		:	i386 and x86_64 integration | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/topology.h> | 
|  | #include <linux/sched/hotplug.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/tboot.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/cpuidle.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/pgtable.h> | 
|  | #include <linux/overflow.h> | 
|  | #include <linux/stackprotector.h> | 
|  |  | 
|  | #include <asm/acpi.h> | 
|  | #include <asm/cacheinfo.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/nmi.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/realmode.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/mtrr.h> | 
|  | #include <asm/mwait.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/io_apic.h> | 
|  | #include <asm/fpu/api.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/uv/uv.h> | 
|  | #include <linux/mc146818rtc.h> | 
|  | #include <asm/i8259.h> | 
|  | #include <asm/misc.h> | 
|  | #include <asm/qspinlock.h> | 
|  | #include <asm/intel-family.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  | #include <asm/spec-ctrl.h> | 
|  | #include <asm/hw_irq.h> | 
|  | #include <asm/stackprotector.h> | 
|  | #include <asm/sev.h> | 
|  |  | 
|  | /* representing HT siblings of each logical CPU */ | 
|  | DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); | 
|  |  | 
|  | /* representing HT and core siblings of each logical CPU */ | 
|  | DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_core_map); | 
|  |  | 
|  | /* representing HT, core, and die siblings of each logical CPU */ | 
|  | DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_die_map); | 
|  |  | 
|  | /* Per CPU bogomips and other parameters */ | 
|  | DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_info); | 
|  |  | 
|  | struct mwait_cpu_dead { | 
|  | unsigned int	control; | 
|  | unsigned int	status; | 
|  | }; | 
|  |  | 
|  | #define CPUDEAD_MWAIT_WAIT	0xDEADBEEF | 
|  | #define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD | 
|  |  | 
|  | /* | 
|  | * Cache line aligned data for mwait_play_dead(). Separate on purpose so | 
|  | * that it's unlikely to be touched by other CPUs. | 
|  | */ | 
|  | static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead); | 
|  |  | 
|  | /* Logical package management. We might want to allocate that dynamically */ | 
|  | unsigned int __max_logical_packages __read_mostly; | 
|  | EXPORT_SYMBOL(__max_logical_packages); | 
|  | static unsigned int logical_packages __read_mostly; | 
|  | static unsigned int logical_die __read_mostly; | 
|  |  | 
|  | /* Maximum number of SMT threads on any online core */ | 
|  | int __read_mostly __max_smt_threads = 1; | 
|  |  | 
|  | /* Flag to indicate if a complete sched domain rebuild is required */ | 
|  | bool x86_topology_update; | 
|  |  | 
|  | int arch_update_cpu_topology(void) | 
|  | { | 
|  | int retval = x86_topology_update; | 
|  |  | 
|  | x86_topology_update = false; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | CMOS_WRITE(0xa, 0xf); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = | 
|  | start_eip >> 4; | 
|  | *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = | 
|  | start_eip & 0xf; | 
|  | } | 
|  |  | 
|  | static inline void smpboot_restore_warm_reset_vector(void) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Paranoid:  Set warm reset code and vector here back | 
|  | * to default values. | 
|  | */ | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | CMOS_WRITE(0, 0xf); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  |  | 
|  | *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Report back to the Boot Processor during boot time or to the caller processor | 
|  | * during CPU online. | 
|  | */ | 
|  | static void smp_callin(void) | 
|  | { | 
|  | int cpuid; | 
|  |  | 
|  | /* Mop up eventual mwait_play_dead() wreckage */ | 
|  | this_cpu_write(mwait_cpu_dead.status, 0); | 
|  | this_cpu_write(mwait_cpu_dead.control, 0); | 
|  |  | 
|  | /* | 
|  | * If waken up by an INIT in an 82489DX configuration | 
|  | * cpu_callout_mask guarantees we don't get here before | 
|  | * an INIT_deassert IPI reaches our local APIC, so it is | 
|  | * now safe to touch our local APIC. | 
|  | */ | 
|  | cpuid = smp_processor_id(); | 
|  |  | 
|  | /* | 
|  | * the boot CPU has finished the init stage and is spinning | 
|  | * on callin_map until we finish. We are free to set up this | 
|  | * CPU, first the APIC. (this is probably redundant on most | 
|  | * boards) | 
|  | */ | 
|  | apic_ap_setup(); | 
|  |  | 
|  | /* | 
|  | * Save our processor parameters. Note: this information | 
|  | * is needed for clock calibration. | 
|  | */ | 
|  | smp_store_cpu_info(cpuid); | 
|  |  | 
|  | /* | 
|  | * The topology information must be up to date before | 
|  | * calibrate_delay() and notify_cpu_starting(). | 
|  | */ | 
|  | set_cpu_sibling_map(raw_smp_processor_id()); | 
|  |  | 
|  | ap_init_aperfmperf(); | 
|  |  | 
|  | /* | 
|  | * Get our bogomips. | 
|  | * Update loops_per_jiffy in cpu_data. Previous call to | 
|  | * smp_store_cpu_info() stored a value that is close but not as | 
|  | * accurate as the value just calculated. | 
|  | */ | 
|  | calibrate_delay(); | 
|  | cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy; | 
|  | pr_debug("Stack at about %p\n", &cpuid); | 
|  |  | 
|  | wmb(); | 
|  |  | 
|  | notify_cpu_starting(cpuid); | 
|  |  | 
|  | /* | 
|  | * Allow the master to continue. | 
|  | */ | 
|  | cpumask_set_cpu(cpuid, cpu_callin_mask); | 
|  | } | 
|  |  | 
|  | static int cpu0_logical_apicid; | 
|  | static int enable_start_cpu0; | 
|  | /* | 
|  | * Activate a secondary processor. | 
|  | */ | 
|  | static void notrace start_secondary(void *unused) | 
|  | { | 
|  | /* | 
|  | * Don't put *anything* except direct CPU state initialization | 
|  | * before cpu_init(), SMP booting is too fragile that we want to | 
|  | * limit the things done here to the most necessary things. | 
|  | */ | 
|  | cr4_init(); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* switch away from the initial page table */ | 
|  | load_cr3(swapper_pg_dir); | 
|  | __flush_tlb_all(); | 
|  | #endif | 
|  | cpu_init_secondary(); | 
|  | rcu_cpu_starting(raw_smp_processor_id()); | 
|  | x86_cpuinit.early_percpu_clock_init(); | 
|  | smp_callin(); | 
|  |  | 
|  | enable_start_cpu0 = 0; | 
|  |  | 
|  | /* otherwise gcc will move up smp_processor_id before the cpu_init */ | 
|  | barrier(); | 
|  | /* | 
|  | * Check TSC synchronization with the boot CPU: | 
|  | */ | 
|  | check_tsc_sync_target(); | 
|  |  | 
|  | speculative_store_bypass_ht_init(); | 
|  |  | 
|  | /* | 
|  | * Lock vector_lock, set CPU online and bring the vector | 
|  | * allocator online. Online must be set with vector_lock held | 
|  | * to prevent a concurrent irq setup/teardown from seeing a | 
|  | * half valid vector space. | 
|  | */ | 
|  | lock_vector_lock(); | 
|  | set_cpu_online(smp_processor_id(), true); | 
|  | lapic_online(); | 
|  | unlock_vector_lock(); | 
|  | cpu_set_state_online(smp_processor_id()); | 
|  | x86_platform.nmi_init(); | 
|  |  | 
|  | /* enable local interrupts */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | x86_cpuinit.setup_percpu_clockev(); | 
|  |  | 
|  | wmb(); | 
|  | cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * topology_is_primary_thread - Check whether CPU is the primary SMT thread | 
|  | * @cpu:	CPU to check | 
|  | */ | 
|  | bool topology_is_primary_thread(unsigned int cpu) | 
|  | { | 
|  | return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * topology_smt_supported - Check whether SMT is supported by the CPUs | 
|  | */ | 
|  | bool topology_smt_supported(void) | 
|  | { | 
|  | return smp_num_siblings > 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * topology_phys_to_logical_pkg - Map a physical package id to a logical | 
|  | * | 
|  | * Returns logical package id or -1 if not found | 
|  | */ | 
|  | int topology_phys_to_logical_pkg(unsigned int phys_pkg) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct cpuinfo_x86 *c = &cpu_data(cpu); | 
|  |  | 
|  | if (c->initialized && c->phys_proc_id == phys_pkg) | 
|  | return c->logical_proc_id; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  | EXPORT_SYMBOL(topology_phys_to_logical_pkg); | 
|  | /** | 
|  | * topology_phys_to_logical_die - Map a physical die id to logical | 
|  | * | 
|  | * Returns logical die id or -1 if not found | 
|  | */ | 
|  | int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu) | 
|  | { | 
|  | int cpu; | 
|  | int proc_id = cpu_data(cur_cpu).phys_proc_id; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct cpuinfo_x86 *c = &cpu_data(cpu); | 
|  |  | 
|  | if (c->initialized && c->cpu_die_id == die_id && | 
|  | c->phys_proc_id == proc_id) | 
|  | return c->logical_die_id; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  | EXPORT_SYMBOL(topology_phys_to_logical_die); | 
|  |  | 
|  | /** | 
|  | * topology_update_package_map - Update the physical to logical package map | 
|  | * @pkg:	The physical package id as retrieved via CPUID | 
|  | * @cpu:	The cpu for which this is updated | 
|  | */ | 
|  | int topology_update_package_map(unsigned int pkg, unsigned int cpu) | 
|  | { | 
|  | int new; | 
|  |  | 
|  | /* Already available somewhere? */ | 
|  | new = topology_phys_to_logical_pkg(pkg); | 
|  | if (new >= 0) | 
|  | goto found; | 
|  |  | 
|  | new = logical_packages++; | 
|  | if (new != pkg) { | 
|  | pr_info("CPU %u Converting physical %u to logical package %u\n", | 
|  | cpu, pkg, new); | 
|  | } | 
|  | found: | 
|  | cpu_data(cpu).logical_proc_id = new; | 
|  | return 0; | 
|  | } | 
|  | /** | 
|  | * topology_update_die_map - Update the physical to logical die map | 
|  | * @die:	The die id as retrieved via CPUID | 
|  | * @cpu:	The cpu for which this is updated | 
|  | */ | 
|  | int topology_update_die_map(unsigned int die, unsigned int cpu) | 
|  | { | 
|  | int new; | 
|  |  | 
|  | /* Already available somewhere? */ | 
|  | new = topology_phys_to_logical_die(die, cpu); | 
|  | if (new >= 0) | 
|  | goto found; | 
|  |  | 
|  | new = logical_die++; | 
|  | if (new != die) { | 
|  | pr_info("CPU %u Converting physical %u to logical die %u\n", | 
|  | cpu, die, new); | 
|  | } | 
|  | found: | 
|  | cpu_data(cpu).logical_die_id = new; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init smp_store_boot_cpu_info(void) | 
|  | { | 
|  | int id = 0; /* CPU 0 */ | 
|  | struct cpuinfo_x86 *c = &cpu_data(id); | 
|  |  | 
|  | *c = boot_cpu_data; | 
|  | c->cpu_index = id; | 
|  | topology_update_package_map(c->phys_proc_id, id); | 
|  | topology_update_die_map(c->cpu_die_id, id); | 
|  | c->initialized = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The bootstrap kernel entry code has set these up. Save them for | 
|  | * a given CPU | 
|  | */ | 
|  | void smp_store_cpu_info(int id) | 
|  | { | 
|  | struct cpuinfo_x86 *c = &cpu_data(id); | 
|  |  | 
|  | /* Copy boot_cpu_data only on the first bringup */ | 
|  | if (!c->initialized) | 
|  | *c = boot_cpu_data; | 
|  | c->cpu_index = id; | 
|  | /* | 
|  | * During boot time, CPU0 has this setup already. Save the info when | 
|  | * bringing up AP or offlined CPU0. | 
|  | */ | 
|  | identify_secondary_cpu(c); | 
|  | c->initialized = true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) | 
|  | { | 
|  | int cpu1 = c->cpu_index, cpu2 = o->cpu_index; | 
|  |  | 
|  | return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) | 
|  | { | 
|  | int cpu1 = c->cpu_index, cpu2 = o->cpu_index; | 
|  |  | 
|  | return !WARN_ONCE(!topology_same_node(c, o), | 
|  | "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " | 
|  | "[node: %d != %d]. Ignoring dependency.\n", | 
|  | cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); | 
|  | } | 
|  |  | 
|  | #define link_mask(mfunc, c1, c2)					\ | 
|  | do {									\ | 
|  | cpumask_set_cpu((c1), mfunc(c2));				\ | 
|  | cpumask_set_cpu((c2), mfunc(c1));				\ | 
|  | } while (0) | 
|  |  | 
|  | static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) | 
|  | { | 
|  | if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { | 
|  | int cpu1 = c->cpu_index, cpu2 = o->cpu_index; | 
|  |  | 
|  | if (c->phys_proc_id == o->phys_proc_id && | 
|  | c->cpu_die_id == o->cpu_die_id && | 
|  | per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) { | 
|  | if (c->cpu_core_id == o->cpu_core_id) | 
|  | return topology_sane(c, o, "smt"); | 
|  |  | 
|  | if ((c->cu_id != 0xff) && | 
|  | (o->cu_id != 0xff) && | 
|  | (c->cu_id == o->cu_id)) | 
|  | return topology_sane(c, o, "smt"); | 
|  | } | 
|  |  | 
|  | } else if (c->phys_proc_id == o->phys_proc_id && | 
|  | c->cpu_die_id == o->cpu_die_id && | 
|  | c->cpu_core_id == o->cpu_core_id) { | 
|  | return topology_sane(c, o, "smt"); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) | 
|  | { | 
|  | if (c->phys_proc_id == o->phys_proc_id && | 
|  | c->cpu_die_id == o->cpu_die_id) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) | 
|  | { | 
|  | int cpu1 = c->cpu_index, cpu2 = o->cpu_index; | 
|  |  | 
|  | /* If the arch didn't set up l2c_id, fall back to SMT */ | 
|  | if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID) | 
|  | return match_smt(c, o); | 
|  |  | 
|  | /* Do not match if L2 cache id does not match: */ | 
|  | if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2)) | 
|  | return false; | 
|  |  | 
|  | return topology_sane(c, o, "l2c"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlike the other levels, we do not enforce keeping a | 
|  | * multicore group inside a NUMA node.  If this happens, we will | 
|  | * discard the MC level of the topology later. | 
|  | */ | 
|  | static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) | 
|  | { | 
|  | if (c->phys_proc_id == o->phys_proc_id) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs. | 
|  | * | 
|  | * Any Intel CPU that has multiple nodes per package and does not | 
|  | * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology. | 
|  | * | 
|  | * When in SNC mode, these CPUs enumerate an LLC that is shared | 
|  | * by multiple NUMA nodes. The LLC is shared for off-package data | 
|  | * access but private to the NUMA node (half of the package) for | 
|  | * on-package access. CPUID (the source of the information about | 
|  | * the LLC) can only enumerate the cache as shared or unshared, | 
|  | * but not this particular configuration. | 
|  | */ | 
|  |  | 
|  | static const struct x86_cpu_id intel_cod_cpu[] = { | 
|  | X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */ | 
|  | X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */ | 
|  | X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */ | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) | 
|  | { | 
|  | const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu); | 
|  | int cpu1 = c->cpu_index, cpu2 = o->cpu_index; | 
|  | bool intel_snc = id && id->driver_data; | 
|  |  | 
|  | /* Do not match if we do not have a valid APICID for cpu: */ | 
|  | if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID) | 
|  | return false; | 
|  |  | 
|  | /* Do not match if LLC id does not match: */ | 
|  | if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Allow the SNC topology without warning. Return of false | 
|  | * means 'c' does not share the LLC of 'o'. This will be | 
|  | * reflected to userspace. | 
|  | */ | 
|  | if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc) | 
|  | return false; | 
|  |  | 
|  | return topology_sane(c, o, "llc"); | 
|  | } | 
|  |  | 
|  |  | 
|  | #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC) | 
|  | static inline int x86_sched_itmt_flags(void) | 
|  | { | 
|  | return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | static int x86_core_flags(void) | 
|  | { | 
|  | return cpu_core_flags() | x86_sched_itmt_flags(); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | static int x86_smt_flags(void) | 
|  | { | 
|  | return cpu_smt_flags() | x86_sched_itmt_flags(); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_CLUSTER | 
|  | static int x86_cluster_flags(void) | 
|  | { | 
|  | return cpu_cluster_flags() | x86_sched_itmt_flags(); | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | static struct sched_domain_topology_level x86_numa_in_package_topology[] = { | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_CLUSTER | 
|  | { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) }, | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, | 
|  | #endif | 
|  | { NULL, }, | 
|  | }; | 
|  |  | 
|  | static struct sched_domain_topology_level x86_hybrid_topology[] = { | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, | 
|  | #endif | 
|  | { cpu_cpu_mask, SD_INIT_NAME(DIE) }, | 
|  | { NULL, }, | 
|  | }; | 
|  |  | 
|  | static struct sched_domain_topology_level x86_topology[] = { | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_CLUSTER | 
|  | { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) }, | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, | 
|  | #endif | 
|  | { cpu_cpu_mask, SD_INIT_NAME(DIE) }, | 
|  | { NULL, }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Set if a package/die has multiple NUMA nodes inside. | 
|  | * AMD Magny-Cours, Intel Cluster-on-Die, and Intel | 
|  | * Sub-NUMA Clustering have this. | 
|  | */ | 
|  | static bool x86_has_numa_in_package; | 
|  |  | 
|  | void set_cpu_sibling_map(int cpu) | 
|  | { | 
|  | bool has_smt = smp_num_siblings > 1; | 
|  | bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1; | 
|  | struct cpuinfo_x86 *c = &cpu_data(cpu); | 
|  | struct cpuinfo_x86 *o; | 
|  | int i, threads; | 
|  |  | 
|  | cpumask_set_cpu(cpu, cpu_sibling_setup_mask); | 
|  |  | 
|  | if (!has_mp) { | 
|  | cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); | 
|  | cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); | 
|  | cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu)); | 
|  | cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); | 
|  | cpumask_set_cpu(cpu, topology_die_cpumask(cpu)); | 
|  | c->booted_cores = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | for_each_cpu(i, cpu_sibling_setup_mask) { | 
|  | o = &cpu_data(i); | 
|  |  | 
|  | if (match_pkg(c, o) && !topology_same_node(c, o)) | 
|  | x86_has_numa_in_package = true; | 
|  |  | 
|  | if ((i == cpu) || (has_smt && match_smt(c, o))) | 
|  | link_mask(topology_sibling_cpumask, cpu, i); | 
|  |  | 
|  | if ((i == cpu) || (has_mp && match_llc(c, o))) | 
|  | link_mask(cpu_llc_shared_mask, cpu, i); | 
|  |  | 
|  | if ((i == cpu) || (has_mp && match_l2c(c, o))) | 
|  | link_mask(cpu_l2c_shared_mask, cpu, i); | 
|  |  | 
|  | if ((i == cpu) || (has_mp && match_die(c, o))) | 
|  | link_mask(topology_die_cpumask, cpu, i); | 
|  | } | 
|  |  | 
|  | threads = cpumask_weight(topology_sibling_cpumask(cpu)); | 
|  | if (threads > __max_smt_threads) | 
|  | __max_smt_threads = threads; | 
|  |  | 
|  | for_each_cpu(i, topology_sibling_cpumask(cpu)) | 
|  | cpu_data(i).smt_active = threads > 1; | 
|  |  | 
|  | /* | 
|  | * This needs a separate iteration over the cpus because we rely on all | 
|  | * topology_sibling_cpumask links to be set-up. | 
|  | */ | 
|  | for_each_cpu(i, cpu_sibling_setup_mask) { | 
|  | o = &cpu_data(i); | 
|  |  | 
|  | if ((i == cpu) || (has_mp && match_pkg(c, o))) { | 
|  | link_mask(topology_core_cpumask, cpu, i); | 
|  |  | 
|  | /* | 
|  | *  Does this new cpu bringup a new core? | 
|  | */ | 
|  | if (threads == 1) { | 
|  | /* | 
|  | * for each core in package, increment | 
|  | * the booted_cores for this new cpu | 
|  | */ | 
|  | if (cpumask_first( | 
|  | topology_sibling_cpumask(i)) == i) | 
|  | c->booted_cores++; | 
|  | /* | 
|  | * increment the core count for all | 
|  | * the other cpus in this package | 
|  | */ | 
|  | if (i != cpu) | 
|  | cpu_data(i).booted_cores++; | 
|  | } else if (i != cpu && !c->booted_cores) | 
|  | c->booted_cores = cpu_data(i).booted_cores; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* maps the cpu to the sched domain representing multi-core */ | 
|  | const struct cpumask *cpu_coregroup_mask(int cpu) | 
|  | { | 
|  | return cpu_llc_shared_mask(cpu); | 
|  | } | 
|  |  | 
|  | const struct cpumask *cpu_clustergroup_mask(int cpu) | 
|  | { | 
|  | return cpu_l2c_shared_mask(cpu); | 
|  | } | 
|  |  | 
|  | static void impress_friends(void) | 
|  | { | 
|  | int cpu; | 
|  | unsigned long bogosum = 0; | 
|  | /* | 
|  | * Allow the user to impress friends. | 
|  | */ | 
|  | pr_debug("Before bogomips\n"); | 
|  | for_each_possible_cpu(cpu) | 
|  | if (cpumask_test_cpu(cpu, cpu_callout_mask)) | 
|  | bogosum += cpu_data(cpu).loops_per_jiffy; | 
|  | pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", | 
|  | num_online_cpus(), | 
|  | bogosum/(500000/HZ), | 
|  | (bogosum/(5000/HZ))%100); | 
|  |  | 
|  | pr_debug("Before bogocount - setting activated=1\n"); | 
|  | } | 
|  |  | 
|  | void __inquire_remote_apic(int apicid) | 
|  | { | 
|  | unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; | 
|  | const char * const names[] = { "ID", "VERSION", "SPIV" }; | 
|  | int timeout; | 
|  | u32 status; | 
|  |  | 
|  | pr_info("Inquiring remote APIC 0x%x...\n", apicid); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(regs); i++) { | 
|  | pr_info("... APIC 0x%x %s: ", apicid, names[i]); | 
|  |  | 
|  | /* | 
|  | * Wait for idle. | 
|  | */ | 
|  | status = safe_apic_wait_icr_idle(); | 
|  | if (status) | 
|  | pr_cont("a previous APIC delivery may have failed\n"); | 
|  |  | 
|  | apic_icr_write(APIC_DM_REMRD | regs[i], apicid); | 
|  |  | 
|  | timeout = 0; | 
|  | do { | 
|  | udelay(100); | 
|  | status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; | 
|  | } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); | 
|  |  | 
|  | switch (status) { | 
|  | case APIC_ICR_RR_VALID: | 
|  | status = apic_read(APIC_RRR); | 
|  | pr_cont("%08x\n", status); | 
|  | break; | 
|  | default: | 
|  | pr_cont("failed\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The Multiprocessor Specification 1.4 (1997) example code suggests | 
|  | * that there should be a 10ms delay between the BSP asserting INIT | 
|  | * and de-asserting INIT, when starting a remote processor. | 
|  | * But that slows boot and resume on modern processors, which include | 
|  | * many cores and don't require that delay. | 
|  | * | 
|  | * Cmdline "init_cpu_udelay=" is available to over-ride this delay. | 
|  | * Modern processor families are quirked to remove the delay entirely. | 
|  | */ | 
|  | #define UDELAY_10MS_DEFAULT 10000 | 
|  |  | 
|  | static unsigned int init_udelay = UINT_MAX; | 
|  |  | 
|  | static int __init cpu_init_udelay(char *str) | 
|  | { | 
|  | get_option(&str, &init_udelay); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("cpu_init_udelay", cpu_init_udelay); | 
|  |  | 
|  | static void __init smp_quirk_init_udelay(void) | 
|  | { | 
|  | /* if cmdline changed it from default, leave it alone */ | 
|  | if (init_udelay != UINT_MAX) | 
|  | return; | 
|  |  | 
|  | /* if modern processor, use no delay */ | 
|  | if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || | 
|  | ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) || | 
|  | ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { | 
|  | init_udelay = 0; | 
|  | return; | 
|  | } | 
|  | /* else, use legacy delay */ | 
|  | init_udelay = UDELAY_10MS_DEFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal | 
|  | * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this | 
|  | * won't ... remember to clear down the APIC, etc later. | 
|  | */ | 
|  | int | 
|  | wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip) | 
|  | { | 
|  | u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; | 
|  | unsigned long send_status, accept_status = 0; | 
|  | int maxlvt; | 
|  |  | 
|  | /* Target chip */ | 
|  | /* Boot on the stack */ | 
|  | /* Kick the second */ | 
|  | apic_icr_write(APIC_DM_NMI | dm, apicid); | 
|  |  | 
|  | pr_debug("Waiting for send to finish...\n"); | 
|  | send_status = safe_apic_wait_icr_idle(); | 
|  |  | 
|  | /* | 
|  | * Give the other CPU some time to accept the IPI. | 
|  | */ | 
|  | udelay(200); | 
|  | if (APIC_INTEGRATED(boot_cpu_apic_version)) { | 
|  | maxlvt = lapic_get_maxlvt(); | 
|  | if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */ | 
|  | apic_write(APIC_ESR, 0); | 
|  | accept_status = (apic_read(APIC_ESR) & 0xEF); | 
|  | } | 
|  | pr_debug("NMI sent\n"); | 
|  |  | 
|  | if (send_status) | 
|  | pr_err("APIC never delivered???\n"); | 
|  | if (accept_status) | 
|  | pr_err("APIC delivery error (%lx)\n", accept_status); | 
|  |  | 
|  | return (send_status | accept_status); | 
|  | } | 
|  |  | 
|  | static int | 
|  | wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip) | 
|  | { | 
|  | unsigned long send_status = 0, accept_status = 0; | 
|  | int maxlvt, num_starts, j; | 
|  |  | 
|  | maxlvt = lapic_get_maxlvt(); | 
|  |  | 
|  | /* | 
|  | * Be paranoid about clearing APIC errors. | 
|  | */ | 
|  | if (APIC_INTEGRATED(boot_cpu_apic_version)) { | 
|  | if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */ | 
|  | apic_write(APIC_ESR, 0); | 
|  | apic_read(APIC_ESR); | 
|  | } | 
|  |  | 
|  | pr_debug("Asserting INIT\n"); | 
|  |  | 
|  | /* | 
|  | * Turn INIT on target chip | 
|  | */ | 
|  | /* | 
|  | * Send IPI | 
|  | */ | 
|  | apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, | 
|  | phys_apicid); | 
|  |  | 
|  | pr_debug("Waiting for send to finish...\n"); | 
|  | send_status = safe_apic_wait_icr_idle(); | 
|  |  | 
|  | udelay(init_udelay); | 
|  |  | 
|  | pr_debug("Deasserting INIT\n"); | 
|  |  | 
|  | /* Target chip */ | 
|  | /* Send IPI */ | 
|  | apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); | 
|  |  | 
|  | pr_debug("Waiting for send to finish...\n"); | 
|  | send_status = safe_apic_wait_icr_idle(); | 
|  |  | 
|  | mb(); | 
|  |  | 
|  | /* | 
|  | * Should we send STARTUP IPIs ? | 
|  | * | 
|  | * Determine this based on the APIC version. | 
|  | * If we don't have an integrated APIC, don't send the STARTUP IPIs. | 
|  | */ | 
|  | if (APIC_INTEGRATED(boot_cpu_apic_version)) | 
|  | num_starts = 2; | 
|  | else | 
|  | num_starts = 0; | 
|  |  | 
|  | /* | 
|  | * Run STARTUP IPI loop. | 
|  | */ | 
|  | pr_debug("#startup loops: %d\n", num_starts); | 
|  |  | 
|  | for (j = 1; j <= num_starts; j++) { | 
|  | pr_debug("Sending STARTUP #%d\n", j); | 
|  | if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */ | 
|  | apic_write(APIC_ESR, 0); | 
|  | apic_read(APIC_ESR); | 
|  | pr_debug("After apic_write\n"); | 
|  |  | 
|  | /* | 
|  | * STARTUP IPI | 
|  | */ | 
|  |  | 
|  | /* Target chip */ | 
|  | /* Boot on the stack */ | 
|  | /* Kick the second */ | 
|  | apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), | 
|  | phys_apicid); | 
|  |  | 
|  | /* | 
|  | * Give the other CPU some time to accept the IPI. | 
|  | */ | 
|  | if (init_udelay == 0) | 
|  | udelay(10); | 
|  | else | 
|  | udelay(300); | 
|  |  | 
|  | pr_debug("Startup point 1\n"); | 
|  |  | 
|  | pr_debug("Waiting for send to finish...\n"); | 
|  | send_status = safe_apic_wait_icr_idle(); | 
|  |  | 
|  | /* | 
|  | * Give the other CPU some time to accept the IPI. | 
|  | */ | 
|  | if (init_udelay == 0) | 
|  | udelay(10); | 
|  | else | 
|  | udelay(200); | 
|  |  | 
|  | if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */ | 
|  | apic_write(APIC_ESR, 0); | 
|  | accept_status = (apic_read(APIC_ESR) & 0xEF); | 
|  | if (send_status || accept_status) | 
|  | break; | 
|  | } | 
|  | pr_debug("After Startup\n"); | 
|  |  | 
|  | if (send_status) | 
|  | pr_err("APIC never delivered???\n"); | 
|  | if (accept_status) | 
|  | pr_err("APIC delivery error (%lx)\n", accept_status); | 
|  |  | 
|  | return (send_status | accept_status); | 
|  | } | 
|  |  | 
|  | /* reduce the number of lines printed when booting a large cpu count system */ | 
|  | static void announce_cpu(int cpu, int apicid) | 
|  | { | 
|  | static int current_node = NUMA_NO_NODE; | 
|  | int node = early_cpu_to_node(cpu); | 
|  | static int width, node_width; | 
|  |  | 
|  | if (!width) | 
|  | width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ | 
|  |  | 
|  | if (!node_width) | 
|  | node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ | 
|  |  | 
|  | if (cpu == 1) | 
|  | printk(KERN_INFO "x86: Booting SMP configuration:\n"); | 
|  |  | 
|  | if (system_state < SYSTEM_RUNNING) { | 
|  | if (node != current_node) { | 
|  | if (current_node > (-1)) | 
|  | pr_cont("\n"); | 
|  | current_node = node; | 
|  |  | 
|  | printk(KERN_INFO ".... node %*s#%d, CPUs:  ", | 
|  | node_width - num_digits(node), " ", node); | 
|  | } | 
|  |  | 
|  | /* Add padding for the BSP */ | 
|  | if (cpu == 1) | 
|  | pr_cont("%*s", width + 1, " "); | 
|  |  | 
|  | pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); | 
|  |  | 
|  | } else | 
|  | pr_info("Booting Node %d Processor %d APIC 0x%x\n", | 
|  | node, cpu, apicid); | 
|  | } | 
|  |  | 
|  | static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0) | 
|  | return NMI_HANDLED; | 
|  |  | 
|  | return NMI_DONE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up AP by INIT, INIT, STARTUP sequence. | 
|  | * | 
|  | * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS | 
|  | * boot-strap code which is not a desired behavior for waking up BSP. To | 
|  | * void the boot-strap code, wake up CPU0 by NMI instead. | 
|  | * | 
|  | * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined | 
|  | * (i.e. physically hot removed and then hot added), NMI won't wake it up. | 
|  | * We'll change this code in the future to wake up hard offlined CPU0 if | 
|  | * real platform and request are available. | 
|  | */ | 
|  | static int | 
|  | wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid, | 
|  | int *cpu0_nmi_registered) | 
|  | { | 
|  | int id; | 
|  | int boot_error; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | /* | 
|  | * Wake up AP by INIT, INIT, STARTUP sequence. | 
|  | */ | 
|  | if (cpu) { | 
|  | boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up BSP by nmi. | 
|  | * | 
|  | * Register a NMI handler to help wake up CPU0. | 
|  | */ | 
|  | boot_error = register_nmi_handler(NMI_LOCAL, | 
|  | wakeup_cpu0_nmi, 0, "wake_cpu0"); | 
|  |  | 
|  | if (!boot_error) { | 
|  | enable_start_cpu0 = 1; | 
|  | *cpu0_nmi_registered = 1; | 
|  | id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid; | 
|  | boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip); | 
|  | } | 
|  |  | 
|  | out: | 
|  | preempt_enable(); | 
|  |  | 
|  | return boot_error; | 
|  | } | 
|  |  | 
|  | int common_cpu_up(unsigned int cpu, struct task_struct *idle) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Just in case we booted with a single CPU. */ | 
|  | alternatives_enable_smp(); | 
|  |  | 
|  | per_cpu(pcpu_hot.current_task, cpu) = idle; | 
|  | cpu_init_stack_canary(cpu, idle); | 
|  |  | 
|  | /* Initialize the interrupt stack(s) */ | 
|  | ret = irq_init_percpu_irqstack(cpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* Stack for startup_32 can be just as for start_secondary onwards */ | 
|  | per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle); | 
|  | #else | 
|  | initial_gs = per_cpu_offset(cpu); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad | 
|  | * (ie clustered apic addressing mode), this is a LOGICAL apic ID. | 
|  | * Returns zero if CPU booted OK, else error code from | 
|  | * ->wakeup_secondary_cpu. | 
|  | */ | 
|  | static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle, | 
|  | int *cpu0_nmi_registered) | 
|  | { | 
|  | /* start_ip had better be page-aligned! */ | 
|  | unsigned long start_ip = real_mode_header->trampoline_start; | 
|  |  | 
|  | unsigned long boot_error = 0; | 
|  | unsigned long timeout; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */ | 
|  | if (apic->wakeup_secondary_cpu_64) | 
|  | start_ip = real_mode_header->trampoline_start64; | 
|  | #endif | 
|  | idle->thread.sp = (unsigned long)task_pt_regs(idle); | 
|  | early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu); | 
|  | initial_code = (unsigned long)start_secondary; | 
|  | initial_stack  = idle->thread.sp; | 
|  |  | 
|  | /* Enable the espfix hack for this CPU */ | 
|  | init_espfix_ap(cpu); | 
|  |  | 
|  | /* So we see what's up */ | 
|  | announce_cpu(cpu, apicid); | 
|  |  | 
|  | /* | 
|  | * This grunge runs the startup process for | 
|  | * the targeted processor. | 
|  | */ | 
|  |  | 
|  | if (x86_platform.legacy.warm_reset) { | 
|  |  | 
|  | pr_debug("Setting warm reset code and vector.\n"); | 
|  |  | 
|  | smpboot_setup_warm_reset_vector(start_ip); | 
|  | /* | 
|  | * Be paranoid about clearing APIC errors. | 
|  | */ | 
|  | if (APIC_INTEGRATED(boot_cpu_apic_version)) { | 
|  | apic_write(APIC_ESR, 0); | 
|  | apic_read(APIC_ESR); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * AP might wait on cpu_callout_mask in cpu_init() with | 
|  | * cpu_initialized_mask set if previous attempt to online | 
|  | * it timed-out. Clear cpu_initialized_mask so that after | 
|  | * INIT/SIPI it could start with a clean state. | 
|  | */ | 
|  | cpumask_clear_cpu(cpu, cpu_initialized_mask); | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * Wake up a CPU in difference cases: | 
|  | * - Use a method from the APIC driver if one defined, with wakeup | 
|  | *   straight to 64-bit mode preferred over wakeup to RM. | 
|  | * Otherwise, | 
|  | * - Use an INIT boot APIC message for APs or NMI for BSP. | 
|  | */ | 
|  | if (apic->wakeup_secondary_cpu_64) | 
|  | boot_error = apic->wakeup_secondary_cpu_64(apicid, start_ip); | 
|  | else if (apic->wakeup_secondary_cpu) | 
|  | boot_error = apic->wakeup_secondary_cpu(apicid, start_ip); | 
|  | else | 
|  | boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid, | 
|  | cpu0_nmi_registered); | 
|  |  | 
|  | if (!boot_error) { | 
|  | /* | 
|  | * Wait 10s total for first sign of life from AP | 
|  | */ | 
|  | boot_error = -1; | 
|  | timeout = jiffies + 10*HZ; | 
|  | while (time_before(jiffies, timeout)) { | 
|  | if (cpumask_test_cpu(cpu, cpu_initialized_mask)) { | 
|  | /* | 
|  | * Tell AP to proceed with initialization | 
|  | */ | 
|  | cpumask_set_cpu(cpu, cpu_callout_mask); | 
|  | boot_error = 0; | 
|  | break; | 
|  | } | 
|  | schedule(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!boot_error) { | 
|  | /* | 
|  | * Wait till AP completes initial initialization | 
|  | */ | 
|  | while (!cpumask_test_cpu(cpu, cpu_callin_mask)) { | 
|  | /* | 
|  | * Allow other tasks to run while we wait for the | 
|  | * AP to come online. This also gives a chance | 
|  | * for the MTRR work(triggered by the AP coming online) | 
|  | * to be completed in the stop machine context. | 
|  | */ | 
|  | schedule(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (x86_platform.legacy.warm_reset) { | 
|  | /* | 
|  | * Cleanup possible dangling ends... | 
|  | */ | 
|  | smpboot_restore_warm_reset_vector(); | 
|  | } | 
|  |  | 
|  | return boot_error; | 
|  | } | 
|  |  | 
|  | int native_cpu_up(unsigned int cpu, struct task_struct *tidle) | 
|  | { | 
|  | int apicid = apic->cpu_present_to_apicid(cpu); | 
|  | int cpu0_nmi_registered = 0; | 
|  | unsigned long flags; | 
|  | int err, ret = 0; | 
|  |  | 
|  | lockdep_assert_irqs_enabled(); | 
|  |  | 
|  | pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu); | 
|  |  | 
|  | if (apicid == BAD_APICID || | 
|  | !physid_isset(apicid, phys_cpu_present_map) || | 
|  | !apic->apic_id_valid(apicid)) { | 
|  | pr_err("%s: bad cpu %d\n", __func__, cpu); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Already booted CPU? | 
|  | */ | 
|  | if (cpumask_test_cpu(cpu, cpu_callin_mask)) { | 
|  | pr_debug("do_boot_cpu %d Already started\n", cpu); | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save current MTRR state in case it was changed since early boot | 
|  | * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: | 
|  | */ | 
|  | mtrr_save_state(); | 
|  |  | 
|  | /* x86 CPUs take themselves offline, so delayed offline is OK. */ | 
|  | err = cpu_check_up_prepare(cpu); | 
|  | if (err && err != -EBUSY) | 
|  | return err; | 
|  |  | 
|  | /* the FPU context is blank, nobody can own it */ | 
|  | per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; | 
|  |  | 
|  | err = common_cpu_up(cpu, tidle); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered); | 
|  | if (err) { | 
|  | pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); | 
|  | ret = -EIO; | 
|  | goto unreg_nmi; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check TSC synchronization with the AP (keep irqs disabled | 
|  | * while doing so): | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | check_tsc_sync_source(cpu); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | while (!cpu_online(cpu)) { | 
|  | cpu_relax(); | 
|  | touch_nmi_watchdog(); | 
|  | } | 
|  |  | 
|  | unreg_nmi: | 
|  | /* | 
|  | * Clean up the nmi handler. Do this after the callin and callout sync | 
|  | * to avoid impact of possible long unregister time. | 
|  | */ | 
|  | if (cpu0_nmi_registered) | 
|  | unregister_nmi_handler(NMI_LOCAL, "wake_cpu0"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arch_disable_smp_support() - disables SMP support for x86 at runtime | 
|  | */ | 
|  | void arch_disable_smp_support(void) | 
|  | { | 
|  | disable_ioapic_support(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fall back to non SMP mode after errors. | 
|  | * | 
|  | * RED-PEN audit/test this more. I bet there is more state messed up here. | 
|  | */ | 
|  | static __init void disable_smp(void) | 
|  | { | 
|  | pr_info("SMP disabled\n"); | 
|  |  | 
|  | disable_ioapic_support(); | 
|  |  | 
|  | init_cpu_present(cpumask_of(0)); | 
|  | init_cpu_possible(cpumask_of(0)); | 
|  |  | 
|  | if (smp_found_config) | 
|  | physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); | 
|  | else | 
|  | physid_set_mask_of_physid(0, &phys_cpu_present_map); | 
|  | cpumask_set_cpu(0, topology_sibling_cpumask(0)); | 
|  | cpumask_set_cpu(0, topology_core_cpumask(0)); | 
|  | cpumask_set_cpu(0, topology_die_cpumask(0)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Various sanity checks. | 
|  | */ | 
|  | static void __init smp_sanity_check(void) | 
|  | { | 
|  | preempt_disable(); | 
|  |  | 
|  | #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32) | 
|  | if (def_to_bigsmp && nr_cpu_ids > 8) { | 
|  | unsigned int cpu; | 
|  | unsigned nr; | 
|  |  | 
|  | pr_warn("More than 8 CPUs detected - skipping them\n" | 
|  | "Use CONFIG_X86_BIGSMP\n"); | 
|  |  | 
|  | nr = 0; | 
|  | for_each_present_cpu(cpu) { | 
|  | if (nr >= 8) | 
|  | set_cpu_present(cpu, false); | 
|  | nr++; | 
|  | } | 
|  |  | 
|  | nr = 0; | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (nr >= 8) | 
|  | set_cpu_possible(cpu, false); | 
|  | nr++; | 
|  | } | 
|  |  | 
|  | set_nr_cpu_ids(8); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { | 
|  | pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n", | 
|  | hard_smp_processor_id()); | 
|  |  | 
|  | physid_set(hard_smp_processor_id(), phys_cpu_present_map); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should not be necessary because the MP table should list the boot | 
|  | * CPU too, but we do it for the sake of robustness anyway. | 
|  | */ | 
|  | if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) { | 
|  | pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n", | 
|  | boot_cpu_physical_apicid); | 
|  | physid_set(hard_smp_processor_id(), phys_cpu_present_map); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void __init smp_cpu_index_default(void) | 
|  | { | 
|  | int i; | 
|  | struct cpuinfo_x86 *c; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | c = &cpu_data(i); | 
|  | /* mark all to hotplug */ | 
|  | c->cpu_index = nr_cpu_ids; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init smp_get_logical_apicid(void) | 
|  | { | 
|  | if (x2apic_mode) | 
|  | cpu0_logical_apicid = apic_read(APIC_LDR); | 
|  | else | 
|  | cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); | 
|  | } | 
|  |  | 
|  | void __init smp_prepare_cpus_common(void) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | smp_cpu_index_default(); | 
|  |  | 
|  | /* | 
|  | * Setup boot CPU information | 
|  | */ | 
|  | smp_store_boot_cpu_info(); /* Final full version of the data */ | 
|  | cpumask_copy(cpu_callin_mask, cpumask_of(0)); | 
|  | mb(); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); | 
|  | zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); | 
|  | zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL); | 
|  | zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); | 
|  | zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set 'default' x86 topology, this matches default_topology() in that | 
|  | * it has NUMA nodes as a topology level. See also | 
|  | * native_smp_cpus_done(). | 
|  | * | 
|  | * Must be done before set_cpus_sibling_map() is ran. | 
|  | */ | 
|  | set_sched_topology(x86_topology); | 
|  |  | 
|  | set_cpu_sibling_map(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare for SMP bootup. | 
|  | * @max_cpus: configured maximum number of CPUs, It is a legacy parameter | 
|  | *            for common interface support. | 
|  | */ | 
|  | void __init native_smp_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | smp_prepare_cpus_common(); | 
|  |  | 
|  | smp_sanity_check(); | 
|  |  | 
|  | switch (apic_intr_mode) { | 
|  | case APIC_PIC: | 
|  | case APIC_VIRTUAL_WIRE_NO_CONFIG: | 
|  | disable_smp(); | 
|  | return; | 
|  | case APIC_SYMMETRIC_IO_NO_ROUTING: | 
|  | disable_smp(); | 
|  | /* Setup local timer */ | 
|  | x86_init.timers.setup_percpu_clockev(); | 
|  | return; | 
|  | case APIC_VIRTUAL_WIRE: | 
|  | case APIC_SYMMETRIC_IO: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Setup local timer */ | 
|  | x86_init.timers.setup_percpu_clockev(); | 
|  |  | 
|  | smp_get_logical_apicid(); | 
|  |  | 
|  | pr_info("CPU0: "); | 
|  | print_cpu_info(&cpu_data(0)); | 
|  |  | 
|  | uv_system_init(); | 
|  |  | 
|  | smp_quirk_init_udelay(); | 
|  |  | 
|  | speculative_store_bypass_ht_init(); | 
|  |  | 
|  | snp_set_wakeup_secondary_cpu(); | 
|  | } | 
|  |  | 
|  | void arch_thaw_secondary_cpus_begin(void) | 
|  | { | 
|  | set_cache_aps_delayed_init(true); | 
|  | } | 
|  |  | 
|  | void arch_thaw_secondary_cpus_end(void) | 
|  | { | 
|  | cache_aps_init(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Early setup to make printk work. | 
|  | */ | 
|  | void __init native_smp_prepare_boot_cpu(void) | 
|  | { | 
|  | int me = smp_processor_id(); | 
|  |  | 
|  | /* SMP handles this from setup_per_cpu_areas() */ | 
|  | if (!IS_ENABLED(CONFIG_SMP)) | 
|  | switch_gdt_and_percpu_base(me); | 
|  |  | 
|  | /* already set me in cpu_online_mask in boot_cpu_init() */ | 
|  | cpumask_set_cpu(me, cpu_callout_mask); | 
|  | cpu_set_state_online(me); | 
|  | native_pv_lock_init(); | 
|  | } | 
|  |  | 
|  | void __init calculate_max_logical_packages(void) | 
|  | { | 
|  | int ncpus; | 
|  |  | 
|  | /* | 
|  | * Today neither Intel nor AMD support heterogeneous systems so | 
|  | * extrapolate the boot cpu's data to all packages. | 
|  | */ | 
|  | ncpus = cpu_data(0).booted_cores * topology_max_smt_threads(); | 
|  | __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus); | 
|  | pr_info("Max logical packages: %u\n", __max_logical_packages); | 
|  | } | 
|  |  | 
|  | void __init native_smp_cpus_done(unsigned int max_cpus) | 
|  | { | 
|  | pr_debug("Boot done\n"); | 
|  |  | 
|  | calculate_max_logical_packages(); | 
|  |  | 
|  | /* XXX for now assume numa-in-package and hybrid don't overlap */ | 
|  | if (x86_has_numa_in_package) | 
|  | set_sched_topology(x86_numa_in_package_topology); | 
|  | if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) | 
|  | set_sched_topology(x86_hybrid_topology); | 
|  |  | 
|  | nmi_selftest(); | 
|  | impress_friends(); | 
|  | cache_aps_init(); | 
|  | } | 
|  |  | 
|  | static int __initdata setup_possible_cpus = -1; | 
|  | static int __init _setup_possible_cpus(char *str) | 
|  | { | 
|  | get_option(&str, &setup_possible_cpus); | 
|  | return 0; | 
|  | } | 
|  | early_param("possible_cpus", _setup_possible_cpus); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cpu_possible_mask should be static, it cannot change as cpu's | 
|  | * are onlined, or offlined. The reason is per-cpu data-structures | 
|  | * are allocated by some modules at init time, and don't expect to | 
|  | * do this dynamically on cpu arrival/departure. | 
|  | * cpu_present_mask on the other hand can change dynamically. | 
|  | * In case when cpu_hotplug is not compiled, then we resort to current | 
|  | * behaviour, which is cpu_possible == cpu_present. | 
|  | * - Ashok Raj | 
|  | * | 
|  | * Three ways to find out the number of additional hotplug CPUs: | 
|  | * - If the BIOS specified disabled CPUs in ACPI/mptables use that. | 
|  | * - The user can overwrite it with possible_cpus=NUM | 
|  | * - Otherwise don't reserve additional CPUs. | 
|  | * We do this because additional CPUs waste a lot of memory. | 
|  | * -AK | 
|  | */ | 
|  | __init void prefill_possible_map(void) | 
|  | { | 
|  | int i, possible; | 
|  |  | 
|  | /* No boot processor was found in mptable or ACPI MADT */ | 
|  | if (!num_processors) { | 
|  | if (boot_cpu_has(X86_FEATURE_APIC)) { | 
|  | int apicid = boot_cpu_physical_apicid; | 
|  | int cpu = hard_smp_processor_id(); | 
|  |  | 
|  | pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu); | 
|  |  | 
|  | /* Make sure boot cpu is enumerated */ | 
|  | if (apic->cpu_present_to_apicid(0) == BAD_APICID && | 
|  | apic->apic_id_valid(apicid)) | 
|  | generic_processor_info(apicid, boot_cpu_apic_version); | 
|  | } | 
|  |  | 
|  | if (!num_processors) | 
|  | num_processors = 1; | 
|  | } | 
|  |  | 
|  | i = setup_max_cpus ?: 1; | 
|  | if (setup_possible_cpus == -1) { | 
|  | possible = num_processors; | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | if (setup_max_cpus) | 
|  | possible += disabled_cpus; | 
|  | #else | 
|  | if (possible > i) | 
|  | possible = i; | 
|  | #endif | 
|  | } else | 
|  | possible = setup_possible_cpus; | 
|  |  | 
|  | total_cpus = max_t(int, possible, num_processors + disabled_cpus); | 
|  |  | 
|  | /* nr_cpu_ids could be reduced via nr_cpus= */ | 
|  | if (possible > nr_cpu_ids) { | 
|  | pr_warn("%d Processors exceeds NR_CPUS limit of %u\n", | 
|  | possible, nr_cpu_ids); | 
|  | possible = nr_cpu_ids; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | if (!setup_max_cpus) | 
|  | #endif | 
|  | if (possible > i) { | 
|  | pr_warn("%d Processors exceeds max_cpus limit of %u\n", | 
|  | possible, setup_max_cpus); | 
|  | possible = i; | 
|  | } | 
|  |  | 
|  | set_nr_cpu_ids(possible); | 
|  |  | 
|  | pr_info("Allowing %d CPUs, %d hotplug CPUs\n", | 
|  | possible, max_t(int, possible - num_processors, 0)); | 
|  |  | 
|  | reset_cpu_possible_mask(); | 
|  |  | 
|  | for (i = 0; i < possible; i++) | 
|  | set_cpu_possible(i, true); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | /* Recompute SMT state for all CPUs on offline */ | 
|  | static void recompute_smt_state(void) | 
|  | { | 
|  | int max_threads, cpu; | 
|  |  | 
|  | max_threads = 0; | 
|  | for_each_online_cpu (cpu) { | 
|  | int threads = cpumask_weight(topology_sibling_cpumask(cpu)); | 
|  |  | 
|  | if (threads > max_threads) | 
|  | max_threads = threads; | 
|  | } | 
|  | __max_smt_threads = max_threads; | 
|  | } | 
|  |  | 
|  | static void remove_siblinginfo(int cpu) | 
|  | { | 
|  | int sibling; | 
|  | struct cpuinfo_x86 *c = &cpu_data(cpu); | 
|  |  | 
|  | for_each_cpu(sibling, topology_core_cpumask(cpu)) { | 
|  | cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); | 
|  | /*/ | 
|  | * last thread sibling in this cpu core going down | 
|  | */ | 
|  | if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) | 
|  | cpu_data(sibling).booted_cores--; | 
|  | } | 
|  |  | 
|  | for_each_cpu(sibling, topology_die_cpumask(cpu)) | 
|  | cpumask_clear_cpu(cpu, topology_die_cpumask(sibling)); | 
|  |  | 
|  | for_each_cpu(sibling, topology_sibling_cpumask(cpu)) { | 
|  | cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); | 
|  | if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1) | 
|  | cpu_data(sibling).smt_active = false; | 
|  | } | 
|  |  | 
|  | for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) | 
|  | cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); | 
|  | for_each_cpu(sibling, cpu_l2c_shared_mask(cpu)) | 
|  | cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling)); | 
|  | cpumask_clear(cpu_llc_shared_mask(cpu)); | 
|  | cpumask_clear(cpu_l2c_shared_mask(cpu)); | 
|  | cpumask_clear(topology_sibling_cpumask(cpu)); | 
|  | cpumask_clear(topology_core_cpumask(cpu)); | 
|  | cpumask_clear(topology_die_cpumask(cpu)); | 
|  | c->cpu_core_id = 0; | 
|  | c->booted_cores = 0; | 
|  | cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); | 
|  | recompute_smt_state(); | 
|  | } | 
|  |  | 
|  | static void remove_cpu_from_maps(int cpu) | 
|  | { | 
|  | set_cpu_online(cpu, false); | 
|  | cpumask_clear_cpu(cpu, cpu_callout_mask); | 
|  | cpumask_clear_cpu(cpu, cpu_callin_mask); | 
|  | /* was set by cpu_init() */ | 
|  | cpumask_clear_cpu(cpu, cpu_initialized_mask); | 
|  | numa_remove_cpu(cpu); | 
|  | } | 
|  |  | 
|  | void cpu_disable_common(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | remove_siblinginfo(cpu); | 
|  |  | 
|  | /* It's now safe to remove this processor from the online map */ | 
|  | lock_vector_lock(); | 
|  | remove_cpu_from_maps(cpu); | 
|  | unlock_vector_lock(); | 
|  | fixup_irqs(); | 
|  | lapic_offline(); | 
|  | } | 
|  |  | 
|  | int native_cpu_disable(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = lapic_can_unplug_cpu(); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cpu_disable_common(); | 
|  |  | 
|  | /* | 
|  | * Disable the local APIC. Otherwise IPI broadcasts will reach | 
|  | * it. It still responds normally to INIT, NMI, SMI, and SIPI | 
|  | * messages. | 
|  | * | 
|  | * Disabling the APIC must happen after cpu_disable_common() | 
|  | * which invokes fixup_irqs(). | 
|  | * | 
|  | * Disabling the APIC preserves already set bits in IRR, but | 
|  | * an interrupt arriving after disabling the local APIC does not | 
|  | * set the corresponding IRR bit. | 
|  | * | 
|  | * fixup_irqs() scans IRR for set bits so it can raise a not | 
|  | * yet handled interrupt on the new destination CPU via an IPI | 
|  | * but obviously it can't do so for IRR bits which are not set. | 
|  | * IOW, interrupts arriving after disabling the local APIC will | 
|  | * be lost. | 
|  | */ | 
|  | apic_soft_disable(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int common_cpu_die(unsigned int cpu) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* We don't do anything here: idle task is faking death itself. */ | 
|  |  | 
|  | /* They ack this in play_dead() by setting CPU_DEAD */ | 
|  | if (cpu_wait_death(cpu, 5)) { | 
|  | if (system_state == SYSTEM_RUNNING) | 
|  | pr_info("CPU %u is now offline\n", cpu); | 
|  | } else { | 
|  | pr_err("CPU %u didn't die...\n", cpu); | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void native_cpu_die(unsigned int cpu) | 
|  | { | 
|  | common_cpu_die(cpu); | 
|  | } | 
|  |  | 
|  | void play_dead_common(void) | 
|  | { | 
|  | idle_task_exit(); | 
|  |  | 
|  | /* Ack it */ | 
|  | (void)cpu_report_death(); | 
|  |  | 
|  | /* | 
|  | * With physical CPU hotplug, we should halt the cpu | 
|  | */ | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cond_wakeup_cpu0 - Wake up CPU0 if needed. | 
|  | * | 
|  | * If NMI wants to wake up CPU0, start CPU0. | 
|  | */ | 
|  | void cond_wakeup_cpu0(void) | 
|  | { | 
|  | if (smp_processor_id() == 0 && enable_start_cpu0) | 
|  | start_cpu0(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cond_wakeup_cpu0); | 
|  |  | 
|  | /* | 
|  | * We need to flush the caches before going to sleep, lest we have | 
|  | * dirty data in our caches when we come back up. | 
|  | */ | 
|  | static inline void mwait_play_dead(void) | 
|  | { | 
|  | struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead); | 
|  | unsigned int eax, ebx, ecx, edx; | 
|  | unsigned int highest_cstate = 0; | 
|  | unsigned int highest_subcstate = 0; | 
|  | int i; | 
|  |  | 
|  | if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || | 
|  | boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) | 
|  | return; | 
|  | if (!this_cpu_has(X86_FEATURE_MWAIT)) | 
|  | return; | 
|  | if (!this_cpu_has(X86_FEATURE_CLFLUSH)) | 
|  | return; | 
|  | if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) | 
|  | return; | 
|  |  | 
|  | eax = CPUID_MWAIT_LEAF; | 
|  | ecx = 0; | 
|  | native_cpuid(&eax, &ebx, &ecx, &edx); | 
|  |  | 
|  | /* | 
|  | * eax will be 0 if EDX enumeration is not valid. | 
|  | * Initialized below to cstate, sub_cstate value when EDX is valid. | 
|  | */ | 
|  | if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { | 
|  | eax = 0; | 
|  | } else { | 
|  | edx >>= MWAIT_SUBSTATE_SIZE; | 
|  | for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { | 
|  | if (edx & MWAIT_SUBSTATE_MASK) { | 
|  | highest_cstate = i; | 
|  | highest_subcstate = edx & MWAIT_SUBSTATE_MASK; | 
|  | } | 
|  | } | 
|  | eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | | 
|  | (highest_subcstate - 1); | 
|  | } | 
|  |  | 
|  | /* Set up state for the kexec() hack below */ | 
|  | md->status = CPUDEAD_MWAIT_WAIT; | 
|  | md->control = CPUDEAD_MWAIT_WAIT; | 
|  |  | 
|  | wbinvd(); | 
|  |  | 
|  | while (1) { | 
|  | /* | 
|  | * The CLFLUSH is a workaround for erratum AAI65 for | 
|  | * the Xeon 7400 series.  It's not clear it is actually | 
|  | * needed, but it should be harmless in either case. | 
|  | * The WBINVD is insufficient due to the spurious-wakeup | 
|  | * case where we return around the loop. | 
|  | */ | 
|  | mb(); | 
|  | clflush(md); | 
|  | mb(); | 
|  | __monitor(md, 0, 0); | 
|  | mb(); | 
|  | __mwait(eax, 0); | 
|  |  | 
|  | if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) { | 
|  | /* | 
|  | * Kexec is about to happen. Don't go back into mwait() as | 
|  | * the kexec kernel might overwrite text and data including | 
|  | * page tables and stack. So mwait() would resume when the | 
|  | * monitor cache line is written to and then the CPU goes | 
|  | * south due to overwritten text, page tables and stack. | 
|  | * | 
|  | * Note: This does _NOT_ protect against a stray MCE, NMI, | 
|  | * SMI. They will resume execution at the instruction | 
|  | * following the HLT instruction and run into the problem | 
|  | * which this is trying to prevent. | 
|  | */ | 
|  | WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT); | 
|  | while(1) | 
|  | native_halt(); | 
|  | } | 
|  |  | 
|  | cond_wakeup_cpu0(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kick all "offline" CPUs out of mwait on kexec(). See comment in | 
|  | * mwait_play_dead(). | 
|  | */ | 
|  | void smp_kick_mwait_play_dead(void) | 
|  | { | 
|  | u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT; | 
|  | struct mwait_cpu_dead *md; | 
|  | unsigned int cpu, i; | 
|  |  | 
|  | for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) { | 
|  | md = per_cpu_ptr(&mwait_cpu_dead, cpu); | 
|  |  | 
|  | /* Does it sit in mwait_play_dead() ? */ | 
|  | if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT) | 
|  | continue; | 
|  |  | 
|  | /* Wait up to 5ms */ | 
|  | for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) { | 
|  | /* Bring it out of mwait */ | 
|  | WRITE_ONCE(md->control, newstate); | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | if (READ_ONCE(md->status) != newstate) | 
|  | pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | void hlt_play_dead(void) | 
|  | { | 
|  | if (__this_cpu_read(cpu_info.x86) >= 4) | 
|  | wbinvd(); | 
|  |  | 
|  | while (1) { | 
|  | native_halt(); | 
|  |  | 
|  | cond_wakeup_cpu0(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void native_play_dead(void) | 
|  | { | 
|  | play_dead_common(); | 
|  | tboot_shutdown(TB_SHUTDOWN_WFS); | 
|  |  | 
|  | mwait_play_dead(); | 
|  | if (cpuidle_play_dead()) | 
|  | hlt_play_dead(); | 
|  | } | 
|  |  | 
|  | #else /* ... !CONFIG_HOTPLUG_CPU */ | 
|  | int native_cpu_disable(void) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | void native_cpu_die(unsigned int cpu) | 
|  | { | 
|  | /* We said "no" in __cpu_disable */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | void native_play_dead(void) | 
|  | { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | #endif |